Integrative Omics for Interactomes

  • Debangana Chakravorty
  • Krishnendu Banerjee
  • Sudipto Saha


Single-layer omics provide limited insight, whereas integrated multi-omics layers allow understanding of their combined influence on the complex biological process. The integrative omics approach has been initially applied to cancer research and later used in understanding host-pathogen interactions and pluripotency regulatory networks in stem cells. Here, different multi-omics layers along with databases and tools specific for multiple data integration, visualization, and integrated network modeling are described. In summary, this chapter focuses on integrative analysis of different multi-omics layers and modeling of interactomes to identify robust biomarkers and biological processes associated with diseases.


Multi-omics Protein-protein interactions TCGA CPTAC Integrative analysis 


  1. Alexandar V, Nayar PG, Murugesan R, Mary B, Darshana P et al (2015) CardioGenBase: a literature based multi-omics database for major cardiovascular diseases. PLoS One 10:e0143188CrossRefGoogle Scholar
  2. Bonnet E, Calzone L, Michoel T (2015) Integrative multi-omics module network inference with Lemon-Tree. PLoS Comput Biol 11:e1003983CrossRefGoogle Scholar
  3. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS et al (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122:947–956CrossRefGoogle Scholar
  4. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10:1213–1218CrossRefGoogle Scholar
  5. Bujak R, Struck-Lewicka W, Markuszewski MJ, Kaliszan R (2015) Metabolomics for laboratory diagnostics. J Pharm Biomed Anal 113:108–120CrossRefGoogle Scholar
  6. Cavill R, Jennen D, Kleinjans J, Briede JJ (2016) Transcriptomic and metabolomic data integration. Brief Bioinform 17:891–901CrossRefGoogle Scholar
  7. Chakravorty D, Jana T, Das Mandal S, Seth A, Bhattacharya A et al (2017) MYCbase: a database of functional sites and biochemical properties of Myc in both normal and cancer cells. BMC Bioinformatics 18:224CrossRefGoogle Scholar
  8. Chen X, Xu H, Yuan P, Fang F, Huss M et al (2008) Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133:1106–1117CrossRefGoogle Scholar
  9. Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N et al (2007) Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2:2366–2382CrossRefGoogle Scholar
  10. Concepts of genetics (2012) (10th ed.). San Francisco: Pearson Education. ISBN:978-0-321-72412-0Google Scholar
  11. Culver KW, Labow MA (2002) Genomics. In: Robinson R (ed) Genetics. Macmillan Science Library. Macmillan Reference USA, New York ISBN:978-0-02-865606-9Google Scholar
  12. Ewing RM, Chu P, Elisma F, Li H, Taylor P et al (2007) Large-scale mapping of human protein-protein interactions by mass spectrometry. Mol Syst Biol 3:89CrossRefGoogle Scholar
  13. Fernandes M, Husi H (2017) Establishment of a integrative multi-omics expression database CKDdb in the context of chronic kidney disease (CKD). Sci Rep 7:40367CrossRefGoogle Scholar
  14. Friedman N, Rando OJ (2015) Epigenomics and the structure of the living genome. Genome Res 25:1482–1490CrossRefGoogle Scholar
  15. Garcia-Alcalde F, Garcia-Lopez F, Dopazo J, Conesa A (2011) Paintomics: a web based tool for the joint visualization of transcriptomics and metabolomics data. Bioinformatics 27:137–139CrossRefGoogle Scholar
  16. Gorenshteyn D, Zaslavsky E, Fribourg M, Park CY, Wong AK et al (2015) Interactive big data resource to elucidate human immune pathways and diseases. Immunity 43:605–614CrossRefGoogle Scholar
  17. Graves PR, Haystead TA (2002) Molecular biologist’s guide to proteomics. Microbiol Mol Biol Rev 66:39–63CrossRefGoogle Scholar
  18. Gupta AK, Kaur K, Rajput A, Dhanda SK, Sehgal M et al (2016) ZikaVR: an integrated Zika virus resource for genomics, proteomics, Phylogenetic and Therapeutic Analysis. Sci Rep 6:32713CrossRefGoogle Scholar
  19. Ha MJ, Baladandayuthapani V, Do KA (2015) DINGO: differential network analysis in genomics. Bioinformatics 31:3413–3420CrossRefGoogle Scholar
  20. Jean Beltran PM, Federspiel JD, Sheng X, Cristea IM (2017) Proteomics and integrative omic approaches for understanding host-pathogen interactions and infectious diseases. Mol Syst Biol 13:922CrossRefGoogle Scholar
  21. Kamburov A, Cavill R, Ebbels TM, Herwig R, Keun HC (2011) Integrated pathway-level analysis of transcriptomics and metabolomics data with IMPaLA. Bioinformatics 27:2917–2918CrossRefGoogle Scholar
  22. Karnovsky A, Weymouth T, Hull T, Tarcea VG, Scardoni G et al (2012) Metscape 2 bioinformatics tool for the analysis and visualization of metabolomics and gene expression data. Bioinformatics 28:373–380CrossRefGoogle Scholar
  23. Kartashov AV, Barski A (2015) BioWardrobe: an integrated platform for analysis of epigenomics and transcriptomics data. Genome Biol 16:158CrossRefGoogle Scholar
  24. Koleti A, Terryn R, Stathias V, Chung C, Cooper DJ et al (2018) Data portal for the library of integrated network-based cellular signatures (LINCS) program: integrated access to diverse large-scale cellular perturbation response data. Nucleic Acids Res 46:D558–D566CrossRefGoogle Scholar
  25. Krogan NJ, Cagney G, Yu H, Zhong G, Guo X et al (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440:637–643CrossRefGoogle Scholar
  26. Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS et al (2006) Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125:301–313CrossRefGoogle Scholar
  27. Lindon JC, Nicholson JK (2008) Analytical technologies for metabonomics and metabolomics, and multi-omic information recovery. Trac-Trend Anal Chem 27:194–204CrossRefGoogle Scholar
  28. MacArthur BD, Sevilla A, Lenz M, Muller FJ, Schuldt BM et al (2012) Nanog-dependent feedback loops regulate murine embryonic stem cell heterogeneity. Nat Cell Biol 14:1139–1147CrossRefGoogle Scholar
  29. Manes NP, Shulzhenko N, Nuccio AG, Azeem S, Morgun A et al (2017) Multi-omics comparative analysis reveals multiple layers of host signaling pathway regulation by the gut microbiota. mSystems 2:e00107CrossRefGoogle Scholar
  30. Mertins P, Mani DR, Ruggles KV, Gillette MA, Clauser KR et al (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534:55–62CrossRefGoogle Scholar
  31. Montague E, Janko I, Stanberry L, Lee E, Choiniere J et al (2015) Beyond protein expression, MOPED goes multi-omics. Nucleic Acids Res 43:D1145–D1151CrossRefGoogle Scholar
  32. Moussaieff A, Rouleau M, Kitsberg D, Cohen M, Levy G et al (2015) Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab 21:392–402CrossRefGoogle Scholar
  33. Orkin SH, Hochedlinger K (2011) Chromatin connections to pluripotency and cellular reprogramming. Cell 145:835–850CrossRefGoogle Scholar
  34. Rohart F, Gautier B, Singh A, Le Cao KA (2017) mixOmics: an R package for ‘omics feature selection and multiple data integration. PLoS Comput Biol 13:e1005752CrossRefGoogle Scholar
  35. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A et al (2005) Towards a proteome-scale map of the human protein-protein interaction network. Nature 437:1173–1178CrossRefGoogle Scholar
  36. Saha S, Ewing R (2011) Systemic discovery of condition specific Wnt signalling subnetworks. In: IEEE international conference on bioinformatics and biomedicine workshopsGoogle Scholar
  37. Stumpf PS, Ewing R, MacArthur BD (2016) Single-cell pluripotency regulatory networks. Proteomics 16:2303–2312CrossRefGoogle Scholar
  38. Tuncbag N, Gosline SJ, Kedaigle A, Soltis AR, Gitter A et al (2016) Network-based interpretation of diverse high-throughput datasets through the omics integrator software package. PLoS Comput Biol 12:e1004879CrossRefGoogle Scholar
  39. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS et al (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403:623–627CrossRefGoogle Scholar
  40. Urbanczyk-Wochniak E, Luedemann A, Kopka J, Selbig J, Roessner-Tunali U et al (2003) Parallel analysis of transcript and metabolic profiles: a new approach in systems biology. EMBO Rep 4:989–993CrossRefGoogle Scholar
  41. Vasaikar SV, Straub P, Wang J, Zhang B (2018) LinkedOmics: analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res 4:D956–D963CrossRefGoogle Scholar
  42. Wang J, Rao S, Chu J, Shen X, Levasseur DN et al (2006) A protein interaction network for pluripotency of embryonic stem cells. Nature 444:364–368CrossRefGoogle Scholar
  43. Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R (2007) DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet 39:380–385CrossRefGoogle Scholar
  44. Wang Z, Jensen MA, Zenklusen JC (2016) A practical guide to the Cancer genome atlas (TCGA). Methods Mol Biol 1418:111–141CrossRefGoogle Scholar
  45. Woo HG, Choi JH, Yoon S, Jee BA, Cho EJ et al (2017) Integrative analysis of genomic and epigenomic regulation of the transcriptome in liver cancer. Nat Commun 8:839CrossRefGoogle Scholar
  46. Xia J, Gill EE, Hancock RE (2015) NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data. Nat Protoc 10:823–844CrossRefGoogle Scholar
  47. Yang L, Duff MO, Graveley BR, Carmichael GG, Chen LL (2011) Genomewide characterization of non-polyadenylated RNAs. Genome Biol 12:R16CrossRefGoogle Scholar
  48. Yifeng L, Fang-Xiang W, Alioune N (2016) A review on machine learning principles for multi-view biological data integration. Brief Bioinform 1–16Google Scholar
  49. Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B et al (2008) The ground state of embryonic stem cell self-renewal. Nature 453:519–523CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Debangana Chakravorty
    • 1
  • Krishnendu Banerjee
    • 1
  • Sudipto Saha
    • 1
  1. 1.Bioinformatics CentreBose InstituteKolkataIndia

Personalised recommendations