Advertisement

Fungal Nanotechnology: A New Approach Toward Efficient Biotechnology Application

  • Cintia Mariana Romero
  • Analía Alvarez
  • María Alejandra Martínez
  • Silvina Chaves
Chapter

Abstract

Nanotechnology is a wide developing area of the biotechnology since the important applications of nanoparticles (NPs) in different technologies. The NPs produced by green technologies have many advantages such as greater surface area and high catalytic activity, in addition to providing a suitable contact between the metal salt and enzyme. Fungi secrete proteins, enzymes, and reducing agents which can be used for the synthesis of metal NPs from metal salts.

The biosynthesis of metal NPs by fungi has been explored in recent years, evaluating the extracellular and intracellular chemistry of formation. Emphasis has been given to the potential of metal NPs as an antimicrobial agent to inhibit the growth of pathogenic bacteria and fungi and other potential applications such as their cytotoxic activity against cancer cell lines. Further, the metal NPs are being explored as promising candidates for several biomedical, pharmaceutical, and agricultural applications.

Keywords

Nanoparticles Biosynthesis Antimicrobial Cytotoxicity Biomineralization 

Notes

Acknowledgments

This work was supported by the Agencia Nacional de Investigaciones Científicas y Técnicas (PICT 2974 and 0480), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, PIP 0372), and Consejo Interuniversitario Nacional Consejo and Nacional de Investigaciones Científicas y Técnicas (CIN-CONICET, PDTS 474).

References

  1. AbdelRahim K, Mahmoud SY, Ali AM, Almaary KS, Mustafa AE-ZM, Husseiny SM (2017) Extracellular biosynthesis of silver nanoparticles using Rhizopus stolonifer. Saudi J Biol Sci 24(1):208–216PubMedCrossRefGoogle Scholar
  2. Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V et al (2003) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14(7):824CrossRefGoogle Scholar
  3. Ahmed S, Ikram S (2016) Biosynthesis of gold nanoparticles: a green approach. J Photochem Photobiol B Biol 161:141–153CrossRefGoogle Scholar
  4. Alani F, Moo-Young M, Anderson W (2012) Biosynthesis of silver nanoparticles by a new strain of Streptomyces sp. compared with Aspergillus fumigatus. World J Microbiol Biotechnol 28(3):1081–1086PubMedPubMedCentralCrossRefGoogle Scholar
  5. Alghuthaymi MA, Almoammar H, Rai M, Said-Galiev E, Abd-Elsalam KA (2015) Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnol Biotechnol Equip 29(2):221–236CrossRefPubMedPubMedCentralGoogle Scholar
  6. Ammar HA, El-Desouky TA (2016) Green synthesis of nanosilver particles by Aspergillus terreus HA1N and Penicillium expansum HA2N and its antifungal activity against mycotoxigenic fungi. J Appl Microbiol 121(1):89–100PubMedCrossRefGoogle Scholar
  7. Andrade PF, de Faria AF, Oliveira SR, Arruda MA, Goncalves Mdo C (2015) Improved antibacterial activity of nanofiltration polysulfone membranes modified with silver nanoparticles. Water Res 81:333–342PubMedCrossRefGoogle Scholar
  8. Arora S, Jain J, Rajwade JM, Paknikar KM (2008) Cellular responses induced by silver nanoparticles: in vitro studies. Toxicol Lett 179(2):93–100PubMedCrossRefGoogle Scholar
  9. Asharani PV, Hande MP, Valiyaveettil S (2009a) Anti-proliferative activity of silver nanoparticles. BMC Cell Biol 10:65PubMedPubMedCentralCrossRefGoogle Scholar
  10. Asharani PV, Low Kah Mun G, Hande MP, Valiyaveettil S (2009b) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290PubMedCrossRefGoogle Scholar
  11. Asmathunisha N, Kathiresan K (2013) A review on biosynthesis of nanoparticles by marine organisms. Colloids Surf B: Biointerfaces 103:283–287PubMedCrossRefGoogle Scholar
  12. Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612.  https://doi.org/10.1021/acs.langmuir.5b03081CrossRefPubMedPubMedCentralGoogle Scholar
  13. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984.  https://doi.org/10.3389/fmicb.2016.01984CrossRefPubMedPubMedCentralGoogle Scholar
  14. Baig RBN, Varma RS (2013) Magnetically retrievable catalysts for organic synthesis. Chem Commun 49(8):752–770CrossRefGoogle Scholar
  15. Baker RA, Tatum JH (1998) Novel anthraquinones from stationary cultures of Fusarium oxysporum. J Ferment Bioeng 85(4):359–361CrossRefGoogle Scholar
  16. Balakumaran M, Ramachandran R, Kalaichelvan P (2015) Exploitation of endophytic fungus, Guignardia mangiferae for extracellular synthesis of silver nanoparticles and their in vitro biological activities. Microbiol Res 178:9–17PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bansal V, Rautaray D, Ahmad A, Sastry M (2004) Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem 14(22):3303–3305CrossRefGoogle Scholar
  18. Bansal V, Bharde A, Ramanathan R, Bhargava SK (2012) Inorganic materials using ‘unusual’ microorganisms. Adv Colloid Interf Sci 179–182:150–168CrossRefGoogle Scholar
  19. Bastús NG, Merkoçi F, Piella J, Puntes V (2014) Synthesis of highly monodisperse citrate-stabilized silver nanoparticles of up to 200 nm: kinetic control and catalytic properties. Chem Mater 26(9):2836–2846CrossRefGoogle Scholar
  20. Beeler E, Singh OV (2016) Extremophiles as sources of inorganic bio-nanoparticles. World J Microbiol Biotechnol 32(9):156PubMedCrossRefGoogle Scholar
  21. Bell AA, Wheeler MH, Liu J, Stipanovic RD, Puckhaber LS, Orta H (2003) United States Department of Agriculture-Agricultural Research Service studies on polyketide toxins of Fusarium oxysporum f sp vasinfectum: potential targets for disease control. Pest Manag Sci 59(6–7):736–747PubMedCrossRefGoogle Scholar
  22. Bharde A, Rautaray D, Bansal V, Ahmad A, Sarkar I, Yusuf SM et al (2006) Extracellular biosynthesis of magnetite using fungi. Small (Weinheim an der Bergstrasse, Germany) 2(1):135–141CrossRefGoogle Scholar
  23. Bhargava A, Jain N, Gangopadhyay S, Panwar J (2015) Development of gold nanoparticle-fungal hybrid based heterogeneous interface for catalytic applications. Process Biochem 50(8):1293–1300CrossRefGoogle Scholar
  24. Bhargava A, Jain N, Khan MA, Pareek V, Dilip RV, Panwar J (2016) Utilizing metal tolerance potential of soil fungus for efficient synthesis of gold nanoparticles with superior catalytic activity for degradation of rhodamine B. J Environ Manag 183:22–32CrossRefGoogle Scholar
  25. Bhattacharya R, Mukherjee P (2008) Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev 60(11):1289–1306PubMedCrossRefGoogle Scholar
  26. Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer, Cham, pp 307–319CrossRefGoogle Scholar
  27. Bhimba BV, Gurung S, Nandhini SU (2015) Silver nanoparticles synthesized from marine fungi Aspergillus oryzae. Int J Chem Tech Res 7(01):68–72Google Scholar
  28. Bhushan B (2010) Handbook of nanotechnology. Springer, HeidelbergCrossRefGoogle Scholar
  29. Bickerstaff GF (1997) Immobilization of enzymes and cells. In: Bickerstaff GF (ed) Immobilization of enzymes and cells. Humana Press, Totowa, pp 1–11Google Scholar
  30. Blasse G (1979) Chemistry and physics of R-activated phosphors. In: Gschneidner JaLE KA (ed) Handbook on the physics and chemistry of rare earths, vol 4. Elsevier, Amsterdam, pp 237–274Google Scholar
  31. Boroumand Moghaddam A, Namvar F, Moniri M, Md Tahir P, Azizi S, Mohamad R (2015) Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. Molecules (Basel, Switzerland) 20(9):16540–16565CrossRefGoogle Scholar
  32. Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fiévet F (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6(4):866–870PubMedCrossRefGoogle Scholar
  33. Chauhan R, Kumar A, Abraham J (2013) A biological approach to the synthesis of silver nanoparticles with Streptomyces sp JAR1 and its antimicrobial activity. Sci Pharm 81(2):607–624PubMedPubMedCentralCrossRefGoogle Scholar
  34. Chauhan N, Narang J, Jain U (2016) Amperometric acetylcholinesterase biosensor for pesticides monitoring utilising iron oxide nanoparticles and poly(indole-5-carboxylic acid). J Exp Nanosci 11(2):111–122CrossRefGoogle Scholar
  35. Chng LL, Erathodiyil N, Ying JY (2013) Nanostructured catalysts for organic transformations. Acc Chem Res 46(8):1825–1837PubMedCrossRefGoogle Scholar
  36. Choudhury SR, Nair KK, Kumar R, Gogoi R, Srivastava C, Gopal M et al (2010) Nanosulfur: a potent fungicide against food pathogen, Aspergillus niger. AIP Conf Proc 1276(1):154–157Google Scholar
  37. Das SK, Das AR, Guha AK (2009) Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir 25(14):8192–8199PubMedPubMedCentralCrossRefGoogle Scholar
  38. Devi LS (2015) Ultrastructures of silver nanoparticles biosynthesized using endophytic fungi. J Microsc Ultrastruct 3(1):29–37PubMedCrossRefGoogle Scholar
  39. Dhanasekar NN, Rahul GR, Narayanan KB, Raman G, Sakthivel N (2015) Green chemistry approach for the synthesis of gold nanoparticles using the fungus Alternaria sp. J Microbiol Biotechnol 25(7):1129–1135PubMedPubMedCentralCrossRefGoogle Scholar
  40. Dhillon GS, Brar SK, Kaur S, Verma M (2012) Green approach for nanoparticle biosynthesis by fungi: current trends and applications. Crit Rev Biotechnol 32(1):49–73PubMedCrossRefGoogle Scholar
  41. Ding C, Cheng W, Sun Y, Wang X (2015) Novel fungus-Fe3O4 bio-nanocomposites as high performance adsorbents for the removal of radionuclides. J Hazard Mater 295:127–137PubMedPubMedCentralCrossRefGoogle Scholar
  42. Du J, Singh H, Yi TH (2016) Antibacterial, anti-biofilm and anticancer potentials of green synthesized silver nanoparticles using benzoin gum (Styrax benzoin) extract. Bioprocess Biosyst Eng 39(12):1923–1931PubMedCrossRefGoogle Scholar
  43. Duran N, Teixeira MF, De Conti R, Esposito E (2002) Ecological-friendly pigments from fungi. Crit Rev Food Sci Nutr 42(1):53–66PubMedCrossRefGoogle Scholar
  44. Durán N, Marcato PD, De Souza GIH, Alves OL, Esposito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3(2):203–208CrossRefGoogle Scholar
  45. El-Deeb B, Mostafa NY, Altalhi A, Gherbawy Y (2013) Extracellular biosynthesis of silver nanoparticles by bacteria Alcaligenes faecalis with highly efficient anti-microbial property. Int J Chem Eng 30:1137–1144Google Scholar
  46. Eliseeva SV, Bunzli J-CG (2010) Lanthanide luminescence for functional materials and bio-sciences. Chem Soc Rev 39(1):189–227PubMedCrossRefPubMedCentralGoogle Scholar
  47. Erasmus M, Cason ED, van Marwijk J, Botes E, Gericke M, van Heerden E (2014) Gold nanoparticle synthesis using the thermophilic bacterium Thermus scotoductus SA-01 and the purification and characterization of its unusual gold reducing protein. Gold Bull 47(4):245–253CrossRefGoogle Scholar
  48. Faramarzi MA, Sadighi A (2013) Insights into biogenic and chemical production of inorganic nanomaterials and nanostructures. Adv Colloid Interf Sci 189–190:1–20CrossRefGoogle Scholar
  49. Gade AK, Bonde P, Ingle AP, Marcato PD, Durán N, Rai MK (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioenergy 2(3):243–247CrossRefGoogle Scholar
  50. Ghazwani A (2015) Biosynthesis of silver nanoparticles by Aspergillus niger, Fusarium oxysporum and Alternaria solani. Afr J Biotechnol 14(26):2170–2174CrossRefGoogle Scholar
  51. Golinska P, Rathod D, Wypij M, Gupta I, Składanowski M, Paralikar P et al (2016) Mycoendophytes as efficient synthesizers of bionanoparticles: nanoantimicrobials, mechanism, and cytotoxicity. Crit Rev Biotechnol 17:1–14Google Scholar
  52. Govender Y, Riddin T, Gericke M, Whiteley CG (2009) Bioreduction of platinum salts into nanoparticles: a mechanistic perspective. Biotechnol Lett 31(1):95–100PubMedPubMedCentralCrossRefGoogle Scholar
  53. Gunde-Cimerman NZP (2014) Extremely halotolerant and halophilic fungi inhabit brine in solar salterns around the globe. Food Technol Biotechnol 52(2):170–179Google Scholar
  54. Hamedi S, Shojaosadati SA, Shokrollahzadeh S, Hashemi-Najafabadi S (2014) Extracellular biosynthesis of silver nanoparticles using a novel and non-pathogenic fungus, Neurospora intermedia: controlled synthesis and antibacterial activity. World J Microbiol Biotechnol 30(2):693–704PubMedCrossRefGoogle Scholar
  55. Hamedi S, Ghaseminezhad M, Shokrollahzadeh S, Shojaosadati SA (2016) Controlled biosynthesis of silver nanoparticles using nitrate reductase enzyme induction of filamentous fungus and their antibacterial evaluation. Artific Cells Nanomed Biotechnol 45(8):1588–1596PubMedCrossRefGoogle Scholar
  56. Huang J, Lin L, Sun D, Chen H, Yang D, Li Q (2015) Bio-inspired synthesis of metal nanomaterials and applications. Chem Soc Rev 44(17):6330–6374PubMedPubMedCentralCrossRefGoogle Scholar
  57. Hullikere M, Joshi C, Raju N (2014) Biogenic synthesis of silver nanoparticles using endophytic fungi Penicillium nodositatum and its antibacterial activity. J Chem Pharm Res 6(8):112–117Google Scholar
  58. Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4(2):141–144CrossRefGoogle Scholar
  59. Iram S, Khan S, Ansary AA, Arshad M, Siddiqui S, Ahmad E et al (2016) Biogenic terbium oxide nanoparticles as the vanguard against osteosarcoma. Spectrochim Acta A Mol Biomol Spectrosc 168:123–131PubMedCrossRefGoogle Scholar
  60. Ishida K, Cipriano TF, Rocha GM, Weissmuller G, Gomes F, Miranda K et al (2014) Silver nanoparticle production by the fungus Fusarium oxysporum: nanoparticle characterisation and analysis of antifungal activity against pathogenic yeasts. Mem Inst Oswaldo Cruz 109(2):220–228PubMedCrossRefGoogle Scholar
  61. Jain N, Bhargava A, Majumdar S, Tarafdar JC, Panwar J (2011) Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale 3(2):635–641PubMedPubMedCentralCrossRefGoogle Scholar
  62. Jain N, Bhargava A, Tarafdar JC, Singh SK, Panwar J (2013) A biomimetic approach towards synthesis of zinc oxide nanoparticles. Appl Microbiol Biotechnol 97(2):859–869PubMedCrossRefGoogle Scholar
  63. Jain N, Bhargava A, Rathi M, Dilip RV, Panwar J (2015) Removal of protein capping enhances the antibacterial efficiency of biosynthesized silver nanoparticles. PLoS One 10(7):e0134337PubMedPubMedCentralCrossRefGoogle Scholar
  64. Johnson BG (2003) Nanoparticles in catalysis. Top Catal 24:147–159CrossRefGoogle Scholar
  65. Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74(7):2171–2178PubMedPubMedCentralCrossRefGoogle Scholar
  66. Kafrouni L, Savadogo O (2016) Recent progress on magnetic nanoparticles for magnetic hyperthermia. Prog Biomater 5(3):147–160PubMedPubMedCentralCrossRefGoogle Scholar
  67. Kalabegishvili T, Murusidze I, Kirkesali E, Rcheulishvili A, Ginturi E, Gelagutashvili E et al (2015) Possibilities of physical methods in development of microbial nanotechnology. Eur Chem Bull 4(1–3):43–49Google Scholar
  68. Karthika V, Arumugam A, Gopinath K, Kaleeswarran P, Govindarajan M, Alharbi NS et al (2017) Guazuma ulmifolia bark-synthesized Ag, Au and Ag/Au alloy nanoparticles: photocatalytic potential, DNA/protein interactions, anticancer activity and toxicity against 14 species of microbial pathogens. J Photochem Photobiol B Biol 167:189–199CrossRefGoogle Scholar
  69. Khalid AbdelRahim SYM, Ali AM, Almaary KS, Mustafa AE-ZMA, Husseiny SM (2017) Extracellular biosynthesis of silver nanoparticles using Rhizopus stolonifer. Saudi J Biol Sci 24(1):208–216PubMedCrossRefGoogle Scholar
  70. Khalil NM (2013) Biogenic silver nanoparticles by Aspergillus terreus as a powerful nanoweapon against Aspergillus fumigatus. Afr J Microbiol Res 50:5645–5651Google Scholar
  71. Khan A, Rashid R, Murtaza G, Zahra A (2014) Gold nanoparticles: synthesis and applications in drug delivery. Trop J Pharm Res 13(7):1169–1177CrossRefGoogle Scholar
  72. Kitching M, Ramani M, Marsili E (2015) Fungal biosynthesis of gold nanoparticles: mechanism and scale up. Microb Biotechnol 8(6):904–917CrossRefPubMedPubMedCentralGoogle Scholar
  73. Kitching M, Choudhary P, Inguva S, Guo Y, Ramani M, Das SK et al (2016) Fungal surface protein mediated one-pot synthesis of stable and hemocompatible gold nanoparticles. Enzym Microb Technol 95:76–84CrossRefGoogle Scholar
  74. Krishnaraj C, Muthukumaran P, Ramachandran R, Balakumaran MD, Kalaichelvan PT (2014) Acalypha indica Linn: biogenic synthesis of silver and gold nanoparticles and their cytotoxic effects against MDA-MB-231, human breast cancer cells. Biotechnol Rep 4:42–49CrossRefGoogle Scholar
  75. Kubo AM, Gorup LF, Amaral LS, Filho ER, Camargo ER (2016) Kinetic control of microtubule morphology obtained by assembling gold nanoparticles on living fungal biotemplates. Bioconjug Chem 27(10):2337–2345PubMedCrossRefGoogle Scholar
  76. Lara HH, Ayala-Núñez NV, Turrent LCI, Padilla CR (2010) Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J Microbiol Biotechnol 26(4):615–621CrossRefGoogle Scholar
  77. Li G, He D, Qian Y, Guan B, Gao S, Cui Y et al (2012) Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int J Mol Sci 13(1):466PubMedPubMedCentralCrossRefGoogle Scholar
  78. Liu WT (2006) Nanoparticles and their biological and environmental applications. J Biosci Bioeng 102(1):1–7PubMedCrossRefGoogle Scholar
  79. Louise Meyer R, Zhou X, Tang L, Arpanaei A, Kingshott P, Besenbacher F (2010) Immobilisation of living bacteria for AFM imaging under physiological conditions. Ultramicroscopy 110(11):1349–1357PubMedCrossRefGoogle Scholar
  80. Mahmoudi M, Simchi A, Imani M, Hafeli UO (2009) Superparamagnetic iron oxide nanoparticles with rigid cross-linked polyethylene glycol fumarate coating for application in imaging and drug delivery. J Phys Chem C 113(19):8124–8131CrossRefGoogle Scholar
  81. Majeed S, Abdullah MS, Dash GK, Ansari MT, Nanda A (2016) Biochemical synthesis of silver nanoprticles using filamentous fungi Penicillium decumbens (MTCC-2494) and its efficacy against A-549 lung cancer cell line. Chin J Nat Med 14(8):615–620PubMedGoogle Scholar
  82. Mamonova IA, Babushkina IV, Norkin IA, Gladkova EV, Matasov MD, Puchin’yan DM (2015) Biological activity of metal nanoparticles and their oxides and their effect on bacterial cells. Nanotechnologies Russ 10(1):128–134CrossRefGoogle Scholar
  83. Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12(5):1531–1551CrossRefGoogle Scholar
  84. Matsunaga T (1991) Applications of bacterial magnets. Trends Biotechnol 9(3):91–95PubMedCrossRefGoogle Scholar
  85. Medentsev AG, Akimenko VK (1998) Naphthoquinone metabolites of the fungi. Phytochemistry 47(6):935–959PubMedCrossRefGoogle Scholar
  86. Mishra S (2013) Adsorption of Cu and Zn on calcium alginate immobilized Penicillium sp. Indian J Chem Technol 20 21-25Google Scholar
  87. Mishra PM, Sahoo SK, Naik GK, Parida K (2015) Biomimetic synthesis, characterization and mechanism of formation of stable silver nanoparticles using Averrhoa carambola L. leaf extract. Mater Lett 160:566–571CrossRefGoogle Scholar
  88. Mohammadi B, Salouti M (2015) Extracellular bioynthesis of silver nanoparticles by Penicillium chrysogenum and Penicillium expansum. Synth React Inorg Met-Org Nano-Met Chem 45(6):844–847CrossRefGoogle Scholar
  89. Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10(3):507–517CrossRefGoogle Scholar
  90. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT et al (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346–2353PubMedPubMedCentralCrossRefGoogle Scholar
  91. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI et al (2001) Bioreduction of AuCl(4)(-) ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles. Angew Chem Int Ed Eng 40(19):3585–3588CrossRefGoogle Scholar
  92. Musarrat J, Dwivedi S, Singh BR, Al-Khedhairy AA, Azam A, Naqvi A (2010) Production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU-09. Bioresour Technol 101(22):8772–8776PubMedPubMedCentralCrossRefGoogle Scholar
  93. Netala VR, Bethu MS, Pushpalatha B, Baki VB, Aishwarya S, Rao JV et al (2016) Biogenesis of silver nanoparticles using endophytic fungus Pestalotiopsis microspora and evaluation of their antioxidant and anticancer activities. Int J Nanomedicine 11:5683–5696PubMedPubMedCentralCrossRefGoogle Scholar
  94. Newman DK, Kolter R (2000) A role for excreted quinones in extracellular electron transfer. Nature 405(6782):94–97PubMedCrossRefGoogle Scholar
  95. Oberdorster G, Finkelstein JN, Johnston C, Gelein R, Cox C, Baggs R et al (2000) Acute pulmonary effects of ultrafine particles in rats and mice. Res Rep 96:5–74Google Scholar
  96. Panáček A, Prucek R, Hrbáč J, Tj N, Šteffková J, Zbořil R et al (2014) Polyacrylate-assisted size control of silver nanoparticles and their catalytic activity. Chem Mater 26(3):1332–1339CrossRefGoogle Scholar
  97. Ping Li JL, Wu C, Wu Q, Li J (2005) Synergistic antibacterial effect of ß-lactum antibiotic combined with silver nanoparticle. Nanotechnology 16(9):1912–1917CrossRefGoogle Scholar
  98. Prabavathy DNR, Vaishnavie R (2015) Antimicrobial activity of silver nanoparticles synthesized by endophytic Aspergillus sp isolated from Justicia beddomei. J Chem Pharma Res Chem Intermed 7(3):784–788Google Scholar
  99. Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2(1):32CrossRefGoogle Scholar
  100. Prasad R (2016) Advances and applications through fungal nanobiotechnology. Springer International Publishing (ISBN: 978-3-319-42989-2)Google Scholar
  101. Prasad R (2017) Fungal nanotechnology: applications in agriculture, industry, and medicine. Springer International Publishing (ISBN 978-3-319-68423-9)Google Scholar
  102. Prasad R, Swamy VS (2013) Antibacterial activity of silver nanoparticles synthesized by bark extract of Syzygium cumini. J Nanoparticles.  https://doi.org/10.1155/2013/431218
  103. Prasad NK, Rathinasamy K, Panda D, Bahadur D (2007) Mechanism of cell death induced by magnetic hyperthermia with nanoparticles of [gamma]-MnxFe2-xO3 synthesized by a single step process. J Mater Chem 17(48):5042–5051CrossRefGoogle Scholar
  104. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  105. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomedicine Nanobiotechnol 8:316–330.  https://doi.org/10.1002/wnan.1363CrossRefGoogle Scholar
  106. Prasad R, Bhattacharyya A, Nguyen Q (2017) Nanotechnology in sustainable agriculture: recent developments, challenges and perspectives. Front Microbiol 8:1014.  https://doi.org/10.3389/fmicb.2017.01014CrossRefPubMedPubMedCentralGoogle Scholar
  107. Pulit J, Banach M, Szczyglowska R, Bryk M (2013) Nanosilver against fungi. Silver nanoparticles as an effective biocidal factor. Acta Biochim Pol 60(4):795–798PubMedGoogle Scholar
  108. Raghupathi KR, Koodali RT, Manna AC (2011) Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27(7):4020–4028PubMedCrossRefGoogle Scholar
  109. Raheman F, Deshmukh S, Ingle A, Gade A, Rai M (2011) Silver nanoparticles: novel antimicrobial agent synthesized from an endophytic fungus Pestalotia sp. isolated from leaves of Syzygium cumini (L). Nano Biomed Eng 3(3):174–178CrossRefGoogle Scholar
  110. Rahi D, Parmar A (2014) Mycosynthesis of silver nanoparticles by an endophytic Penicillium species of Aloe vera root, evaluation of their antibacterial and antibiotic enhancing activity. Int J Nanomaterials Biostructures 4(3):46–51Google Scholar
  111. Rahi DK, Parmar AS, Tiwari V (2014) Biosynthesis of silver nanoparticles from fungal root endophytes of Sida acuta plant and evaluation of their antibacterial and antibiotic enhancing activity. Int J Pharm Pharm Sci 6(11):160–166Google Scholar
  112. Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94(2):287–293PubMedPubMedCentralCrossRefGoogle Scholar
  113. Rai M, Yadav A (2013) Plants as potential synthesiser of precious metal nanoparticles: progress and prospects. IET Nanobiotechnol 7(3):117–124PubMedCrossRefGoogle Scholar
  114. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83PubMedCrossRefGoogle Scholar
  115. Raj K, Moskowitz B, Casciari R (1995) Advances in ferrofluid technology. J Magn Magn Mater 149(1–2):174–180CrossRefGoogle Scholar
  116. Rajamanickam U, Mylsamy P, Viswanathan S, Muthusamy P (2012) Biosynthesis of zinc nanoparticles using actinomycetes for antibacterial food packaging. In: International conference on nutrition and food sciences. SingaporeGoogle Scholar
  117. Ramalingmam P, Muthukrishnan S, Thangaraj P (2015) Biosynthesis of silver nanoparticles using an endophytic fungus, Curvularia lunata and its antimicrobial potential. J Nanosci Nanoengineering 1(4):241–247Google Scholar
  118. Ramanathan R, O’Mullane AP, Parikh RY, Smooker PM, Bhargava SK, Bansal V (2011) Bacterial kinetics-controlled shape-directed biosynthesis of silver nanoplates using Morganella psychrotolerans. Langmuir 27(2):714–719PubMedCrossRefGoogle Scholar
  119. Rekha JK, Bala M, Arya V (2012) Endophytic fungus: a potential source of biological synthesized nanoparticleGoogle Scholar
  120. Riddin TL, Gericke M, Whiteley CG (2006) Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnology 17(14):3482–3489PubMedPubMedCentralCrossRefGoogle Scholar
  121. Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35(7):583–592PubMedCrossRefGoogle Scholar
  122. Romero CM, Vivacqua CG, Abdulhamid MB, Baigori MD, Slanis AC, Allori MCG et al (2016) Biofilm inhibition activity of traditional medicinal plants from Northwestern Argentina against native pathogen and environmental microorganisms. Rev Soc Bras Med Trop 49:703–712PubMedCrossRefGoogle Scholar
  123. Roy S, Das TK (2015) Protein capped silver nanoparticles from fungus: x-ray diffraction studies with antimicrobial properties against bacteria. Int J ChemTech Res 7:1452–1459Google Scholar
  124. Salunke BK, Sawant SS, Lee S-I, Kim BS (2016) Microorganisms as efficient biosystem for the synthesis of metal nanoparticles: current scenario and future possibilities. World J Microbiol Biotechnol 32(5):1–16CrossRefGoogle Scholar
  125. Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85(2):162–170Google Scholar
  126. Saxena J, Sharma PK, Sharma MM, Singh A (2016) Process optimization for green synthesis of silver nanoparticles by Sclerotinia sclerotiorum. SpringerPlus 5(1):1–10CrossRefGoogle Scholar
  127. Schüler D, Frankel RB (1999) Bacterial magnetosomes: microbiology, biomineralization and biotechnological applications. Appl Microbiol Biotechnol 52(4):464–473PubMedCrossRefGoogle Scholar
  128. Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine: Nanotechnol Biol Med 3(2):168–171CrossRefGoogle Scholar
  129. Shankar SS, Ahmad A, Sastry M (2003) Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog 19:1627–1631PubMedCrossRefGoogle Scholar
  130. Shanthi S, Jayaseelan BD, Velusamy P, Vijayakumar S, Chih CT, Vaseeharan B (2016) Biosynthesis of silver nanoparticles using a probiotic Bacillus licheniformis Dahb1 and their antibiofilm activity and toxicity effects in Ceriodaphnia cornuta. Microb Pathog 93:70–77PubMedCrossRefGoogle Scholar
  131. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interf Sci 145(1):83–96CrossRefGoogle Scholar
  132. Sharma K, Singh G, Singh G, Kumar M, Bhalla V (2015) Silver nanoparticles: facile synthesis and their catalytic application for the degradation of dyes. RSC Adv 5(33):25781–25788CrossRefGoogle Scholar
  133. Shi C, Zhu N, Cao Y, Wu P (2015) Biosynthesis of gold nanoparticles assisted by the intracellular protein extract of Pycnoporus sanguineus and its catalysis in degradation of 4-nitroaniline. Nanoscale Res Lett 10(1):1–8CrossRefGoogle Scholar
  134. Siddiqi KS, Husen A (2016) Fabrication of metal and metal oxide nanoparticles by algae and their toxic effects. Nanoscale Res Lett 11(1):363PubMedPubMedCentralCrossRefGoogle Scholar
  135. Singh D, Rathod V, Ninganagouda S, Hiremath J, Singh AK, Mathew J (2014) Optimization and Characterization of silver nanoparticle by endophytic fungi Penicillium sp. isolated from Curcuma longa (Turmeric) and application studies against MDR E. coli and S. aureus. Bioinorg Chem Appl 2014:8Google Scholar
  136. Stark WJ, Stoessel PR, Wohlleben W, Hafner A (2015) Industrial applications of nanoparticles. Chem Soc Rev 44(16):5793–5805PubMedCrossRefGoogle Scholar
  137. Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine: Nanotechnol Biol Med 6(2):257–262CrossRefGoogle Scholar
  138. Vaghari H, Jafarizadeh-Malmiri H, Mohammadlou M, Berenjian A, Anarjan N, Jafari N et al (2016) Application of magnetic nanoparticles in smart enzyme immobilization. Biotechnol Lett 38(2):223–233PubMedCrossRefPubMedCentralGoogle Scholar
  139. Vala AK (2015) Exploration on green synthesis of gold nanoparticles by a marine-derived fungus Aspergillus sydowii. Environ Prog Sustain Energy 34(1):194–197CrossRefGoogle Scholar
  140. Vanaja M, Rajeshkumar S, Paulkumar K, Gnanajobitha G, Chitra K, Malarkodi C et al (2015) Fungal assisted intracellular and enzyme based synthesis of silver nanoparticles and its bactericidal efficiency. Int Res J Pharm Biosci 2(3):8–19Google Scholar
  141. Vardhana JKG (2015) Biosynthesis of silver nanoparticles by endophytic fungi Pestaloptiopsis pauciseta isolated from the leaves of Psidium guajava Linn. Int J Pharm Sci Rev Res 31(1):29–31Google Scholar
  142. Vetchinkina EP, Loshchinina EA, Vodolazov IR, Kursky VF, Dykman LA, Nikitina VE (2017) Biosynthesis of nanoparticles of metals and metalloids by basidiomycetes. Preparation of gold nanoparticles by using purified fungal phenol oxidases. Appl Microbiol Biotechnol 101(3):1047–1062PubMedCrossRefGoogle Scholar
  143. Vigneshwaran N, Ashtaputre N, Varadarajan P, Nachane R, Paralikar K, Balasubramanya R (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61(6):1413–1418CrossRefGoogle Scholar
  144. Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11(3):235–250CrossRefPubMedGoogle Scholar
  145. Wei W, Zhaohui W, Taekyung Y, Changzhong J, Woo-Sik K (2015) Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 16(2):023501CrossRefGoogle Scholar
  146. Wen L, Zeng P, Zhang L, Huang W, Wang H, Chen G (2016) Symbiosis theory-directed green synthesis of silver nanoparticles and their application in infected wound healing. Int J Nanomedicine 11:2757–2767PubMedPubMedCentralCrossRefGoogle Scholar
  147. Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T et al (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6(8):1794–1807PubMedCrossRefPubMedCentralGoogle Scholar
  148. Xu C, Sun S (2013) New forms of superparamagnetic nanoparticles for biomedical applications. Adv Drug Deliv Rev 65(5):732–743PubMedCrossRefGoogle Scholar
  149. Xue B, He D, Gao S, Wang D, Yokoyama K, Wang L (2016) Biosynthesis of silver nanoparticles by the fungus Arthroderma fulvum and its antifungal activity against genera of Candida, Aspergillus and Fusarium. Int J Nanomedicine 11:1899–1906PubMedPubMedCentralGoogle Scholar
  150. Yuan J, Wang G (2006) Lanthanide-based luminescence probes and time-resolved luminescence bioassays. Trends Anal Chem 25(5):490–500CrossRefGoogle Scholar
  151. Zhao J, Wu T, Wu K, Oikawa K, Hidaka H, Serpone N (1998) Photoassisted degradation of dye pollutants. 3. Degradation of the cationic dye rhodamine B in aqueous anionic surfactant/TiO2 dispersions under visible light irradiation: evidence for the need of substrate adsorption on TiO2 particles. Environ Sci Technol 32(16):2394–2400CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Cintia Mariana Romero
    • 1
    • 2
  • Analía Alvarez
    • 1
    • 3
  • María Alejandra Martínez
    • 1
    • 4
  • Silvina Chaves
    • 5
  1. 1.Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICETSan Miguel de TucumánArgentina
  2. 2.Facultad de Bioquímica, Química y FarmaciaUniversidad Nacional de TucumánSan Miguel de TucumánArgentina
  3. 3.Facultad de Ciencias Naturales e IMLUniversidad Nacional de TucumánSan Miguel de TucumánArgentina
  4. 4.Facultad de Ciencias Exactas y TecnologíaUniversidad Nacional de TucumánSan Miguel de TucumánArgentina
  5. 5.Instituto de Medicina Molecular y Celular Aplicada. (IMMCA) CONICET-UNT-SIPROSAUniversidad Nacional de TucumánSan Miguel de TucumánArgentina

Personalised recommendations