Application of Nanotechnology in Mycoremediation: Current Status and Future Prospects

  • Mohammadhassan Gholami-Shabani
  • Zeynab Gholami-Shabani
  • Masoomeh Shams-Ghahfarokhi
  • Mehdi Razzaghi-AbyanehEmail author


Bioremediation is a growing area of green biotechnology and may be defined as the application of biological methods to the treatment of pollution. Much bioremediation effort has concentrated on organic pollutants, although the materials that are able to be transformed or detoxified by microorganisms include both natural resources and inorganic pollutants, such as toxic metals. The buildup of toxic chemicals and heavy metals in the environment is an ever-increasing and serious problem. These toxic materials threaten humans, animals, and the ecosystem. Despite noticable progresses in the field of bioremediation in recent years, there is a distinct lack of appreciation of the potential roles and participation of fungi in bioremediation. Mycoremediation is the use of fungi to collapse or eliminate toxins from the environment. There are evidences of the role of specific fungi in neutralizing toxic weapons and waste. Research is being done to use mycoremediation in national defense against chemical and biological warfare. This also births the chance to use mycoremediation to help mend war-torn environments. Nanomaterials also display exclusive physical and chemical properties, and they have received much attention from researchers and scientists in dissimilar areas of environmentally friendly sciences, especially in bioremediation. Bioremediation of pollutants by use of existing knowledge is not always effective and efficient in cleaning up the environment. Therefore, nanomaterials may be useful for bioremediation, which will not only have less toxic effect on microorganisms but will also increase the microbial activity of the particular waste and toxic materials which will reduce the total time consumption as well as reduce the total cost. This chapter highlights the potential of fungus-originated nanomaterials in mycoremediation of waste and toxic materials.


Fungal biotechnology Bioremediation Mycoremediation Nanotechnology Pollution Heavy metals 


  1. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003a) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloid Surf B 28:313–318. CrossRefGoogle Scholar
  2. Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003b) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19:3550–3553. CrossRefGoogle Scholar
  3. Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2005) Extra−/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. J Biomed Nanotechnol 1:47–53. CrossRefGoogle Scholar
  4. Amin R, Hwang S, Park SH (2011) Nanobiotechnology: an interface between nanotechnology and biotechnology. Nano 6:101–111. CrossRefGoogle Scholar
  5. Angelini I, Artioli G, Bellintani P, Diella V, Gemmi M, Polla A, Rossi A (2004) Chemical analyses of Bronze Age glasses from Frattesina di Rovigo, Northern Italy. J Archaeol Sci 31:1175–1184. CrossRefGoogle Scholar
  6. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bai HJ, Zhang ZM, Guo Y, Yang GE (2009) Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Colloid Surf B 70:142–146. CrossRefGoogle Scholar
  8. Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloid Surf B 68:88–92. CrossRefGoogle Scholar
  9. Bansal V, Rautaray D, Ahmad A, Sastry M (2004) Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem 14:3303–3305. CrossRefGoogle Scholar
  10. Bansal V, Rautaray D, Bharde A, Ahire K, Sanyal A, Ahmad A, Sastry M (2005) Fungus-mediated biosynthesis of silica and titania particles. J Mater Chem 15:2583–2589. CrossRefGoogle Scholar
  11. Bao H, Hao N, Yang Y, Zhao D (2010) Biosynthesis of biocompatible cadmium telluride quantum dots using yeast cells. Nano Res 3:481–489. CrossRefGoogle Scholar
  12. Barber DJ, Freestone IC (1990) An investigation of the origin of the color of the Lycurgus Cup by analytical transmission electron microscopy. Archaeometry 32:33–45. CrossRefGoogle Scholar
  13. Basavaraja S, Balaji SD, Lagashetty A, Rajasab AH, Venkataraman A (2008) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mat Res Bullet 43:1164–1170. CrossRefGoogle Scholar
  14. Bezbaruah AN, Krajangpan S, Chisholm BJ, Khan E, Bermudez JJE (2009) Entrapment of iron nanoparticles in calcium alginate beads for groundwater remediation applications. J Hazard Mater 166:1339–1343. CrossRefPubMedGoogle Scholar
  15. Bhainsa KC, D’souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloid Surf B 47:160–164. CrossRefGoogle Scholar
  16. Bharde A, Rautaray D, Bansal V, Ahmad A, Sarkar I, Yusuf SM, Sastry M (2006) Extracellular biosynthesis of magnetite using fungi. Small 2:135–141. CrossRefPubMedGoogle Scholar
  17. Bindhu MR, Umadevi M (2014) Silver and gold nanoparticles for sensor and antibacterial applications. Spectrochim Act Part A 128:37–45. CrossRefGoogle Scholar
  18. Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48:173–179. CrossRefPubMedGoogle Scholar
  19. Bulte JW, Modo MM (2017) Nanoparticles as a technology platform for biomedical imaging. In: Design and applications of nanoparticles in biomedical imaging. Springer, Cham, pp 1–7. CrossRefGoogle Scholar
  20. Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloid Surf B 83:42–48. CrossRefGoogle Scholar
  21. Chen JC, Lin ZH, Ma XX (2003) Evidence of the production of silver nanoparticles via pretreatment of Phoma sp. 3.2883 with silver nitrate. Lett Appl Microbiol 37:105–108. CrossRefPubMedGoogle Scholar
  22. Chen M, Xu P, Zeng G, Yang C, Huang D, Zhang J (2015) Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: applications, microbes and future research needs. Biotechnol Adv 33:745–755. CrossRefPubMedGoogle Scholar
  23. Cheng X, Kan AT, Tomson MB (2004) Naphthalene adsorption and desorption from aqueous C60 fullerene. J Chem Eng Data 49:675–683. CrossRefGoogle Scholar
  24. Cloete TE (2010) Nanotechnology in water treatment applications. Horizon Scientific Press, NorfolkGoogle Scholar
  25. Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211:112–125. CrossRefPubMedGoogle Scholar
  26. Dhanasekar NN, Rahul G, Narayanan KB, Raman G, Sakthivel N (2015) Green chemistry approach for the synthesis of gold nanoparticles using the fungus Alternaria sp. J Microbiol Biotechnol 25:1129–1135. CrossRefPubMedGoogle Scholar
  27. Duran N, Esposito E (2000) Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl Catal B Environ 28:83–99. CrossRefGoogle Scholar
  28. Engates KE, Shipley HJ (2011) Adsorption of Pb, Cd, Cu, Zn and Ni to titanium dioxide nanoparticles: effect of particle size, solid concentration and exhaustion. Environ Sci Pollut Res 18:386–395. CrossRefGoogle Scholar
  29. Fajardo C, Ortíz LT, Rodríguez-Membibre ML, Nande M, Lobo MC, Martin M (2012) Assessing the impact of zero-valent iron (ZVI) nanotechnology on soil microbial structure and functionality: a molecular approach. Chemosphere 86:802–808. CrossRefPubMedGoogle Scholar
  30. Fayaz M, Tiwary CS, Kalaichelvan PT, Venkatesan R (2010) Blue orange light emission from biogenic synthesized silver nanoparticles using Trichoderma viride. Colloid Surf B 75:175–178. CrossRefGoogle Scholar
  31. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418. CrossRefGoogle Scholar
  32. Fu F, Dionysiou DD, Liu H (2014) The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J Hazard Mater 267:194–205. CrossRefPubMedGoogle Scholar
  33. Gade AK, Bonde P, Ingle AP, Marcato PD, Duran N, Rai MK (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobase Mat Bioenerg 2:243–247CrossRefGoogle Scholar
  34. Gan S, Lau EV, Ng HK (2009) Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J Hazard Mater 172:532–549. CrossRefPubMedGoogle Scholar
  35. Ge F, Li MM, Ye H, Zhao BX (2012) Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles. J Hazard Mater 211:366–372. CrossRefPubMedGoogle Scholar
  36. Gholami-Shabani MH, Akbarzadeh A, Mortazavi M, Emadzadeh MK (2013) Evaluation of the antibacterial properties of silver nanoparticles synthesized with Fusarium oxysporum and Escherichia coli. Int J Life Sci Bt Pharm Res 2:342–348Google Scholar
  37. Gholami-Shabani M, Akbarzadeh A, Norouzian D, Amini A, Gholami-Shabani Z, Imani A, Chiani M, Riazi G, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M (2014) Antimicrobial activity and physical characterization of silver nanoparticles green synthesized using nitrate reductase from Fusarium oxysporum. Appl Biochem Biotechnol 172:4084–4098. CrossRefPubMedGoogle Scholar
  38. Gholami-Shabani M, Shams-Ghahfarokhi M, Gholami-Shabani Z, Akbarzadeh A, Riazi G, Ajdari S, Amani A, Razzaghi-Abyaneh M (2015) Enzymatic synthesis of gold nanoparticles using sulfite reductase purified from Escherichia coli: a green eco-friendly approach. Process Biochem 50:1076–1085. CrossRefGoogle Scholar
  39. Gholami-Shabani M, Imani A, Shams-Ghahfarokhi M, Gholami-Shabani Z, Pazooki A, Akbarzadeh A, Riazi G, Razzaghi-Abyaneh M (2016a) Bioinspired synthesis, characterization and antifungal activity of enzyme-mediated gold nanoparticles using a fungal oxidoreductase. J Iran Chem Soc 9:1–10. CrossRefGoogle Scholar
  40. Gholami-Shabani M, Shams-Ghahfarokhi M, Gholami-Shabani Z, Akbarzadeh A, Riazi G, Razzaghi-Abyaneh M (2016b) Biogenic approach using sheep milk for the synthesis of platinum nanoparticles: the role of milk protein in platinum reduction and stabilization. Int J Nanosci Nanotechnol 12:199–206Google Scholar
  41. Gholami-Shabani M, Shams-Ghahfarokhi M, Gholami-Shabani Z, Razaghi-abyaneh M (2016c) Microbial enzymes: current features and potential applications in nanobiotechnology. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer, Heidelberg. CrossRefGoogle Scholar
  42. Gholami-Shabani M, Gholami-Shabani Z, Shams-Ghahfarokhi M, Jamzivar F, Razzaghi-Abyaneh M (2017) Green nanotechnology: biomimetic synthesis of metal nanoparticles using plants and their application in agriculture and forestry. Springer, Singapore, pp. 133–175. CrossRefGoogle Scholar
  43. Gupta VK, Tyagi I, Sadegh H, Shahryari-Ghoshekandi R, Makhlouf ASH, Maazinejad B (2015) Nanoparticles as adsorbent; a positive approach for removal of noxious metal ions: a review. Sci Technol Dev 34:195–214CrossRefGoogle Scholar
  44. Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15. CrossRefPubMedGoogle Scholar
  45. Hochella MF, Lower SK, Maurice PA, Penn RL, Sahai N, Sparks DL, Twining BS (2008) Nanominerals, mineral nanoparticles, and earth systems. Science 319:1631–1635. CrossRefPubMedGoogle Scholar
  46. Hodson ME (2010) The need for sustainable soil remediation. Elements 6:363–368. CrossRefGoogle Scholar
  47. Holister P, Weener JW, Román C, Harper T (2003) Nanoparticles. Technol White Papers 3:1–11Google Scholar
  48. Honary S, Barabadi H, Gharaei-Fathabad NF (2012) Green synthesis of copper oxide nanoparticles using Penicillium aurantiogriseum, Penicillium citrinum and Penicillium waksmanii. Dig J Nanomater Bios 7:999–1005Google Scholar
  49. Honary S, Barabadi H, Gharaei-Fathabad E, Naghibi F (2013) Green synthesis of silver nanoparticles induced by the fungus Penicillium citrinum. Trop J Pharm Res 12:7–11Google Scholar
  50. Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211:317–331. CrossRefPubMedGoogle Scholar
  51. Huang J, Lin L, Sun D, Chen H, Yang D, Li Q (2015) Bio-inspired synthesis of metal nanoparticles and application. Chem Soc Rev 44:6330–6374CrossRefPubMedGoogle Scholar
  52. Incardona J, Ylitalo G, Myers M, Scholz N, Collier T, Vines C, Cherr G (2008) The 2007 Cosco Busan oil spill: assessing toxic injury to Pacific herring embryos and larvae in the San Francisco estuary, Draft report. NOAA Fisheries, Northwest Fisheries Science Center, SeattleGoogle Scholar
  53. Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144CrossRefGoogle Scholar
  54. Ingle A, Rai M, Gade A, Bawaskar M (2009) Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanopart Res 11:2079–2085. CrossRefGoogle Scholar
  55. Iravani HK, Mirmohammadi SV, B Zolfaghari S (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9:385–406PubMedPubMedCentralGoogle Scholar
  56. Jansen E, Michels M, van Til M, Doelman P (1994) Effects of heavy metals in soil on microbial diversity and activity as shown by the sensitivity-resistance index, an ecologically relevant parameter. Biol Fertil Soils 17:177–178. CrossRefGoogle Scholar
  57. Kar PK, Murmu S, Saha S, Tandon V, Acharya K (2014) Anthelmintic efficacy of gold nanoparticles derived from a phytopathogenic fungus, Nigrospora oryzae. PLoS One 9:e84693. CrossRefPubMedPubMedCentralGoogle Scholar
  58. Karim F, Fakhruddin ANM (2012) Recent advances in the development of biosensor for phenol: a review. Rev Environ Sci Biotechnol 11:261–274. CrossRefGoogle Scholar
  59. Kathiresan K, Manivannan S, Nabeel MA, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloid Surf B 71:133–137. CrossRefGoogle Scholar
  60. Kathiresan K, Alikunhi NM, Pathmanaban S, Nabikhan A, Kandasamy S (2010) Analysis of antimicrobial silver nanoparticles synthesized by coastal strains of Escherichia coli and Aspergillus niger. Can J Microbiol 56:1050–1059CrossRefPubMedGoogle Scholar
  61. Khan Z, Nisar MA, Hussain SZ, Arshad MN, Rehman A (2015) Cadmium resistance mechanism in Escherichia coli P4 and its potential use to bioremediate environmental cadmium. Appl Microbiol Biotechnol 99:10745–10757. CrossRefPubMedGoogle Scholar
  62. Kim J, Grate JW, Wang P (2006) Nanostructures for enzyme stabilization. Chem Eng Sci 61:1017–1026. CrossRefGoogle Scholar
  63. Klug KL, Dravid VP (2002) Observation of two-and three-dimensional magnesium oxide nanostructures formed by thermal treatment of magnesium diboride powder. Appl Phys Lett 81:1687–1689. CrossRefGoogle Scholar
  64. Kreuter J (2007) Nanoparticles-a historical perspective. Int J Pharm 331:1–10. CrossRefPubMedGoogle Scholar
  65. Kulshreshtha S, Mathur N, Bhatnagar P (2014) Mushroom as a product and their role in mycoremediation. AMB Express 4:1. CrossRefGoogle Scholar
  66. Kumar RR, Priyadharsani KP, Thamaraiselvi K (2012) Mycogenic synthesis of silver nanoparticles by the Japanese environmental isolate Aspergillus tamarii. J Nanopart Res 14:1–7. CrossRefGoogle Scholar
  67. Kumar KY, Muralidhara HB, Nayaka YA, Balasubramanyam J, Hanumanthappa H (2013) Hierarchically assembled mesoporous ZnO nanorods for the removal of lead and cadmium by using differential pulse anodic stripping voltammetric method. Powder Technol 239:208–216. CrossRefGoogle Scholar
  68. Lafleur JP, Senkbeil S, Jensen TG, Kutter JP (2012) Gold nanoparticle-based optical microfluidic sensors for analysis of environmental pollutants. Lab Chip 12:4651–4656. CrossRefPubMedGoogle Scholar
  69. Lee HJ, Song JY, Kim BS (2013) Biological synthesis of copper nanoparticles using Magnolia kobus leaf extract and their antibacterial activity. J Chem Technol Biotechnol 88:1971–1977. CrossRefGoogle Scholar
  70. Li YH, Wang S, Luan Z, Ding J, Xu C, Wu D (2003) Adsorption of cadmium (II) from aqueous solution by surface oxidized carbon nanotubes. Carbon 41:1057–1062. CrossRefGoogle Scholar
  71. Li G, He D, Qian Y, Guan B, Gao S, Cui Y, Wang L (2011) Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int J Mol Sci 13:466–476. CrossRefPubMedPubMedCentralGoogle Scholar
  72. Liu J, Lu Y (2004) Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. J Am Chem Soc 126:12298–12305. CrossRefPubMedGoogle Scholar
  73. Liu H, Ye T, Mao C (2007) Fluorescent carbon nanoparticles derived from candle soot. Angew Chem Int Ed 46:6473–6475. CrossRefGoogle Scholar
  74. Madden AS, Hochella MF, Luxton TP (2006) Insights for size-dependent reactivity of hematite nanomineral surfaces through Cu2+ sorption. Geochim Cosmochim Acta 70:4095–4104. CrossRefGoogle Scholar
  75. Malarkodi C, Rajeshkumar S, Vanaja M, Paulkumar K, Gnanajobitha G, Annadurai G (2013) Ecofriendly synthesis and characterization of gold nanoparticles using Klebsiella pneumoniae. J Nanostruct Chem 3:1–7. CrossRefGoogle Scholar
  76. Maliszewska I, Juraszek A, Bielska K (2014) Green synthesis and characterization of silver nanoparticles using ascomycota fungi Penicillium nalgiovense AJ12. J Clust Sci 25:989–1004. CrossRefGoogle Scholar
  77. Mishra A, Tripathy SK, Wahab R, Jeong SH, Hwang I, Yang YB, Yun SI (2011) Microbial synthesis of gold nanoparticles using the fungus Penicillium brevicompactum and their cytotoxic effects against mouse mayo blast cancer C2C12 cells. Appl Microbiol Biotechnol 92:617–630. CrossRefPubMedGoogle Scholar
  78. Mishra A, Kumari M, Pandey S, Chaudhry V, Gupta KC, Nautiyal CS (2014) Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp. Bioresour Technol 166:235–242. CrossRefPubMedGoogle Scholar
  79. Mueller NC, Nowack B (2010) Nanoparticles for remediation: solving big problems with little particles. Elements 6:395–400. CrossRefGoogle Scholar
  80. Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chem Biol Chem 3:461–463.<461::AID-CBIC461>3.0.CO;2-X CrossRefGoogle Scholar
  81. Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J, Kale SP (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19:075103CrossRefPubMedGoogle Scholar
  82. Mukherjee S, Sobhani H, Lassiter JB, Bardhan R, Nordlander P, Halas NJ (2010) Fanoshells: nanoparticles with built-in fano resonances. Nano Lett 10:2694–2701. CrossRefPubMedGoogle Scholar
  83. Mukherjee S, Sushma V, Patra S, Barui AK, Bhadra MP, Sreedhar B, Patra CR (2012) Green chemistry approach for the synthesis and stabilization of biocompatible gold nanoparticles and their potential applications in cancer therapy. Nanotechnology 23:455103CrossRefPubMedGoogle Scholar
  84. Nanda A, Majeed S (2014) Enhanced antibacterial efficacy of biosynthesized AgNPs from Penicillium glabrum (MTCC1985) pooled with different drugs. Int J Pharm Tech Res 6:217–223Google Scholar
  85. Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 156:1–13. CrossRefGoogle Scholar
  86. Nayak RR, Pradhan N, Behera D, Pradhan KM, Mishra S, Sukla LB, Mishra BK (2011) Green synthesis of silver nanoparticle by Penicillium purpurogenum NPMF: the process and optimization. J Nanopart Res 13:3129–3137. CrossRefGoogle Scholar
  87. Nithya R, Ragunathan R (2009) Synthesis of silver nanoparticle using Pleurotus sajor caju and its antimicrobial study. Digest J Nanomater Biostructur 4:623–629Google Scholar
  88. O’Carroll D, Sleep B, Krol M, Boparai H, Kocur C (2013) Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv Water Resour 51:104–122. CrossRefGoogle Scholar
  89. Onwubuya K, Cundy A, Puschenreiter M, Kumpiene J, Bone B (2009) Developing decision support tools for the selection of “gentle” remediation approaches. Sci Total Environ 407:6132–6142. CrossRefPubMedGoogle Scholar
  90. Parida KM, Kanungo SB, Sant BR (1981) Studies on MnO2-I. Chemical composition, microstructure and other characteristics of some synthetic MnO2 of various crystalline modifications. Electrochim Acta 26:435–443. CrossRefGoogle Scholar
  91. Park TJ, Lee KG, Lee SY (2015) Advances in microbial biosynthesis of metal nanoparticles. Appl Microbiol Biotechnol:1–14.
  92. Pavani KV, Kumar NS, Sangameswaran BB (2012) Synthesis of lead nanoparticles by Aspergillus species. Pol J Microbiol 61:61–63PubMedGoogle Scholar
  93. Pourabadehei M, Mulligan CN (2016) Resuspension of sediment, a new approach for remediation of contaminated sediment. Environ Pollut 213:63–75. CrossRefPubMedGoogle Scholar
  94. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanoparticles 2014, Article ID 963961.
  95. Prasad R (2016) Advances and applications through fungal nanobiotechnology. Springer, ChamCrossRefGoogle Scholar
  96. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. CrossRefGoogle Scholar
  97. Purnomo AS, Putra SR, Shimizu K, Kondo R (2014) Biodegradation of heptachlor and heptachlor epoxide-contaminated soils by white-rot fungal inocula. Environ Sci Pollut Res 21:11305–11312. CrossRefGoogle Scholar
  98. Qian Y, Zhou X, Zhang Y, Zhang W, Chen J (2013) Performance and properties of nanoscale calcium peroxide for toluene removal. Chemosphere 91:717–723. CrossRefPubMedGoogle Scholar
  99. Rai M, Ingle AP, Gade A, Duran N (2014) Synthesis of silver nanoparticles by Phoma gardeniae and in vitro evaluation of their efficacy against human disease-causing bacteria and fungi. IET Nanobiotechnol 9:71–75. CrossRefGoogle Scholar
  100. Ranjbar-Navazi Z, Pazouki M, Halek FS (2010) Investigation of culture conditions for biosynthesis of silver nanoparticles using Aspergillus fumigatus. Iran J Biotechnol 8:56–61Google Scholar
  101. Reda AB (2009) Bacterial bioremediation of polycyclic aromatic hydrocarbons in heavy oil contaminated soil. J Appl Sci Res 5:197–201Google Scholar
  102. Rhodes CJ (2013) Applications of bioremediation and phytoremediation. Sci Prog 96:417–427. CrossRefPubMedGoogle Scholar
  103. Rhodes CJ (2014) Mycoremediation (bioremediation with fungi)–growing mushrooms to clean the earth. Chem Speciat Bioavailab 26:196–198CrossRefGoogle Scholar
  104. Rickerby DG, Morrison M (2007) Nanotechnology and the environment: a European perspective. Sci Technol Adv Mater 8:19–24. CrossRefGoogle Scholar
  105. Riddin TL, Gericke M, Whiteley CG (2006) Analysis of the inter-and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnology 17:3482CrossRefPubMedGoogle Scholar
  106. Sanghi R, Verma P (2009) A facile green extracellular biosynthesis of CdS nanoparticles by immobilized fungus. Chem Eng J 155:886–891. CrossRefGoogle Scholar
  107. Sarkar J, Chattopadhyay D, Patra S, Deo SS, Sinha S, Ghosh M, Acharya K (2011) Alternaria alternata mediated synthesis of protein capped silver nanoparticles and their genotoxic activity. Dig J Nanomat Biostruct 6:563–573Google Scholar
  108. Satinder KB, Verma M, Surampalli RY, Misra K, Tyagi RD, Meunier N (2006) Bioremediation of hazardous wastes-a review. Pract Period Hazard Toxic Radioact Waste Manag 10:59–72CrossRefGoogle Scholar
  109. Sayles GD, You G, Wang M, Kupferle MJ (1997) DDT, DDD, and DDE dechlorination by zero-valent iron. Environ Sci Technol 31:3448–3454. CrossRefGoogle Scholar
  110. Serrano E, Rus G, Garcia-Martinez J (2009) Nanotechnology for sustainable energy. Renew Sust Energ Rev 13:2373–2384. CrossRefGoogle Scholar
  111. Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M (2004) Biological synthesis of triangular gold nanoprisms. Nat Mater 3:482–488. CrossRefPubMedGoogle Scholar
  112. Shelar GB, Chavan AM (2014) Fungus–mediated biosynthesis of silver nanoparticles and its antibacterial activity. Arch App Sci Res 6:111–114Google Scholar
  113. Shi LN, Zhang X, Chen ZL (2011) Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Res 45:886–892. CrossRefPubMedGoogle Scholar
  114. Shipley HJ, Engates KE, Guettner AM (2011) Study of iron oxide nanoparticles in soil for remediation of arsenic. J Nanopart Res 13:2387–2397. CrossRefGoogle Scholar
  115. Singh S, Barick KC, Bahadur D (2013) Fe3O4 embedded ZnO nanocomposites for the removal of toxic metal ions, organic dyes and bacterial pathogens. J Mat Chem A 1:3325–3333. CrossRefGoogle Scholar
  116. Singhal A, Rogers E (2012) Entertainment-education: a communication strategy for social change. Routledge, New YorkGoogle Scholar
  117. Smedley PL, Kinniburgh DG (2013) Arsenic in groundwater and the environment. In: Essentials of medical geology. Springer, Dordrecht, pp 279–310. CrossRefGoogle Scholar
  118. Son A, Lee J, Chiu PC, Kim BJ, Cha DK (2006) Microbial reduction of perchlorate with zero-valent iron. Water Res 40:2027–2032. CrossRefPubMedGoogle Scholar
  119. Stamets P (2005) Mycelium running: how mushrooms can help save the world. Random House Digital, BerkeleyGoogle Scholar
  120. Sugunan A, Thanachayanont C, Dutta J, Hilborn JG (2005) Heavy-metal ion sensors using chitosan-capped gold nanoparticles. Sci Technol Adv Mater 6:335–340. CrossRefGoogle Scholar
  121. Sun YP, Li XQ, Cao J, Zhang WX, Wang HP (2006) Characterization of zero-valent iron nanoparticles. Adv Colloid Interf Sci 120:47–56. CrossRefGoogle Scholar
  122. Tang L, Zeng G, Liu J, Xu X, Zhang Y, Shen G, Liu C (2008) Catechol determination in compost bioremediation using a laccase sensor and artificial neural networks. Anal Bioanal Chem 391:679–685. CrossRefPubMedGoogle Scholar
  123. Theng BK, Yuan G (2008) Nanoparticles in the soil environment. Elements 4:395–399. CrossRefGoogle Scholar
  124. Topping DC, Bernard LG, O’Donoghue JL, English JC (2007) Hydroquinone: acute and subchronic toxicity studies with emphasis on neurobehavioral and nephrotoxic effects. Food Chem Toxicol 45:70–78. CrossRefPubMedGoogle Scholar
  125. Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nano Today 1:44–48. CrossRefGoogle Scholar
  126. Tungittiplakorn W, Lion LW, Cohen C, Kim JY (2004) Engineered polymeric nanoparticles for soil remediation. Environ Sci Technol 38:1605–1610. CrossRefPubMedGoogle Scholar
  127. Ueda J, Samusawa M, Kumagai K, Ishida A, Tanabe S (2014) Recreating the Lycurgus effect from silver nanoparticles in solutions and in silica gel. J Mater Sci 49:3299–3304. CrossRefGoogle Scholar
  128. Vala AK, Shah S, Patel R (2014) Biogenesis of silver nanoparticles by marine derived fungus Aspergillus flavus from Bhavnagar coast, Gulf of Khambhat, India. J Mar Biol Oceanogr 3:1–3Google Scholar
  129. Varanasi P, Fullana A, Sidhu S (2007) Remediation of PCB contaminated soils using iron nano-particles. Chemosphere 66:1031–1038. CrossRefPubMedGoogle Scholar
  130. Varshney R, Mishra AN, Bhadauria S, Gaur MS (2009) A novel microbial route to synthesize silver nanoparticles using fungus Hormoconis resinae. Digest J Nanomater Biostruct 4:349–355Google Scholar
  131. Verma VC, Kharwar RN, Gange AC (2010) Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine 5:33–40. CrossRefPubMedGoogle Scholar
  132. Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2006) Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloid Surf B 53:55–59. CrossRefGoogle Scholar
  133. Wang X, Cai W, Lin Y, Wang G, Liang C (2010) Mass production of micro/nanostructured porous ZnO plates and their strong structurally enhanced and selective adsorption performance for environmental remediation. J Mater Chem 20:8582–8590. CrossRefGoogle Scholar
  134. Wang S, Sun H, Ang HM, Tadé MO (2013) Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials. Chem Eng J 226:336–347. CrossRefGoogle Scholar
  135. Wang C, Luo H, Zhang Z, Wu Y, Zhang J, Chen S (2014) Removal of As (III) and As (V) from aqueous solutions using nanoscale zero valent iron-reduced graphite oxide modified composites. J Hazard Mater 268:124–131CrossRefPubMedGoogle Scholar
  136. Wilson SC, Jones KC (1993) Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review. Environ Pollut 81:229–249. CrossRefPubMedGoogle Scholar
  137. Wu LM, Sharma R, Seo DK (2003) Metathetical conversion of Nd2O3 nanoparticles into NdS2 polysulfide nanoparticles at low temperatures using boron sulfides. Inorg Chem 42:5798–5800CrossRefPubMedGoogle Scholar
  138. Wu Z, Li W, Webley PA, Zhao D (2012) General and controllable synthesis of novel mesoporous magnetic iron oxide@ carbon encapsulates for efficient arsenic removal. Adv Mater 24:485–491. CrossRefPubMedGoogle Scholar
  139. Xie Y, Cheng W, Tsang PE, Fang Z (2016) Remediation and phytotoxicity of decabromodiphenyl ether contaminated soil by zero valent iron nanoparticles immobilized in mesoporous silica microspheres. J Environ Manag 166:478–483. CrossRefGoogle Scholar
  140. Xiu ZM, Jin ZH, Li TL, Mahendra S, Lowry GV, Alvarez PJ (2010) Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene. Bioresour Technol 101:1141–1146. CrossRefPubMedGoogle Scholar
  141. Xu P, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, Liu ZF (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10. CrossRefPubMedGoogle Scholar
  142. Yan W, Lien HL, Koel BE, Zhang WX (2013) Iron nanoparticles for environmental clean-up: recent developments and future outlook. Environ Sci Proc Impact 15:63–77. CrossRefGoogle Scholar
  143. Yin Q, Tan JM, Besson C, Geletii YV, Musaev DG, Kuznetsov AE, Hill CL (2010) A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 328:342–345. CrossRefPubMedGoogle Scholar
  144. Zaman MI, Mustafa S, Khan S, Xing B (2009) Effect of phosphate complexation on Cd2+ sorption by manganese dioxide (β-MnO2). J Colloid Interface Sci 330:9–19. CrossRefPubMedGoogle Scholar
  145. Zhang XF, Dong XL, Huang H, Lv B, Lei JP, Choi CJ (2007) Microstructure and microwave absorption properties of carbon-coated iron nanocapsules. J Phys D Appl Phys 40:5383. CrossRefGoogle Scholar
  146. Zhu L, Ang S, Liu WT (2004) Quantum dots as a novel immunofluorescent detection system for Cryptosporidium parvum and Giardia lamblia. Appl Environ Microbiol 70:597–598. CrossRefPubMedPubMedCentralGoogle Scholar
  147. Zielińska-Jurek A, Hupka J (2014) Preparation and characterization of Pt/Pd-modified titanium dioxide nanoparticles for visible light irradiation. Catal Today 230:181–187. CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Mohammadhassan Gholami-Shabani
    • 1
    • 2
  • Zeynab Gholami-Shabani
    • 3
  • Masoomeh Shams-Ghahfarokhi
    • 4
  • Mehdi Razzaghi-Abyaneh
    • 1
    Email author
  1. 1.Department of MycologyPasteur Institute of IranTehranIran
  2. 2.Department of NanobiotechnologyPasteur Institute of IranTehranIran
  3. 3.Faculty of Aerospace, Science and Research CampusIslamic Azad UniversityTehranIran
  4. 4.Faculty of Medical Sciences, Department of MycologyTarbiat Modares UniversityTehranIran

Personalised recommendations