Advertisement

An Eagle-Eye View of Recent Digital Image Forgery Detection Methods

  • Savita Walia
  • Krishan Kumar
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 828)

Abstract

In today’s modern era, digital images have noteworthy significance because they have become a leading source of information dissemination. However, the images are being manipulated and tampered. The image manipulation is as old as images itself. The history of modifying images dates back to the 1860s’, though it has become very popular in recent times due to the availability of various open source software available freely over the internet. Such software is responsible for eroding our trust on the integrity of the visual imagery. In this paper, a comprehensive survey of various image forgeries, its types and the currently used techniques to detect such forgeries is presented. The review delivers the downsides of various controversial forgeries that have happened in the history. It provides the taxonomy of various forgeries in digital images and a redefined the classification of forgery detection methods. It also highlights the pros and cons of forgery detection methods currently in use and directs path towards challenges for further research.

Keywords

Image manipulation Digital image forgery Image forensics 

References

  1. 1.
    Luo, W., Qu, Z., Pan, F., Huang, J.: A survey of passive technology for digital image forensics. Front. Comput. Sci. China 1(2), 166–179 (2007)CrossRefGoogle Scholar
  2. 2.
    Farid, H.: Digital doctoring: how to tell the real from the fake. Significance 3(4), 162–166 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Farid, H.: Image forgery detection. IEEE Sig. Process. Mag. 26(2), 16–25 (2009)CrossRefGoogle Scholar
  4. 4.
    Birajdar, G.K., Mankar, V.H.: Digital image forgery detection using passive techniques: a survey. Digit. Investig. 10(3), 226–245 (2013)CrossRefGoogle Scholar
  5. 5.
    Qureshi, M.A., Deriche, M.: A bibliography of pixel-based blind image forgery detection techniques. Sig. Process. Image Commun. 39, 46–74 (2015)CrossRefGoogle Scholar
  6. 6.
    Mhiripiri, N.A., Chari, T.: Media Law, Ethics and Policy in the Digital Age. Information Science Reference IGI, Hershey (2017)CrossRefGoogle Scholar
  7. 7.
    History of Photo Manipulations. Fourandsix Technologies Inc. http://pth.izitru.com/. Accessed 30 July 2017
  8. 8.
    Jones, M., Heyes, C.J.: Cosmetic Surgery: A Feminist Primer. Ashgate, Aldershot (2009)Google Scholar
  9. 9.
    Anderson, K.V., Sheeler, K.H.: Woman President: Confronting Postfeminist Political Culture, vol. 22. Texas A&M University Press, College Station (2013)Google Scholar
  10. 10.
    Winsor, B.: Discovery is becoming more and more ridiculous with its fake documentaries. In: Business Insider (2014)Google Scholar
  11. 11.
    Zhang, Z., Zhou, Y., Kang, J., Ren, Y.: Study of image splicing detection. In: Huang, D.-S., Wunsch, Donald C., Levine, Daniel S., Jo, K.-H. (eds.) ICIC 2008. LNCS, vol. 5226, pp. 1103–1110. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-87442-3_136CrossRefGoogle Scholar
  12. 12.
    Shih, F., Yuan, Y.: A comparison study on copy-cover image forgery detection. Open Artif. Intell. J. 4, 49–54 (2010)CrossRefGoogle Scholar
  13. 13.
    Yeung, M.M.: Digital watermarking. Commun. ACM 41(7), 30–33 (1998)CrossRefGoogle Scholar
  14. 14.
    Rey, C., Dugelay, J.L.: A survey of watermarking algorithms for image authentication. EURASIP J. Appl. Sig. Process. Special issue on Image Anal. Multimed. Interact. Serv. 2002, 613–621 (2002)zbMATHGoogle Scholar
  15. 15.
    Mahdian, B., Saic, S.: Blind methods for detecting image fakery. IEEE Aerosp. Electron. Syst. Mag. 25(4), 18–24 (2010)CrossRefGoogle Scholar
  16. 16.
    Ranty, R.E.J., Aditya, T.S., Madhu, S.S.: Survey on passive methods of image tampering detection. In: International Conference on Communication and Computational Intelligence (INCOCCI), pp. 431–436 (2010)Google Scholar
  17. 17.
    Warbhe, A.D., Dharaskar, R., Thakare, V.: A survey on keypoint based copy-paste forgery detection techniques. Procedia Comput. Sci. 78, 61–67 (2016)CrossRefGoogle Scholar
  18. 18.
    Qazi, T., Lin, W., Khan, S., Yow, K., Madani, S., Xu, C., Kołodziej, J., Khan, I., Li, H., Hayat, K.: Survey on blind image forgery detection. IET Image Proc. 7(7), 660–670 (2013)CrossRefGoogle Scholar
  19. 19.
    Mahdian, B., Saic, S.: A bibliography on blind methods for identifying image forgery. Sig. Process. Image Commun. 25(6), 389–399 (2010)CrossRefGoogle Scholar
  20. 20.
    Mahmood, T.: A survey on block based copy move image forgery detection techniques. In: International Conference on Emerging Technologies (ICET) (2015)Google Scholar
  21. 21.
    Li, H., Luo, W., Qiu, X., Huang, J.: Image forgery localization via integrating tampering possibility maps. IEEE Trans. Inf. Forensics Secur. 12(5), 1240–1252 (2017)CrossRefGoogle Scholar
  22. 22.
    Hayat, K., Qazi, T.: Forgery detection in digital images via discrete wavelet and discrete cosine transforms. Comput. Electr. Eng. 62, 1–11 (2017)CrossRefGoogle Scholar
  23. 23.
    Li, C., Ma, Q., Xiao, L., Li, M., Zhang, A.: Image splicing detection based on Markov features in QDCT domain. Neurocomputing 228, 29–36 (2017)CrossRefGoogle Scholar
  24. 24.
    Yang, F., Li, J., Lu, W., Weng, J.: Copy-move forgery detection based on hybrid features. Eng. Appl. Artif. Intell. 59, 73–83 (2017)CrossRefGoogle Scholar
  25. 25.
    Warif, N.B., Wahab, A.W., Idris, M.Y., Salleh, R., Othman, F.: SIFT-symmetry: a robust detection method for copy-move forgery with reflection attack. J. Vis. Commun. Image Represent. 46, 219–232 (2017)CrossRefGoogle Scholar
  26. 26.
    Hadigheh, H.G.: Feature base fusion for splicing forgery detection based on neuro fuzzy. arXiv:1701.08374 (2017)
  27. 27.
    Zheng, J., Liu, Y., Ren, J., Zhu, T., Yan, Y., Yang, H.: Fusion of block and keypoints based approaches for effective copy-move image forgery detection. Multidimens. Syst. Sig. Process. 27, 989–1005 (2016)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Bayar, B., Stamm, M.C.: A deep learning approach to universal image manipulation detection using a new convolutional layer. In: Proceedings of 4th ACM Workshop Information Hiding Multimedia Security, pp. 5–10 (2016)Google Scholar
  29. 29.
    Fei, Z., Wenchang, S., Bo, Q., Bin, L.: Image forgery detection using segmentation and swarm intelligent algorithm. Wuhan Univ. J. Nat. Sci. 22(2), 141–148 (2017)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Wo, Y., Yang, K., Han, G., Chen, H., Wu, W.: Copy – move forgery detection based on multi-radius PCET. IET Image Process. 11(2), 99–108 (2017)CrossRefGoogle Scholar
  31. 31.
    Rao, Y., Ni, J.: A deep learning approach to detection of splicing and copy-move forgeries in images. In: IEEE International Workshop on Information Forensics and Security (WIFS) (2016)Google Scholar
  32. 32.
    Christlein, V., Riess, C., Jordan, J., Riess, C., Angelopoulou, E.: An evaluation of popular copy-move forgery detection approaches. IEEE Trans. Inf. Forensics Secur. 7(6), 1841–1854 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.University Institute of Engineering and TechnologyPanjab UniversityChandigarhIndia

Personalised recommendations