Advertisement

Genetics of Reading Ability and Its Role in Solving Reading Difficulties

  • Radhakrishnan Sriganesh
  • D. R. Rahul
  • R. Joseph PonniahEmail author
Chapter

Abstract

Reading is a heritable and biologically endowed ability that is enabled by the exaptation of genetic sub-skills that are readily available as language and object recognition abilities. The significant role of genes in biological processes such as the formation and plasticity of the specialized neural networks that accompany reading, the role of epigenetic modification of genes in reading, and the reciprocal effect of emotion and cognition in reading are discussed in this chapter. With due consideration of the genetic make-up of individuals, its effect on formation of the neural circuits corresponding to reading and the gene–environment interaction, the chapter proposes how knowledge of these aspects of a reader is pertinent to providing effective pedagogical solutions.

Keywords

Reading genes Neural plasticity Epigenetics Cognition Affect Personalized learning 

References

  1. Allen, N. D. (2008). Temporal and epigenetic regulation of neurodevelopmental plasticity. Philosophical Transactions: Biological Sciences, 363(1489), 23–38.  https://doi.org/10.1098/rstb.2006.2010.CrossRefGoogle Scholar
  2. Bach, S., Richardson, U., Brandeis, D., Martin, E., & Brem, S. (2013). Print-specific multimodal brain activation in kindergarten improves prediction of reading skills in second grade. Neuroimage, 82, 605–615.  https://doi.org/10.1016/j.neuroimage.2013.05.062.CrossRefGoogle Scholar
  3. Bates, T. C., Castles, A., Luciano, M., Wright, M. J., Coltheart, M., & Martin, N. G. (2007). Genetic and environmental bases of reading and spelling: A unified genetic dual route model. Reading and Writing, 20(1–2), 147–171.  https://doi.org/10.1007/s11145-006-9022-1.CrossRefGoogle Scholar
  4. Berwick, R. C., & Chomsky, N. (2016). Why only us: Language and evolution. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
  5. Black, J. E., & Barnes, J. L. (2015). The effects of reading material on social and non-social cognition. Poetics, 52, 32–43.  https://doi.org/10.1016/j.poetic.2015.07.001.CrossRefGoogle Scholar
  6. Blicher, S., Feingold, L., & Shany, M. (2017). The role of trait anxiety and preoccupation with reading disabilities of children and their mothers in predicting children’s reading comprehension. Journal of Learning Disabilities, 50(3), 309–321.  https://doi.org/10.1177/0022219415624101.CrossRefGoogle Scholar
  7. Borrelli, E., Nestler, E. J., Allis, C. D., & Sassone-Corsi, P. (2008). Decoding the epigenetic language of neuronal plasticity. Neuron, 60(6), 961–974.  https://doi.org/10.1016/j.neuron.2008.10.012.CrossRefGoogle Scholar
  8. Brzustowicz, L. M. (2014). Molecular genetic approaches to the study of language. Human Biology, 70(2): 199–213. Retrieved from http://www.jstor.org/stable/41465641.
  9. Caffarra, S., Martin, C. D., Lizarazu, M., Lallier, M., Zarraga, A., Molinaro, N., et al. (2017). Word and object recognition during reading acquisition: MEG evidence. Developmental Cognitive Neuroscience, 24(16), 21–32.  https://doi.org/10.1016/j.dcn.2017.01.002.CrossRefGoogle Scholar
  10. Centanni, T. M., Green, J. R., Iuzzini-seigel, J., Bartlett, C. W., & Hogan, T. P. (2015). Evidence for the multiple hits genetic theory for inherited language impairment: A case study. Frontiers in Genetics, 6(August), 6–11.  https://doi.org/10.3389/fgene.2015.00272.CrossRefGoogle Scholar
  11. Chang, C. H. C., Pallier, C., Wu, D. H., Nakamura, K., Jobert, A., Kuo, W. J., et al. (2015). Adaptation of the human visual system to the statistics of letters and line configurations. Neuroimage, 120, 428–440.  https://doi.org/10.1016/j.neuroimage.2015.07.028.CrossRefGoogle Scholar
  12. Chang, H., Hoshina, N., Zhang, C., Ma, Y., Cao, H., Wang, Y., et al. (2017). The protocadherin 17 gene affects cognition, personality, amygdala structure and function, synapse development and risk of major mood disorders. Molecular Psychiatry, 23, 1–13.  https://doi.org/10.1038/mp.2016.231.CrossRefGoogle Scholar
  13. Changizi, M., Zhang, Q., Ye, H., & Shimojo, S. (2006). The structures of letters and symbols throughout human history are selected to match those found in objects in natural scenes. The American Naturalist, 167(5), E117–E139.  https://doi.org/10.1086/502806.CrossRefGoogle Scholar
  14. Chen, Y., Fu, S., Iversen, S. D., Smith, S. M., & Matthews, P. M. (2002). Testing for dual brain processing routes in reading: A direct contrast of Chinese character and pinyin reading using fMRI. Journal of Cognitive Neuroscience, 14(7), 1088–1098.  https://doi.org/10.1162/089892902320474535.CrossRefGoogle Scholar
  15. Clark, C., and Rumbold, K. (2006). Reading for pleasure: A research overview. National Literacy Trust. London. Retrieved from http://www.scholastic.com/teachers/article/collateral_resources/pdf/i/Reading_for_pleasure.pdf.
  16. Cope, N., Harold, D., Hill, G., Moskvina, V., Stevenson, J., Holmans, P., et al. (2005). Strong evidence that KIAA0319 on chromosome 6p is a susceptibility gene for developmental dyslexia. American Journal of Human Genetics, 76(4), 581–591.  https://doi.org/10.1086/429131.CrossRefGoogle Scholar
  17. Cox, K. E., & Guthrie, J. T. (2001). Motivational and cognitive contributions to students’ amount of reading. Contemporary Educational Psychology, 26, 116–131.  https://doi.org/10.1006/ceps.1999.1044.CrossRefGoogle Scholar
  18. Day, J. J., & Sweatt, J. D. (2011). Epigenetic mechanisms in cognition. Neuron, 70(5), 813–829.  https://doi.org/10.1016/j.neuron.2011.05.019.CrossRefGoogle Scholar
  19. Deary, I. J., Penke, L., & Johnson, W. (2010). The neuroscience of human intelligence differences. Nature Reviews Neuroscience, 11(3), 201.  https://doi.org/10.1038/nrn2793.CrossRefGoogle Scholar
  20. Dehaene, S. (2010). Reading in the brain: The science and evolution of a human invention. New York, NY: Viking.Google Scholar
  21. Dehaene, S., & Cohen, L. (2011). The unique role of the visual word form area in reading. Trends in Cognitive Sciences, 15(6), 254–262.  https://doi.org/10.1016/j.tics.2011.04.003.CrossRefGoogle Scholar
  22. Dehaene, S., Cohen, L., Morais, J., & Kolinsky, R. (2015). Illiterate to literate: Behavioural and cerebral changes induced by reading acquisition. Nature Reviews Neuroscience, 16(4), 234–244.  https://doi.org/10.1038/nrn3924.CrossRefGoogle Scholar
  23. Dehaene, S., Pegado, F., Braga, L. W., Ventura, P., Filho, G. N., Jobert, A., et al. (2010). How learning to read changes the cortical networks for vision and language. Science, 330(6009), 1359–1364.  https://doi.org/10.1126/science.1194140.CrossRefGoogle Scholar
  24. Dolcos, F., Iordan, A. D., & Dolcos, S. (2011). Neural correlates of emotion—cognition interactions: A review of evidence from brain imaging investigations. Journal of Cognitive Psychology, 23(6), 669–694.  https://doi.org/10.1080/20445911.2011.594433.CrossRefGoogle Scholar
  25. Eicher, J. D., & Gruen, J. R. (2013). Imaging-genetics in dyslexia: Connecting risk genetic variants to brain neuroimaging and ultimately to reading impairments. Molecular Genetics and Metabolism, 110(3), 201–212.  https://doi.org/10.1016/j.ymgme.2013.07.001.CrossRefGoogle Scholar
  26. Elvevåg, B., & Weinberger, D. R. (2009). Introduction: Genes, cognition and neuropsychiatry. Cognitive Neuropsychiatry, 14(4–5), 261–276.  https://doi.org/10.1080/13546800903126016.CrossRefGoogle Scholar
  27. Felling, R. J., & Song, H. (2015). Epigenetic mechanisms of neuroplasticity and the implications for stroke recovery. Experimental Neurology, 268, 37–45.  https://doi.org/10.1016/j.expneurol.2014.09.017.CrossRefGoogle Scholar
  28. Fisher, S. E., & DeFries, J. C. (2002). Developmental dyslexia: Genetic dissection of a complex cognitive trait. Nature Reviews Neuroscience, 3(10), 767–780.  https://doi.org/10.1038/nrn936.CrossRefGoogle Scholar
  29. Fong, K., Mullin, J. B., & Mar, R. A. (2013). What you read matters: The role of fiction genre in predicting interpersonal sensitivity. Psychology of Aesthetics, Creativity, and the Arts, 7(4), 370–376.  https://doi.org/10.1037/a0034084.CrossRefGoogle Scholar
  30. Fried, I., Wilson, C. L., Morrow, J. W., Cameron, K. A., Behnke, E. D., Ackerson, L. C., et al. (2001). Increased dopamine release in the human amygdala during performance of cognitive tasks. Nature Neuroscience, 4(2), 201–206.  https://doi.org/10.1038/84041.CrossRefGoogle Scholar
  31. Fu, S., Chen, Y., Smith, S., Iversen, S., & Matthews, P. M. (2002). Effects of word form on brain processing of written Chinese. Neuroimage, 17(3), 1538–1548.  https://doi.org/10.1006/nimg.2002.1155.CrossRefGoogle Scholar
  32. Gabrieli, J. D. E. (2009). Dyslexia: A new synergy between education and cognitive neuroscience. Science, 325(5938), 280–283.  https://doi.org/10.1126/science.1171999.CrossRefGoogle Scholar
  33. Gallagher, M., & Chiba, A. A. (1996). The amygdala and emotion. Current Opinion in Neurobiology, 6(2), 221–227.  https://doi.org/10.1016/S0959-4388(96)80076-6.CrossRefGoogle Scholar
  34. Gayán, J., & Olson, R. K. (2001). Genetic and environmental influences on orthographic and phonological skills in children with reading disabilities. Developmental Neuropsychology. Developmental Neuropsychology, 20(2), 483–507.  https://doi.org/10.1207/S15326942DN2002_3.CrossRefGoogle Scholar
  35. Gayán, J., & Olson, R. K. (2003). Genetic and environmental influences on individual differences in printed word recognition. Journal of Experimental Child Psychology, 84(2), 97–123.  https://doi.org/10.1016/S0022-0965(02)00181-9.CrossRefGoogle Scholar
  36. Ghanbari, M., & Marzban, A. (2014). Effect of extensive reading on incidental vocabulary retention. Procedia—Social and Behavioral Sciences, 116, 3854–3858.  https://doi.org/10.1016/j.sbspro.2014.01.854.CrossRefGoogle Scholar
  37. Gialluisi, A., Guadalupe, T., Francks, C., & Fisher, S. E. (2017). Neuroimaging genetic analyses of novel candidate genes associated with reading and language. Brain and Language, 172, 9–15.  https://doi.org/10.1016/j.bandl.2016.07.002.CrossRefGoogle Scholar
  38. Gialluisi, A., Newbury, D. F., Wilcutt, E. G., Consortium, T. S. L. I., & Luciano, M. (2014). Genome-wide screening for DNA variants associated with reading and language traits. Genes, Brain and Behavior, 13(7), 686–701.  https://doi.org/10.1111/gbb.12158.CrossRefGoogle Scholar
  39. Gray, J. A. (1990). Brain systems that mediate both emotion and cognition. Cognition and Emotion, 4(3), 269–288.  https://doi.org/10.1080/02699939008410799.CrossRefGoogle Scholar
  40. Guthrie, J. T., & Alvermann, D. E. (1999). Engaged reading: Processes, practices and policy implications. New York: Teachers College Press.Google Scholar
  41. Hannula-Jouppi, K., Kaminen-Ahola, N., Taipale, M., Eklund, R., Nopola-Hemmi, J., Kääriäinen, H., et al. (2005). The axon guidance receptor gene ROBO1 is a candidate gene for developmental dyslexia. PLoS Genetics, 1(4), 0467–0474.  https://doi.org/10.1371/journal.pgen.0010050.CrossRefGoogle Scholar
  42. Hashemi, M. (2011). Language stress and anxiety among the English language learners. Procedia—Social and Behavioral Sciences, 30, 1811–1816.  https://doi.org/10.1016/j.sbspro.2011.10.349.CrossRefGoogle Scholar
  43. Hewitt, E., & Stephenson, J. (2012). Foreign language anxiety and oral exam performance: A replication of Phillips’s MLJ study. Modern Language Journal, 96(2), 170–189.  https://doi.org/10.1111/j.1540-4781.2011.01174.x.CrossRefGoogle Scholar
  44. Ho, C. S. H., Wong, S. W. L., Chow, B. W. Y., Waye, M. M. Y., & Bishop, D. V. M. (2017). Genetic and environmental etiology of speech and word reading in Chinese. Learning and Individual Differences, 56, 49–58.  https://doi.org/10.1016/j.lindif.2017.04.001.CrossRefGoogle Scholar
  45. Hoeft, F., McCandliss, B. D., Black, J. M., Gantman, A., Zakerani, N., Hulme, C., et al. (2011). Neural systems predicting long-term outcome in dyslexia. Proceedings of the National Academy of Sciences, 108(1), 361–366.  https://doi.org/10.1073/pnas.1008950108.CrossRefGoogle Scholar
  46. Hoeft, F., Meyler, A., Hernandez, A., Juel, C., Taylor-Hill, H., Martindale, J. L., et al. (2007). Functional and morphometric brain dissociation between dyslexia and reading ability. Proceedings of the National Academy of Sciences of the United States of America, 104(10), 4234–4239.  https://doi.org/10.1073/pnas.0609399104.CrossRefGoogle Scholar
  47. Kennedy, A. J., Rahn, E. J., Paulukaitis, B. S., Michael, T. P., Day, J. J., David, J., et al. (2016). Tcf4 regulates synaptic plasticity, DNA methylation, and memory function. Cell Reports, 16, 2666–2685.  https://doi.org/10.1016/j.celrep.2016.08.004.CrossRefGoogle Scholar
  48. Kidd, D. C., & Castano, E. (2013). Reading literary fiction improves theory of mind. Science, 342(6156), 377–380.  https://doi.org/10.1126/science.1239918.CrossRefGoogle Scholar
  49. Knickerbocker, H., Johnson, R. L., & Altarriba, J. (2015). Emotion effects during reading: Influence of an emotion target word on eye movements and processing. Cognition and Emotion, 29(5), 784–806.  https://doi.org/10.1080/02699931.2014.938023.CrossRefGoogle Scholar
  50. Krashen, S. D. (1982). Priniciples and practice in second language acquisition (1st ed.). London: Penguin Press Inc.Google Scholar
  51. Laeger, I., Dobel, C., Dannlowski, U., Kugel, H., Grotegerd, D., Kissler, J., et al. (2012). Amygdala responsiveness to emotional words is modulated by subclinical anxiety and depression. Behavioural Brain Research, 233(2), 508–516.  https://doi.org/10.1016/j.bbr.2012.05.036.CrossRefGoogle Scholar
  52. Lee, J., Schallert, D. L., & Kim, E. (2015). Effects of extensive reading and translation activities on grammar knowledge and attitudes for EFL adolescents. System, 52, 38–50.  https://doi.org/10.1016/j.system.2015.04.016.CrossRefGoogle Scholar
  53. Little, C. W., & Hart, S. A. (2016). Examining the genetic and environmental associations among spelling, reading fluency, reading comprehension and a high stakes reading test in a combined sample of third and fourth grade students. Learning and Individual Differences, 45, 25–32.  https://doi.org/10.1016/j.lindif.2015.11.008.CrossRefGoogle Scholar
  54. Malle, B. F. (2005). Folk theory of mind: Conceptual foundations of human social cognition. In R. Hassin, S. J. Uleman, & J. A. Bargh (Eds.), The new unconscious (pp. 225–255). New York: Oxford University Press.  https://doi.org/10.1093/acprof:oso/9780195307696.003.0010CrossRefGoogle Scholar
  55. McEwen, B. S. (2016). In pursuit of resilience: Stress, epigenetics, and brain plasticity. Annals of the New York Academy of Sciences, 1373(1), 56–64.  https://doi.org/10.1111/nyas.13020.CrossRefGoogle Scholar
  56. McEwen, B. S., Eiland, L., Hunter, R. G., & Miller, M. M. (2012). Stress and anxiety: Structural plasticity and epigenetic regulation as a consequence of stress. Neuropharmacology, 62(1), 3–12.  https://doi.org/10.1016/j.neuropharm.2011.07.014.CrossRefGoogle Scholar
  57. McGrath, L. M., Pennington, B. F., Shanahan, M. A., Santerre-Lemmon, L. E., Barnard, H. D., Willcutt, E. G., et al. (2011). A multiple deficit model of reading disability and attention-deficit/ hyperactivity disorder: Searching for shared cognitive deficits. Journal of Child Psychology and Psychiatry and Allied Disciplines, 52(5), 547–557.  https://doi.org/10.1111/j.1469-7610.2010.02346.x.CrossRefGoogle Scholar
  58. McGrath, L. M., Smith, S. D., & Pennington, B. F. (2006). Breakthroughs in the search for dyslexia candidate genes. Trends in Molecular Medicine, 12(7), 333–341.  https://doi.org/10.1016/j.molmed.2006.05.007.CrossRefGoogle Scholar
  59. McKenna, M. C., & Kear, D. J. (1990). A new tool for teachers. The Reading Teacher, 43(8), 626–639.  https://doi.org/10.1598/RT.43.8.3.CrossRefGoogle Scholar
  60. Meng, H., Smith, S. D., Hager, K., Held, M., Liu, J., Olson, R. K., et al. (2005). DCDC2 is associated with reading disability and modulates neuronal development in the brain. Proceedings of the National Academy of Sciences, 102(47), 17053–17058.  https://doi.org/10.1073/pnas.0508591102.CrossRefGoogle Scholar
  61. Molfese, D. L. (2000). Predicting dyslexia at 8 years of age using neonatal brain responses. Brain and Language, 72(3), 238–245.  https://doi.org/10.1006/brln.2000.2287.CrossRefGoogle Scholar
  62. Nieto, S. J., Patriquin, M. A., Nielsen, D. A., & Kosten, T. A. (2016). Don’t worry: Be informed about the epigenetics of anxiety. Pharmacology, Biochemistry and Behavior, 146–147, 60–72.  https://doi.org/10.1016/j.pbb.2016.05.006.CrossRefGoogle Scholar
  63. Norton, E. S., Beach, S. D., & Gabrieli, J. D. E. (2015). Neurobiology of dyslexia. Current Opinion in Neurobiology, 30, 73–78.  https://doi.org/10.1016/j.conb.2014.09.007.CrossRefGoogle Scholar
  64. Ölmez, F. (2015). An investigation into the relationship between L2 reading motivation and reading achievement. Procedia—Social and Behavioral Sciences, 199, 597–603.  https://doi.org/10.1016/j.sbspro.2015.07.561.CrossRefGoogle Scholar
  65. Olson, R. K. (2006). Genes, environment, and dyslexia the 2005 Norman Geschwind Memorial Lecture. Annals of Dyslexia, 56(2), 205–238.  https://doi.org/10.1007/s11881-006-0010-6.CrossRefGoogle Scholar
  66. Palmisano, M., & Pandey, S. C. (2017). Epigenetic mechanisms of alcoholism and stress-related disorders. Alcohol, 60, 46.  https://doi.org/10.1016/j.alcohol.2017.01.001.CrossRefGoogle Scholar
  67. Paracchini, S., Diaz, R., and Stein, J. (2016). Advances in dyslexia genetics—new insights into the role of brain asymmetries. In T. Friedmann, J. Dunlap, & G. S. F. (Eds.), Advances in genetics (1st ed., Vol. 96, pp. 53–97). Cambridge, MA: Elsevier Inc.  https://doi.org/10.1016/bs.adgen.2016.08.003.Google Scholar
  68. Parasuraman, R. (2009). Assaying individual differences in cognition with molecular genetics: Theory and application. Theoretical Issues in Ergonomics Science, 10(5), 399–416.  https://doi.org/10.1080/14639220903106403.CrossRefGoogle Scholar
  69. Pascual-Leone, A., Amedi, A., Fregni, F., & Merabet, L. B. (2005). The plastic human brain cortex. Annual Review of Neuroscience, 28(1), 377–401.  https://doi.org/10.1146/annurev.neuro.27.070203.144216.CrossRefGoogle Scholar
  70. Pessoa, L. (2008). On the relationship between emotion and cognition. Nature Reviews Neuroscience, 9(2), 148–158.  https://doi.org/10.1038/nrn2317.CrossRefGoogle Scholar
  71. Peterson, R. L., & Pennington, B. F. (2012). Developmental dyslexia. The Lancet, 379(9830), 1997–2007.  https://doi.org/10.1016/S0140-6736(12)60198-6.CrossRefGoogle Scholar
  72. Raskind, W. H., Peter, B., Richards, T., Eckert, M. M., & Berninger, V. W. (2013). The genetics of reading disabilities: From phenotypes to candidate genes. Frontiers in Psychology, 3(1), 1–20.  https://doi.org/10.3389/fpsyg.2012.00601.CrossRefGoogle Scholar
  73. Richiardi, J., Altmann, A., & Jonas, R. (2015). Correlated gene expression supports synchronous activity in brain networks. Science, 348(6240), 11–14.  https://doi.org/10.1126/science.1255905.CrossRefGoogle Scholar
  74. Rietveld, C. A., Medland, S. E., Derringer, J., Yang, J., Esko, T., Martin, N. W., … Koellinger, P. D. (2013). GWAS of 126,559 Individuals identifies genetic variants associated with educational attainment. Science, 340(6139): 1467–1471.  https://doi.org/10.1126/science.1235488.
  75. Scerri, T. S., Darki, F., Newbury, D. F., Whitehouse, A. J. O., Peyrard-Janvid, M., Matsson, H., et al. (2012). The dyslexia candidate locus on 2p12 is associated with general cognitive ability and white matter structure. PLoS ONE, 7(11), 50321.  https://doi.org/10.1371/journal.pone.0050321.CrossRefGoogle Scholar
  76. Scerri, T. S., Morris, A. P., Buckingham, L., Newbury, D. F., Miller, L. L., Bishop, D. V. M., et al. (2011). DCDC2, KIAA0319 and CMIP are associated with reading-related traits. Biological Psychiatry, 70(3), 237–245.  https://doi.org/10.1016/j.biopsych.2011.02.005.CrossRefGoogle Scholar
  77. Schmitz, J., Kumsta, R., Moser, D., Güntürkün, O., & Ocklenburg, S. (2018). KIAA0319 promoter DNA methylation predicts dichotic listening performance in forced-attention conditions. Behavioural Brain Research, in press..  https://doi.org/10.1016/J.BBR.2017.09.035.CrossRefGoogle Scholar
  78. Scult, M. A., & Hariri, A. R. (2018). A brief introduction to the neurogenetics of cognition-emotion interactions. Current Opinion in Behavioral Sciences, 19, 50–54.  https://doi.org/10.1016/j.cobeha.2017.09.014.CrossRefGoogle Scholar
  79. Swagerman, S. C., van Bergen, E., Dolan, C., de Geus, E. J. C. C., Koenis, M. M. G. G., Hulshoff Pol, H. E., et al. (2017). Genetic transmission of reading ability. Brain and Language, 172, 3–8.  https://doi.org/10.1016/j.bandl.2015.07.008.CrossRefGoogle Scholar
  80. Taipale, M., Kaminen, N., Nopola-Hemmi, J., Haltia, T., Myllyluoma, B., Lyytinen, H., et al. (2003). A candidate gene for developmental dyslexia encodes a nuclear tetratricopeptide repeat domain protein dynamically regulated in brain. Proceedings of the National Academy of Sciences of the United States of America, 100(20), 11553–11558.  https://doi.org/10.1073/pnas.1833911100.CrossRefGoogle Scholar
  81. Tran, C., Wigg, K. G., Zhang, K., Cate-Carter, T. D., Kerr, E., Field, L. L., et al. (2014). Association of the ROBO1 gene with reading disabilities in a family-based analysis. Genes, Brain and Behavior, 13(4), 430–438.  https://doi.org/10.1111/gbb.12126.CrossRefGoogle Scholar
  82. Turkeltaub, P. E., Flowers, D. L., Verbalis, A., Miranda, M., Gareau, L., & Eden, G. F. (2004). The neural basis of hyperlexic reading: An fMRI case study. Neuron, 41(1), 11–25.  https://doi.org/10.1016/S0896-6273(03)00803-1.CrossRefGoogle Scholar
  83. Wandell, B. A., & Le, R. K. (2017). Diagnosing the neural circuitry of reading. Neuron, 96(2), 298–311.  https://doi.org/10.1016/j.neuron.2017.08.007.CrossRefGoogle Scholar
  84. Wasik, B. A., Hindman, A. H., & Snell, E. K. (2016). Book reading and vocabulary development: A systematic review. Early Childhood Research Quarterly, 37, 39–57.  https://doi.org/10.1016/j.ecresq.2016.04.003.CrossRefGoogle Scholar
  85. Wehmeyer, M. L., Shogren, K. A., Toste, J., & Mahal, S. (2016). Self-determined learning to motivate struggling learners in reading and writing. Intervention in School and Clinic.  https://doi.org/10.1177/1053451216676800.CrossRefGoogle Scholar
  86. Weinshilboum, R. M., & Wang, L. (2006). Pharmacogenetics and pharmacogenomics: Development, science, and translation. Annual Review of Genomics and Human Genetics, 7, 223–245.  https://doi.org/10.1146/annurev.genom.6.080604.162315.CrossRefGoogle Scholar
  87. White, D., & Rabago-Smith, M. (2011). Genotype–phenotype associations and human eye color. Journal of Human Genetics, 56(1), 5–7.  https://doi.org/10.1038/jhg.2010.126.CrossRefGoogle Scholar
  88. Willcutt, E. G., Betjemann, R. S., McGrath, L. M., Chhabildas, N. A., Olson, R. K., DeFries, J. C., et al. (2010). Etiology and neuropsychology of comorbidity between RD and ADHD: The case for multiple-deficit models. Cortex, 46(10), 1345–1361.  https://doi.org/10.1016/j.cortex.2010.06.009.CrossRefGoogle Scholar
  89. Williams, L. M., Tsang, T. W., Clarke, S., & Kohn, M. (2010). An “integrative neuroscience” perspective on ADHD: Linking cognition, emotion, brain and genetic measures with implications for clinical support. Expert Review of Neurotherapeutics, 10(10), 1607–1621.  https://doi.org/10.1586/ern.10.140.CrossRefGoogle Scholar
  90. Wingo, A. P., Almli, L. M., Stevens, J. S., Jovanovic, T., Wingo, T. S., Tharp, G., et al. (2017). Genome-wide association study of positive emotion identifies a genetic variant and a role for microRNAs. Molecular Psychiatry, 22(5), 774–783.  https://doi.org/10.1038/mp.2016.143.CrossRefGoogle Scholar
  91. Wong, P. C. M., Vuong, L. C., & Liu, K. (2017). Personalized learning: From neurogenetics of behaviors to designing optimal language training. Neuropsychologia, 98, 192–200.  https://doi.org/10.1016/j.neuropsychologia.2016.10.002.CrossRefGoogle Scholar
  92. Zambo, D., & Brem, S. K. (2004). Emotion and cognition in students who struggle to read: New insights and ideas. Reading Psychology, 25(3), 189–204.  https://doi.org/10.1080/02702710490489881.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Radhakrishnan Sriganesh
    • 1
  • D. R. Rahul
    • 1
  • R. Joseph Ponniah
    • 1
    Email author
  1. 1.Department of Humanities and Social SciencesNational Institute of Technology TiruchirappalliTiruchirappalliIndia

Personalised recommendations