Advertisement

Botany, Chemistry, and Pharmaceutical Significance of Sida cordifolia: A Traditional Medicinal Plant

  • Hassan Ahmed
  • Abdul Shukor JuraimiEmail author
  • Mallappa Kumara Swamy
  • Muhammad Saiful Ahmad-Hamdani
  • Dzolkifli Omar
  • Mohd Yusop Rafii
  • Uma Rani SinniahEmail author
  • Mohd Sayeed Akhtar
Chapter

Abstract

Sida cordifolia Linn. belonging to the family, Malvaceae has been widely employed in traditional medications in many parts of the world including India, Brazil, and other Asian and African countries. The plant is extensively used in the Ayurvedic medicine preparation. There are more than 200 plant species within the genus Sida, which are distributed predominantly in the tropical regions. The correct taxonomic identification is a major concern due to the fact that S. cordifolia looks morphologically similar with its related species. It possesses activity against various human ailments, including cancer, asthma, cough, diarrhea, malaria, gonorrhea, tuberculosis, obesity, ulcer, Parkinson’s disease, urinary infections, and many others. The medical importance of this plant is mainly correlated to the occurrence of diverse biologically active phytochemical compounds such as alkaloids, flavonoids, and steroids. The major compounds include β-phenylamines, 2-carboxylated tryptamines, quinazoline, quinoline, indole, ephedrine, vasicinone, 5-3-isoprenyl flavone, 5,7-dihydroxy-3-isoprenyl flavone, and 6-(isoprenyl)- 3-methoxy- 8-C-β-D-glucosyl-kaempferol 3-O-β-D-glucosyl[1–4]-α-D-glucoside. The literature survey reveals that most of the pharmacological investigations on S. cordifolia are limited to crude plant extracts and few isolated pure compounds. Therefore, there is a need to evaluate many other unexplored bioactive phytoconstituents with evidences so as to justify the traditional usages of S. cordifolia. Furthermore, detailed studies on the action of mechanisms of these isolated compounds supported by clinical research are necessary for validating their application in contemporary medicines. The aim of the present chapter is to provide a detailed information on the ethnobotanical, phytochemical, and pharmacological aspects of S. cordifolia.

Keywords

Biological activities Herb Medicinal plant Pharmacology Phytochemicals Sida cordifolia Therapy Traditional medicine 

References

  1. Abdel-Kadir M, Mahmoud AH, Motawa HM, Wahba HE, Ebrahim AY (2007) Antitumor activity of Urtica pilulifera on Ehrlich ascites carcinoma in mice. Asian J Biochem 2:375–385CrossRefGoogle Scholar
  2. Adam CM, Steven WJ (2006) Dopamine-mediated actions of ephedrine in the rat substantia nigra. Brain Res 1069:96–103CrossRefGoogle Scholar
  3. Ahmad M, Prawez S, Sultana M, Raina R, Pankaj NK, Verma PK, Rahman S (2014) Antihyperglycemic, anti-hyperlipidemic and antioxidant potential of alcoholic extract of Sida cordifolia (aerial part) in streptozotocin-induced diabetes in Wistar rats. Proc Natl Acad Sci India Sect B 84:397–405CrossRefGoogle Scholar
  4. Ahmed H, Juraimi AS, Hamdani MSA, Omar D, Rafii MY, Aslani F (2017) Comparative phytotoxic effects of aerial and root aqueous extracts of Sida cordifolia L. on germination and seedling vigour performance of lettuce, tomato and carrot. Bangladesh J Bot 46:S323–S328Google Scholar
  5. Ajithabai MD, Sunitha Rani SP, Jayakumar G (2012) Review on the species of Sida used for the preparation of Nayopayam Kashayam. Int J Res Rev Pharm Appl Sci 2:173–195Google Scholar
  6. Akilandeswari S, Senthamarai R, Valarmathi R, Shanthi S, Prema S (2010) Screening of gastric antiulcer activity of Sida acuta Burm. Int J Pharm Tech Res 2:1644–1648Google Scholar
  7. Akilandeswari S, Valarmathi R, Indulatha VN, Senthamarai R (2013) Screening of gastric antiulcer activity of Sida cordifolia. Int J Pharm Chem Sci 2:1288–1292Google Scholar
  8. Arumugam G, Swamy MK, Sinniah UR (2016) Plectranthus amboinicus (Lour.) Spreng: botanical, phytochemical, pharmacological and nutritional significance. Molecules 21:369CrossRefPubMedGoogle Scholar
  9. Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, Temml V, Wang L, Schwaiger S, Heiss EH, Rollinger JM, Schuster D, Breuss JM, Bochkov V, Mihovilovic MD, Kopp B, Bauer R, Dirsch VM, Stuppner H (2015) Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv 33:1582–1614CrossRefPubMedPubMedCentralGoogle Scholar
  10. Auddy B, Ferreira M, Blasina F, Lafon L, Arredondo F, Dajas F, Tripathic PC, Seal T, Mukherjee B (2003) Screening of antioxidant activity of three Indian medicinal plants, traditionally used for the management of neurodegenerative disease. J Ethnopharmacol 84:131–138CrossRefPubMedGoogle Scholar
  11. Balbach A (1989) A Flora Nacional na Medicina Domestica, vol 2, 9th edn. EDEL, Sao PauloGoogle Scholar
  12. Ballesteros BOJV, Perea EM, Mendez JJ, Arango WM, Norena DA (2013) Quantification, chemical and biological characterization of the saponosides material from Sida cordifolia L. (escobilla). Rev Cuba Plantas Med 18:298–314Google Scholar
  13. Boily Y, Van Puyvelde L (1986) Screening of medicinal plants of Rwanda (Central Africa) for antimicrobial activity. J Ethnopharmcol 16:1–13CrossRefGoogle Scholar
  14. Bonjardim LR, Silva AM, Oliveira MG, Guimaraes AG, Antoniolli AR, Santara MF, Serafini MR, Santos RC, Araujo AA, Estevam CS, Santos MR, Lyra A, Carvalho R, Quintans-Junior LJ, Azevedo EG, Botelho MA (2011) Sida cordifolia leaf extract reduces the orofacial nociceptive response in mice. Phytother Res 25:1236–1241CrossRefPubMedGoogle Scholar
  15. Breitbach WB, Niehues M, Lopes WP, Faria JEQ, Brandao MGL (2013) Amazonian Brazilian medicinal plants described by C.F.P. von Martius in the 19th century. J Ethnopharmacol 147:180–189CrossRefPubMedGoogle Scholar
  16. Brink M, Achigan-Dako EG (2012) Plant resources of tropical Africa. Vol. 16. Fibres. Wageningen, p 417Google Scholar
  17. Carolina A, Fernando A, Oliveira MDY, Déborah YACS, Suzene IS (2010) An approach to chemotaxonomy to the fatty acid content of some Malvaceae species. Biochem Syst Ecol 38:1035–1038CrossRefGoogle Scholar
  18. Chacko T, Menon A, Nair SV, Suhaibani EA, Nair CKK (2015) Cytotoxic and antitumor activity of the extract of Clerodendron infortunatum: a mechanistic study. Am J Phytomed Clin Therapeut 2:145–158Google Scholar
  19. Chaves OS, Gomes RA, Tomaz ACA, Fernandes MG, Mendes Junior LDG, Agra MF, Braga VA, Souza MFV (2013) Secondary metabolites from Sida rhombifolia L. (Malvaceae) and the vasorelaxant activity of cryptolepinone. Molecules 18:2769–2777CrossRefPubMedGoogle Scholar
  20. Damanhouri ZA, Ahmad A (2014) A review on therapeutic potential of Piper nigrum L. (black pepper): the king of spices. Med Aromat Plant 3:161.  https://doi.org/10.4172/2167-0412.1000161
  21. Dassonneville L, Lansiaux A, Wattelet A, Wattez N, Mahieu C, van Miert S, Pieters L, Bailly C (2000) Cytotoxicity and cell cycle effects of the plant alkaloids cryptolepine and neocryptolepine: relation to drug-induced apoptosis. Eur J Pharmacol 409:9–18CrossRefPubMedGoogle Scholar
  22. Dhalwal K, Shinde VM, Mahadik KR (2010) Optimization and validation of reverse phase HPLC and HPTLC method for simultaneous quantification of vasicine and vasicinone in Sida species. J Med Plants Res 4:1289–1296Google Scholar
  23. Dinda B, Das N, Dinda S, Dinda M, SilSarma I (2015) Review: the genus Sida L.- a traditional medicine: its ethnopharmacological, phytochemical and pharmacological data for commercial exploitation in herbal drugs industry. J Ethnopharmacol 176:135–176CrossRefPubMedGoogle Scholar
  24. Divakar MC, John J, Vyshnavidevi P, Anisha Subash A, Govindan V (2013) Herbal remedies of Madayipara hillock tribals in Kannur district, Kerala. India J Med Plants Stud 1:34–42Google Scholar
  25. Dutta LP, Crane WAJ (1963) The utilisation of tritiated thymidine for deoxyribonucleic acid synthesis by the lesions of experimental hypertension in rats. J Pathol 86:83–97CrossRefGoogle Scholar
  26. Ekor M (2013) The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol 4:177Google Scholar
  27. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127:2893–2917CrossRefPubMedGoogle Scholar
  28. Franco CIF, Morais LCSL, Quintans-Júnior LJ, Almeida RN, Antoniolli AR (2005) CNS pharmacological effects of the hydroalcoholic extract of Sida cordifolia L. leaves. J Ethnopharmacol 98:275–279CrossRefPubMedGoogle Scholar
  29. Franzotti E, Santos C, Rodrigues H, Mourao R, Andrade M, Antoniolli A (2000) Anti-inflammatory, analgesic activity and acute toxicity of Sida cordifolia L. (Malva branca). J Ethnopharmacol 72:273–277CrossRefPubMedGoogle Scholar
  30. Gaidhani SN, Lavekar GS, Juvekar AS, Sen S, Singh A, Kumari S (2009) In-vitro anticancer activity of standard extracts used in Ayurveda. Pharmacog Mag 5:425–429Google Scholar
  31. Galal A, Raman V, Khan IA (2015) Sida cordifolia, A traditional herb in modern perspective–a review. Curr Trad Med 1:5–17CrossRefGoogle Scholar
  32. Garcia GM, Coto Morales T, Soto Rodríguez GA, Pazos L (2003) Sub-chronic toxicity and test of eye irritability of leaf aqueous extract from Plantago major (plantaginaceae). Riv Bio Trop 51:635–638Google Scholar
  33. Gartel AL, Serfas MS, Tyner AL (1996) p21-negative regulator of the cell cycle. Proc Soc Exp Biol Med 213:138–149CrossRefPubMedGoogle Scholar
  34. Ghosal S, Chauhan RBPS, Mehta R (1975) Alkaloids of Sida cordifolia. Phytochemistry 14:830–832CrossRefGoogle Scholar
  35. Halilu ME, Muhammad I, Dangoggo SM, Farouq AA, Ahmed A, Shamsuddeen AA (2016) Phytochemical and antibacterial screening of petroleum ether and ethanol extracts of Sida cordifolia leaves. J Chem Soc Niger 41:137–142Google Scholar
  36. Harborne JB, Baxter H, Gerald MP (1998) Phytochemical dictionary: a hand book of bioactive compounds from plants, 2nd edn. Taylor & Francis Ltd, Milton Park, p 316Google Scholar
  37. Jain A, Choubev S, Singour PK, Raiak H, Pawar RS (2011) Sida cordifolia (Linn) – an overview. J Appl Pharm Sci 1:23–31Google Scholar
  38. Jenny M, Schwaiger H, Bernhard D, Wrulich OA, Cosaceanu D, Fuchs D, Ueberall F (2005) Apoptosis induced by Tibetan herbal remedy PADMA 28 in the T cell-derived lymphocytic leukaemia cell line CEM-C7H2. J Carcinog 4:15 doi: https://doi.org/10.1186/1477-3163-4-15 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Joseph B, Ajisha A, Kumari S, Sujatha S (2011) Effect of bioactive compounds and its pharmaceutical activities of Sida cordifolia (Linn.) Int J Biol Med Res 2:1038–1042Google Scholar
  40. Kalaiarasan A, John SA (2010) Phytochemical screening and antibacterial activity of Sida cordifolia (Malvaceae) leaf extract. Intl J Medicobiol Res 1:94–98Google Scholar
  41. Kanth RV, Diwan PV (1999) Analgesic, anti-inflammatory and hypoglycaemic activities of Sida cordifolia. Phytother Res 13:75–77CrossRefPubMedGoogle Scholar
  42. Kapoor BBS, Lakhera S (2013) Ethnomedicinal plants of Jodhpur District, Rajasthan used in herbal and folk remedies. Indian J Pharm Biol Res 1:71–75Google Scholar
  43. Khare CP (2004) Indian herbal remedies: rational western therapy, Ayurvedic and other traditional usage botany, 1st edn. Springer, St Berlin, p 426Google Scholar
  44. Khatoon S, Srivastava M, Rawai AKS, Mehrotra S (2005) HPTLC method for chemical standardization of Sida species and estimation of alkaloid ephedrine. J Plannar Chromatogr Mod TLC 18:364–367CrossRefGoogle Scholar
  45. Khurana N, Asmita G (2013) Ameliorative effect of Sida cordifolia in rotenone induced oxidative stress model of Parkinson’s disease. Neurotoxicology 39:57–64CrossRefPubMedGoogle Scholar
  46. Khurana N, Sharma N, Patil S, Asmita G (2016) Phytopharmacological properties of Sida cordifolia: a review of folklore use and pharmacological activities. Asian J Pharm Clin Res 2:52–58CrossRefGoogle Scholar
  47. Konaté K, Bassolé IHN, Adama H, Aworet-Samseny RRR, Souza A, Barro N, Mamoudou HD, Datté JY, Bertrand MB (2012) Toxicity assessment and analgesic activity investigation of aqueous acetone extracts of Sida acuta burn f. and Sida cordifolia L. (Malvaceae), medicinal plants of Burkina Faso. BMC Compl Altern Med 12:120CrossRefGoogle Scholar
  48. Kubavat JB, Asdaq SMB (2009) Role of Sida cordifolia L. leaves on biochemical and antioxidant profile during myocardial injury. J Ethnopharmacol 124:162–165CrossRefPubMedGoogle Scholar
  49. Kumar S, Kapoor V, Gill K (2014) Antifungal and Antiproliferative protein from Cicer arietinum: a bioactive compound against emerging pathogens. Biomed Res Int 2014:387203.  https://doi.org/10.1155/2014/387203 Google Scholar
  50. Kumara SM, Sudipta KM, Lokesh P, Neeki A, Rashmi W, Bhaumik H, Darshil H, Vijay R, Kashyap SSN (2012) Phytochemical screening and in vitro antimicrobial activity of Bougainvillea spectabilis flower extracts. Int J Phytomed 4:375–379Google Scholar
  51. Lutterodt GD (1988) Responses of gastrointestinal smooth muscle preparations to a muscarinic principle present in Sida veronicaefolia. J Ethnopharmacol 23:313–322CrossRefPubMedGoogle Scholar
  52. Mahesh B, Satish S (2008) Antimicrobial activity of some important medicinal plants against plant and human pathogens. World J Agric Sci 4:S839–S843Google Scholar
  53. Mallikarjuna G, Reddy JS, Prabhakaran V (2013) Evaluation of anticancer activity of Sida cordifolia L. against aflatoxin b1 induced hepatocellular carcinoma. Int J Pharm Sci Rev Res 23:126–132Google Scholar
  54. Masih H, Paul S, Yadav J, Pandey S, Peter JK (2014) Antibacterial properties of selected medicinal plants against pathogenic bacteria. Intl J Sci Res Manag 5:915–924Google Scholar
  55. Matsui TA, Sowa Y, Murata H, Takaqi K, Nakanishi R, Aoki S, Yoshikawa M, Kobayashi M, Sakabe T, Kubo T, Sakai T (2007) The plant alkaloid cryptolepine induces p21WAF1/ CIP1 and cell cycle arrest in a human osteosarcoma cell line. Int J Oncol 31:915–922PubMedGoogle Scholar
  56. Matsumoto T, Sowa Y, Ohtani-Fujita N, Tamaki T, Takenaka T, Kuribayashi K, Sakai T (1998) p53-independent induction of WAF1/Cip1 is correlated with osteoblastic differentiation by vitamin D3. Cancer Lett 129:61–68CrossRefPubMedGoogle Scholar
  57. Mohanty SK, Mallappa K, Godavarthi A, Subbanarasiman B, Maniyam A (2014) Evaluation of antioxidant,in vitro cytotoxicity of micropropagated and naturally grown plants of Leptadenia reticulata (Retz.) Wight & Arn.- an endangered medicinal plant. Asian Pac J Trop Med 7:S267–S271CrossRefGoogle Scholar
  58. Mohanty SK, Swamy MK, Middha SK, Prakash L, Subbanarashiman B, Maniyam A (2015) Analgesic, anti-inflammatory, anti-lipoxygenase activity and characterization of three bioactive compounds in the most active fraction of Leptadenia reticulata (Retz.) Wight & Arn.–a valuable medicinal plant. Iran J Pharm Res 14:933–942PubMedPubMedCentralGoogle Scholar
  59. Mohanty SK, Swamy MK, Sinniah UR, Anuradha M (2017) Leptadenia reticulata (Retz.) Wight & Arn.(Jivanti): botanical, agronomical, phytochemical, pharmacological, and biotechnological aspects. Molecules 22:1019.  https://doi.org/10.3390/molecules22061019 CrossRefGoogle Scholar
  60. Nacoulma OG (1996) Medicinal Plants and their Traditional uses in Burkina Faso, Ph.D. thesis, University of Quagadougou, Burkina Faso, p 328Google Scholar
  61. Nagashayana N, Sankarankutty P, Nampoothiri M, Mohan P, Mohanakumar K (2000) Association of L-DOPA with recovery following ayurveda medication in parkinson’s disease. J Neurol Sci 176:124–127CrossRefPubMedGoogle Scholar
  62. Nath R, Roy S, De B, Choudhury MD (2013) Anticancer and antioxidant activity of croton: a review. Int J Pharm Pharma Sci 5:63–70Google Scholar
  63. Nathaniel SPK, Kanthal LK, Durga S, Raju DAR, Satyavati K (2014) Phytochemical evaluation and screening of cardiotonic, antibacterial and anthelmintic activities of Sida cordifolia Linn. Intl J Pharm Sci Nanotech 7:2574–2580Google Scholar
  64. Nawaz AHM, Hossain M, Karim M, Khan M, Jahan R, Rahmatullah M (2009) An ethnobotanical survey of Rajshahi district in Rajshahi division, Bangladesh. Am-Eurasian J Sustain Agric 3:143–150Google Scholar
  65. Nunes XP, Gabriela MLDA, Almeida JRGDS, Fillipe DOP, Lima DOE (2006) Antimicrobial activity of the essential oil of Sida cordifolia Lin. Braz J Pharm 16:642–644CrossRefGoogle Scholar
  66. Okoye TC, Akah PA, Omeje EO, Okol CO, Nworu SC, Hamman M (2011) Antibacterial and anticancer activity of kaurenoic acid from root bark extract of Annona senegalensis. Planta Med 2011:77.  https://doi.org/10.1055/s-0031-1282399
  67. Olowokedejo JD, Kadiri AB, Travih VA (2008) An ethnobotanical survey of herbal markets and medicinal plants in Lagos state of Nigeria. Ethnobot Leafl 12:851–865Google Scholar
  68. Ouédraogo M, Konaté K, Nicaise LA, Souza A, Mbatchi B, Sawadogo LL (2012) Free radical scavenging capacity, anti-candicidal effect of bioactive compounds from Sida Cordifolia L., in combination with nystatin and clotrimazole and their effect on specific immune response in rats. Ann Clin Microbio Antimicrob 11:33CrossRefGoogle Scholar
  69. Pattar VP, Jayaraj M (2011) Pharmacognostic and phytochemical investigation of Sida cordifolia L.-a threatened medicinal herb. Int J Pharm Pharm Sci 4:114–117Google Scholar
  70. Pawa RS, Jain A, Sharma P, Kumar PC, Singour PK (2011) In vitro studies on Sida cordifolia Linn for anthelmintic and antioxidant properties. Chin Med 2:47–52CrossRefGoogle Scholar
  71. Pawar RS, Kumar S, Toppo FA, Lakshmi PK, Suryavanshi P (2016) Sida cordifolia Linn. Accelerates wound healing process in type 2 diabetic rats. J Acute Med 6:82–89CrossRefGoogle Scholar
  72. Philip BK, Muralidharan A, Natarajan B, Varadamurthy B, Venkataraman S (2008) Preliminary evaluation of anti-pyretic and anti-ulcerogenic activities of Sida cordifolia methanolic extract. Fitoterapia 79:229–231CrossRefPubMedGoogle Scholar
  73. Pieme CA, Ngoganga J, Costache M (2014) Polyphenol contents of five of medicinal plants from Cameroon and effects of their extracts on antioxidant capacities of human breast cancer cells. Toxicol Environ Chem 96:1120–1130.  https://doi.org/10.1080/02772248.2014.999680 CrossRefGoogle Scholar
  74. Prakash A, Verma RK, Ghosal S (1981) Alkaloidal constituents of Sida acuta, S. humilis, S. rhombifolia and S. spinosa. Planta Med 43:384–388CrossRefPubMedGoogle Scholar
  75. Preethidan DS, Arun G, Surendran MP, Prasanth S, Sabu A, Sadasivan C, Haridas M (2013) Lipoxygenase inhibitory activity of some Sida species due to di-(2-ethylhexyl) phthalate. Curr Sci 105:232–234Google Scholar
  76. Rahmatullah M, Tajbilur Kabir AAB, Rahman MDM, Hossan MDS, Khatun Z, Khatun MA, Jahan R (2010) Ethnomedicinal practices among a minority group of christians residing in Mirzapur village of Dinajpur District, Bangladesh. Adv Nat App Sci 4:45–51Google Scholar
  77. Rao KS, Lakshminarayana G (1984) Characteristics and composition of six Malvaceae seeds and the oils. J Am Oil Chem Soc 61:1345–1346CrossRefGoogle Scholar
  78. Santos M, Marchioro M, Silveira A, Barbosa-Filho J, Medeiros I (2005) Cardiovascular effects on rats induced by the total alkaloid fraction of Sida cordifolia. Biol Geral Exper 5:5–9Google Scholar
  79. Sarkar A, Das AP (2010) Ethnomedicinal formulations for the treatment of jaundice by the Mech tribe in Duars of West Bengal. Indian J Tradit Knowl 9:134–136Google Scholar
  80. Shin HR, Carlos MC, Varghese C (2012) Cancer control in the Asia pacific region: current status and concerns. Jpn J Clin Oncol 42:867–881CrossRefPubMedGoogle Scholar
  81. Siddiqui MA, Rasheed S, Saquib Q, Al-Khedhairy AA, Al-Said MS, Musarrat J, Choudhary IM (2016) In-vitro dual inhibition of protein glycation, and oxidation by some Arabian plants. BMC Compl Altern Med 16:1–10CrossRefGoogle Scholar
  82. Sivarajan VV, Pradeep KA (1996) Malvaceae of southern peninsular India: a taxonomic monograph. Daya Publishing House, New DelhiGoogle Scholar
  83. Srinithya B, Kumar VV, Vadivel V, Pemaiah B, Anthony SP, Muthuramana MS (2016) Synthesis of biofunctionalized AgNPs using medicinally important Sida cordifolia leaf extract for enhanced antioxidant and anticancer activities. Mat Lett 170:101–104CrossRefGoogle Scholar
  84. Srivastava A, Brewer AK, Mauser-Bunschoten EP, Key NS, Kitchen S, Llinas A, Ludlam CA, Mahlangu JN, Mulder K, Poon MC, Street A (2013) Guidelines for the management of hemophilia. Haemophilia 19:e1–47CrossRefPubMedGoogle Scholar
  85. Sudipta KM, Swamy MK, Balasubramanya S, Anuradha M (2011) Cost effective approach for in vitro propagation of (Leptadenia reticulata Wight & Arn.) -a threatened plant of medicinal importance. J Phytology 3:72–79Google Scholar
  86. Sutradhar RK, MatiorRahman AKM, Ahmad MU, Bachar SC, Saha A (2006) Analgesic and anti-inflammatory principle from Sida cordifolia Linn. J Biol Sci 6:160–163CrossRefGoogle Scholar
  87. Sutradhar RK, Matior Rahman AKM, Ahmad MU, Saha K (2007a) Alkaloids of Sida cordifolia Linn. Indian J Chem 46:B1896–B1900Google Scholar
  88. Sutradhar RK, MoniorRahman AKM, Ahmad MU (2007b) Three new flavonol C-glycosides from Sida cordifolia Linn. J Iran Chem Soc 4:175–181CrossRefGoogle Scholar
  89. Sutradhar RK, MatiorRahman AKM, Ahmad MU, Bachar SC (2008) Bioactive flavones of Sida cordifolia. Phytochem Lett 1:179–182CrossRefGoogle Scholar
  90. Swamy MK, Sinniah UR (2015) A comprehensive review on the phytochemical constituents and pharmacological activities of Pogostemon cablin Benth.: an aromatic medicinal plant of industrial importance. Molecules 20:8521–8547CrossRefPubMedGoogle Scholar
  91. Swamy MK, Sinniah UR (2016) Patchouli (Pogostemon cablin Benth.): botany, agrotechnology and biotechnological aspects. Ind Crop Prod 87:161–176CrossRefGoogle Scholar
  92. Swamy MK, Pokharen N, Dahal S, Anuradha M (2011) Phytochemical and antimicrobial studies of leaf extract of Euphorbia neriifolia. J Med Plants Res 5:5785–5788Google Scholar
  93. Swamy MK, Sinniah UR, Akhtar MS (2015) In vitro pharmacological activities and GC-MS analysis of different solvent extracts of Lantana camara leaves collected from tropical region of Malaysia. Evidence-Based Compl Altern Med 2015:506413.  https://doi.org/10.1155/2015/506413
  94. Swamy MK, Sinniah UR, Akhtar MS (2016) Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review. Evidence-Based Compl Altern Med 22:1019.  https://doi.org/10.1155/2016/3012462
  95. Swamy MK, Arumugam G, Kaur R, Ghasemzadeh A, Yusoff MM, Sinniah UR (2017) GC-MS based metabolite profiling, antioxidant and antimicrobial properties of different solvent extracts of Malaysian Plectranthus amboinicus leaves. Evidence-Based Compl Altern Med 2017:1517683.  https://doi.org/10.1155/2017/1517683 CrossRefGoogle Scholar
  96. Swathy SS, Panicker S, Nithya RS, Anuja MM, Rejitha S, Indira M (2010) Antiperoxidative and anti-inflammatory effect of Sida cordifolia Linn on quinolinic acid induced neurotoxicity. Neurochem Res 35:1361–1367CrossRefPubMedGoogle Scholar
  97. Tariq A, Sehrish S, Kaiwen P, Ihteram U, Sakina M, Feng S, Olatunji OA, Altanzagas B, Zilong L, Dagang S, Qinli X, Riaz U, Suliman K, Buddha BB, Brawin K, Rabiul I, Adnan M (2017) Review: a systematic review on ethno-medicine of anticancer plants. Phytother Res 31:202–264CrossRefPubMedGoogle Scholar
  98. Tate JA, Aguilar JF, Wagstaff GF, Duke JCL, Slotta TAB, Simpson BB (2005) Phylogenetic relationships within the tribe malveae (Malvaceae, subfamily Malvoideae) as inferred from its sequence data. Am J Bot 92:584–602CrossRefPubMedGoogle Scholar
  99. Vasudevan Nair R (2004) Controversial drug plants. University Press, Private Limited, HyderabadGoogle Scholar
  100. Yemele MD, Telefo PB, Lienou LL, Tagne SR, Fodouop CSP, Goka CS, Lemfack MC, Moundipa FP (2015) Ethnobotanical survey of medicinal plants used for pregnant women’s health conditions in Menoua division, West Cameroon. J Ethnopharmacol 160:14–31CrossRefPubMedGoogle Scholar
  101. Yim MB, Chock PB, Stadtman ER (1990) Copper, zinc superoxide dismutase catalyzes hydroxyl radical production from hydrogen peroxide. Curr Issue 13:5006–5010CrossRefGoogle Scholar
  102. Yusuf M, Kabir M (1999) Medicinal plants of Bangladesh Bangladesh Council of Scientific and Industrial Research, Dhaka, Bangladesh p 226Google Scholar
  103. Zhang WY, Lee JJ, Kim Y, Kim IS, Park JS, Myung CS (2010) Amelioration of insulin resistance by scopoletin in high glucose-induced, insulin-resistant HepG2 cells. Horm Metab Res 42:930–935CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Hassan Ahmed
    • 1
    • 2
  • Abdul Shukor Juraimi
    • 2
    Email author
  • Mallappa Kumara Swamy
    • 2
  • Muhammad Saiful Ahmad-Hamdani
    • 2
  • Dzolkifli Omar
    • 3
  • Mohd Yusop Rafii
    • 4
  • Uma Rani Sinniah
    • 2
    Email author
  • Mohd Sayeed Akhtar
    • 5
  1. 1.Department of Biological sciencesUsmanu Danfodiyo University SokotoSokotoNigeria
  2. 2.Department of Crop Science, Faculty of AgricultureUniversiti Putra MalaysiaSerdangMalaysia
  3. 3.Department of Plant Protection, Faculty of AgricultureUniversiti Putra MalaysiaSerdangMalaysia
  4. 4.Institute of Tropical AgricultureUniversiti Putra MalaysiaSerdangMalaysia
  5. 5.Department of BotanyGandhi Faiz-e-Aam CollegeShahjahanpurIndia

Personalised recommendations