Anticancer Plants: Chemistry, Pharmacology, and Potential Applications

  • V. D. Ravichandra
  • C. Ramesh
  • Mallappa Kumara Swamy
  • B. Purushotham
  • Gudepalya Renukaiah Rudramurthy


Cancer, also known as malignancy, is an abnormal growth of cells and is the second most common death-causing disease. According to the World Health Organization (WHO), the global mortality rate due to cancer is projected to rise, and by 2030 the deaths due to this disease alone are estimated at 11.5 million. Naturally occurring compounds such as secondary metabolites from plants play a significant role in the development of anticancer drugs. The majority of synthetic drugs used in the treatment of cancer are cytotoxic in nature and they work by interfering with the structure and functions of the cellular DNA. However, the cytotoxic drugs are harmful to normal cells/tissues unless they are very specific to neoplastic cells. Naturally occurring products such as secondary metabolites from plants exert anticancer activity by quenching the reactive oxygen species and protect critical components of the cell including proteins, DNA, and lipids from oxidative damage. Moreover, they may also impede with intracellular signaling pathways. In this regard, herbal anticancers are safer than synthetic drugs. Several studies have reported the anticancer potential of different phytoconstituents. However, further study would help in the development of effective anticancer herbal drugs which can overcome the limitations of synthetic drugs.


Anticancer compounds Herbal drugs Phytochemistry Pharmacology Secondary metabolites 


  1. Abidemi JA, Zahoor W, Girish M, Sadhana S, Flora RA, Naresh S, Olufunmilayo OA, Dilip MM (2015) Anticancer activity of Aristolochia ringens Vahl. (Aristolochiaceae). J Trad Com Med 5:35–41Google Scholar
  2. Aboul-Enein AM, Abu-Elalla F, Shalaby EA, El-Shemy HA (2012) Traditional medicinal plants research in Egypt: studies of antioxidant and anticancer activities. J Med Plants Res 6:689–703Google Scholar
  3. ACS (2016) Cancer facts & figures 2016. American Cancer Society, AtlantaGoogle Scholar
  4. Akbar N, Mohammad Y, Abbas AM, Sanjay G (2011) Evaluation of anticancer properties of medicinal plants from the Indian sub-continent. Mol Cell Pharmacol 3:21–29Google Scholar
  5. Akram M, Uddin S, Ahmed A, Usmanghani K, Hannan A, Mohiuddin E, Asif M (2010) Curcuma longa and curcumin: a review article. Rom J Biol-Plant Biol 55:65–70Google Scholar
  6. Alic NA, Abdullahd NA, Mokhtare KI (2016) Anticancer properties of Malaysian herbs: a review. Arch Orofac Sci 11:19–25Google Scholar
  7. Allahyari H, Heidari S, Ghamgosha M, Saffarian P, Amani J (2017) Immunotoxin: a new tool for cancer therapy. Tumor Biol 39:1–11. CrossRefGoogle Scholar
  8. Antony S, Theruvathu JA, Brooks PJ, Lesher DT, Redinbo M, Pommier Y (2004) Enhancement of camptothecin-induced topoisomerase I cleavage complexes by the acetaldehyde adduct N2-ethyl-2′-deoxyguanosine. Nucleic Acids Res 32:5685–5692PubMedCrossRefPubMedCentralGoogle Scholar
  9. Arumugam G, Swamy MK, Sinniah UR (2016) Plectranthus amboinicus (Lour.) Spreng: botanical, phytochemical, pharmacological and nutritional significance. Molecules 21:369PubMedCrossRefPubMedCentralGoogle Scholar
  10. Balachandran P, Govindarajan R (2005) Cancer-an ayurvedic perspective. Pharmacol Res 51:19PubMedCrossRefPubMedCentralGoogle Scholar
  11. Baudino TA (2015) Targeted cancer therapy: the next generation of cancer treatment. Curr Drug Discov Technol 12:3–20PubMedCrossRefPubMedCentralGoogle Scholar
  12. Berger JM, Gambin SJ, Harrison SC, Wang JC (1996) Structure and mechanism of DNA topoisomerase II. Nature 379:225–232PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bissery MC, Guénard D, Guéritte-Voegelein F, Lavelle F (1991) Experimental antitumor activity of taxotere (RP 56976, NSC 628503), a taxol analogue. Cancer Res 51:4845–4852PubMedPubMedCentralGoogle Scholar
  14. Biswas SK (2015) Metabolic reprogramming of immune cells in cancer progression. Immunity 43:435–449PubMedCrossRefPubMedCentralGoogle Scholar
  15. Biswas A, Paul IO, Faulkner GE, Bajaj RR, Silver MA, Mitchell MS, Alter DA (2015) Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults. Ann Intern Med 162:123PubMedCrossRefPubMedCentralGoogle Scholar
  16. Blackadar CB (2016) Historical review of the causes of cancer. World J Clin Oncol 7:54PubMedCrossRefPubMedCentralGoogle Scholar
  17. Boudet A (2007) Evolution and current status of research in phenolic compounds. Phytochemistry 68:2722–2735PubMedCrossRefPubMedCentralGoogle Scholar
  18. Bouvard V, Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, Benbrahim-Tallaa L, Guha N, Freeman C, Galichet L, Cogliano V (2009) A reviews of human carcinogens-part B: biological agents. Lancet Oncol 10:321–322PubMedCrossRefPubMedCentralGoogle Scholar
  19. Bradford PG, Awad AB (2007) Phytosterols as anticancer compounds. Mol Nutr Food Res 51:161–170PubMedCrossRefPubMedCentralGoogle Scholar
  20. Bruce J, Grattan JR (2013) Plant sterols as anticancer nutrients: evidence for their role in breast cancer. Forum Nutr 5:359–387Google Scholar
  21. Carocho M, Ferreira ICFR (2013) The role of phenolic compounds in the fight against cancer–a review. Anti Cancer Agents Med Chem 13:1236–1258CrossRefGoogle Scholar
  22. Chainani-Wu N (2003) Safety and anti-inflammatory activity of curcumin: a component of turmeric (Curcuma longa). J Altern Compl Med 9:161–168CrossRefGoogle Scholar
  23. Chen Y, Ma J, Wang F, Hu J, Cui A, Wei C, Yang Q, Li F (2013) Amygdalin induces apoptosis in human cervical cancer cell line HeLa cells. Immunopharmacol Immunotoxicol 35:43–51PubMedCrossRefPubMedCentralGoogle Scholar
  24. Chen CJ, Hsu WL, Yang HI, Lee MH, Chen HC, Chien YC, You SL (2014) Epidemiology of virus infection and human cancer. Recent Results Cancer Res 193:11–32PubMedCrossRefPubMedCentralGoogle Scholar
  25. Chung K, Wong TY, Wei C, Huang Y, Lin Y (1998) Tannins and human health: a review. Crit Rev Food Sci 38:421–464CrossRefGoogle Scholar
  26. Colledge NR, Walker BR, Ralston SH (2010) Davidson’s principles and practice of medicine, 21st edn. Elsevier Ltd, Philadelphia, Churchill Livingstone, pp 255–277Google Scholar
  27. Crozier A, Clifford MN, Ashihara H (2006) Plant secondary metabolites: occurrence, and role in the human diet. Blackwell Publishing, Oxford, pp 819–821CrossRefGoogle Scholar
  28. Curtis CH (1991) Physical carcinogenesis: advances and perspectives for the 1990s. Cancer Res 51:S5023–S5044Google Scholar
  29. Demirkiran O (2007) Xanthones in hypericum: synthesis and biological activities. In: MTH K (ed) Bioactive heterocycles III. Springer, Berlin, pp 139–178Google Scholar
  30. Derry WB, Wilson L, Jordan MA (1995) Substoichiometric binding of Taxol suppresses microtubule dynamics. Biochemist 34:2203–2211CrossRefGoogle Scholar
  31. Desbene S, Giorgi-Renault S (2001) The 1,4-dihydroquinoline-lactones 2 present very interesting antitumor properties. Curr Med Chem 1:71–90Google Scholar
  32. Dewick PM (2002) Medicinal natural products: a biosynthetic approach, 2nd edn. Wiley, West SussexGoogle Scholar
  33. Dey PM, Harborne JB (1997) Plant biochemistry. Academic, CaliforniaGoogle Scholar
  34. Dhananjaya S, Aparna K (2014) Current status of cancer burden: global and Indian scenario. Biomed Res J 1:1–5Google Scholar
  35. Ding X, Liu K, Deng B, Chen W, Li W, Liu F (2013) Isolation and characterization of endophytic fungi from Camptotheca acuminata. World J Microbiol Biotechnol 29:1831–1838PubMedCrossRefPubMedCentralGoogle Scholar
  36. Elattar TM, Virji AS (2000) The inhibitory effect of curcumin, genistein, quercetin and cisplatin on the growth of oral cancer cells in-vitro. Anticancer Res 20:1733–1738PubMedPubMedCentralGoogle Scholar
  37. El-Zayat AA, Degen D, Drabek S, Clark GM, Pettit GR, Von Hoff DD (1993) In vitro evaluation of the antineoplastic activity of combretastatin A-4, a natural product from Combretum caffrum (arid shrub). Anti-Cancer Drugs 4:19–25PubMedCrossRefPubMedCentralGoogle Scholar
  38. Emami S, Dadashpour S (2015) Current developments of coumarin-based anti-cancer agents in medicinal chemistry. Eur J Med Chem 102:611–630PubMedCrossRefGoogle Scholar
  39. Ernst E, Cassileth BR (1998) The prevalence of complementary alternative medicine in cancer: a systematic review. Cancer 83:777–782PubMedCrossRefGoogle Scholar
  40. Ferlay J, Shin H-R, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127:2893–2917PubMedCrossRefPubMedCentralGoogle Scholar
  41. Folkerd EJ, Dowsett M (2010) Influence of sex hormones on cancer progression. J Clin Oncol 28:4038–4044PubMedCrossRefGoogle Scholar
  42. Gary S, Xianshu Y, Joe S, Robert K, Rajinder SS, Hess WM (1996) Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallachiana. Microbiology 142:435–440CrossRefGoogle Scholar
  43. George RP, Sheo BS, Margaret LN, Ernest H, Jean MS (1987) Isolation, structure, and synthesis of Combretastatins A-1 and B-1, potent new inhibitors of microtubule assembly, derived from Combretum caffrum. J Nat Prod 50:119–131CrossRefGoogle Scholar
  44. George RP, Sheo BS, Jean MS (1988) Antineoplastic agents 160. Isolation and structure of combretastatin D-1: a cell growth inhibitory macrocyclic lactone from Combretum caffrum. J Am Chem Soc 110:8539–8540CrossRefGoogle Scholar
  45. George RP, Sheo BS, Jean MS, Margaret LN, Ernest H, Chii ML (1998) Isolation, structure, synthesis, and antimitotic properties of Combretastatins B-3 and B-4 from Combretum caffrum. J Nat Prod 50:517–527Google Scholar
  46. Gordaliza M, García PA, Miguel DC, JM, Castro MA (2004) Podophyllotoxin: sources, extraction, and preparation of cytotoxic analog compounds. Toxicon 44:441–459PubMedCrossRefPubMedCentralGoogle Scholar
  47. Hanif R, Qiao L, Schiff SJ, Rigas B (1997) Curcumin, a natural plant phenolic food additive, inhibits cell proliferation and induces cell cycle changes in colon adenocarcinoma cell lines by a prostaglandin-independent pathway. J Lab Clin Med 130:576–584PubMedCrossRefPubMedCentralGoogle Scholar
  48. Harpreet S, Leena P, Pradeep P (2011) Review on cancer and anticancerous properties of some medicinal plants. J Med Plants Res 5:1818–1835Google Scholar
  49. Harsh M (2006) Textbook of pathology, 6th edn. Jaypee Brothers Medical Publishers, New Delhi, pp 197–227Google Scholar
  50. Horn L, Pao W, Johnson DH (2012) Harrison’s principles of internal medicine. In: Neoplasms of the lung, 18th edn. McGraw-Hill, New YorkGoogle Scholar
  51. Hsiang YH, Hertzberg R, Hecht S, Liu LF (1985) Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem 260:14873–14878PubMedPubMedCentralGoogle Scholar
  52. Huma A, Savita D, Daoud A, Saeed MA, Saad A, Saud A (2015) Isolation and evaluation of anticancer efficacy of stigmasterol in a mouse model of DMBA-induced skin carcinoma. Drug Des Dev Ther 9:2793–2800Google Scholar
  53. Jordan MA, Wilson L (1998) Microtubules and actin filaments: dynamic targets for cancer chemotherapy. Curr Opin Cell Biol 10:123–130PubMedCrossRefPubMedCentralGoogle Scholar
  54. Kalili K, Villiers A (2011) Recent development in the HPLC separation of phenolic compounds. J Sep Sci 34:854–876PubMedCrossRefPubMedCentralGoogle Scholar
  55. Kang MR, Muller MT, Chung IK (2004) Telomeric DNA damage by topoisomerase IA possible mechanism for cell killing by camptothecin. J Biol Chem 279:12535–12541PubMedCrossRefPubMedCentralGoogle Scholar
  56. Kapoor LD (1990) Handbook of Ayurvedic medicinal plants. CRC Press, Boca RatonGoogle Scholar
  57. Kaushik PS, Swamy MK, Balasubramanya S, Anuradha M (2015) Rapid plant regeneration, analysis of genetic fidelity and camptothecin content of micropropagated plants of Ophiorrhiza mungos Linn.–a potent anticancer plant. J Crop Sci Biotechnol 18:1–8CrossRefGoogle Scholar
  58. Kavishankar GB, Lakshmidevi N, Mahadeva Murthy S, Prakash HS, Niranjana SR (2011) Diabetes and medicinal plants-a review. Int J Pharm Bio Sci 2:65–80Google Scholar
  59. Lin YG, Kunnumakkara AB, Nair A, Merritt WM, Han LY, Armaiz-Pena GN, Kamat AA, Spannuth WA, Gershenson DM, Lutgendorf SK, Aggarwal BB, Sood AK (2007) Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-kappaB pathway. Clin Cancer Res 13:3423–3430PubMedCrossRefPubMedCentralGoogle Scholar
  60. Liu CJ, Hou SS (1997) Current research status of Podophyllotoxin. Lignans. Nat Prod Res Develop 9:81–89Google Scholar
  61. Loeb LA, Harris CC (2008) Advances in chemical carcinogenesis: a historical review and prospective. Cancer Res 68:6863–6872PubMedCrossRefPubMedCentralGoogle Scholar
  62. Longo DL, Fauci AS, Kasper DL, Hauser SL, Jameson JL, Loscalzo J (2012) Harrison’s principles of internal medicine, vol 2. McGraw-Hill Companies, New YorkGoogle Scholar
  63. Luttge U, Pitman MG (2011) Encyclopedia of plant physiology. Springer, New York, pp 284–316Google Scholar
  64. Macek C (1984) East meets west to balance immunologic yin and yang. JAMA 251:433–435PubMedCrossRefPubMedCentralGoogle Scholar
  65. Mary ES, Susan BU (2012) Traditional Chinese medicine for cancer-related symptoms. Semin Oncol Nurs 28:64–74CrossRefGoogle Scholar
  66. Mehta K, Pantazis P, McQueen T, Aggarwal BB (1997) Antiproliferative effect of curcumin (diferuloylmethane) against human breast tumor cell lines. Anti-Cancer Drugs 8:470–481PubMedCrossRefPubMedCentralGoogle Scholar
  67. Mishra S, Ahmad S, Kumar N, Sharma BK (2013) Annona muricata (the cancer killer): a review. Global J Pharm Res 2:1613–1618Google Scholar
  68. Mohanty SK, Mallappa KS, Godavarthi A, Subbanarasiman B, Maniyam A (2014) Evaluation of antioxidant, in vitro cytotoxicity of micropropagated and naturally grown plants of Leptadenia reticulata (Retz.) Wight & Arn.-an endangered medicinal plant. Asian Pac J Trop Med 7:S267–S271CrossRefGoogle Scholar
  69. Mohanty SK, Swamy MK, Sinniah UR, Anuradha M (2017) Leptadenia reticulata (Retz.) Wight & Arn. (Jivanti): botanical, agronomical, phytochemical, pharmacological, and biotechnological aspects. Molecules 22:1019. CrossRefGoogle Scholar
  70. Morales-Sánchez A, Fuentes-Pananá EM (2014) Human viruses and cancer. Virus 6:4047–4079CrossRefGoogle Scholar
  71. Moudi M, Go R, Yien CYS, Nazre M (2013) Vinca alkaloids. Int J Prev Med 11:1231–1235Google Scholar
  72. Mukhopadhyay A, Bueso-Ramos C, Chatterjee D, Pantazis P, Aggarwal BB (2001) Curcumin down regulates cell survival mechanisms in human prostate cancer cell lines. Oncogene 20:7597–7609PubMedCrossRefPubMedCentralGoogle Scholar
  73. Muqeet W, Qudsia B (2014) Camptothecin and its analogs antitumor activity by poisoning topoisomerase I, their structure activity relationship and clinical development perspective of analogs. J App Pharm 6:286–295Google Scholar
  74. Nanda JS, Kumar R, Raghava GPS (2016) dbEM: a database of epigenetic modifiers curated from cancerous and normal genomes. Sci Rep 6(1):19340Google Scholar
  75. Negi JS, Bhandari AK, Sundriyal RC (2011) Anti-cancerous plants of Uttarakhand Himalaya: a review. Int J Cancer Res 7:192–208CrossRefGoogle Scholar
  76. Nerendra N (2011) Podophyllotoxin and their glycosidic derivatives. Pharmacophore 2:124–134Google Scholar
  77. Ngeh JT, Rob V (2013) A review of the medicinal potentials of plants of the genus Vernonia (Asteraceae). J Ethnopharmacol 146:681–723CrossRefGoogle Scholar
  78. Nitesh K, Isha D, Vasanth R, Jayashree BS, Vipan P, Manjula SN, Seeja T, Gopalan K, Mallikarjuna CR (2014) Preliminary investigation of cytotoxic potential of 2-quinolone derivatives using in vitro and in vivo (solid tumor and liquid tumor) models of cancer. Arab J Chem 7:409–417CrossRefGoogle Scholar
  79. Nogales E (2000) Structural insights into microtubule function. Annu Rev Biochem 69:277–302PubMedCrossRefPubMedCentralGoogle Scholar
  80. Nowakowska Z (2007) A review of the anti-infective and antiinflammatory chalcones. Eur J Med Chem 42:125–137PubMedCrossRefPubMedCentralGoogle Scholar
  81. Oh JK, Weiderpass E (2014) Infection and cancer: global distribution and burden of diseases. Ann Glob Health 80:384–392PubMedCrossRefPubMedCentralGoogle Scholar
  82. Oleg VB, Denis MS (2015) Pathogenesis of cancer: cancer reparative trap. J Cancer Ther 6:399–412CrossRefGoogle Scholar
  83. Pal SK (2014) Food-based interventions for cancer management: an ayurvedic perspective. In: Rastogi S (ed) Ayurvedic science of food and nutrition. Springer, New York, pp 81–105Google Scholar
  84. Papac RJ (1998) Spontaneous regression of cancer: possible mechanisms. In Vivo 12:571–578PubMedPubMedCentralGoogle Scholar
  85. Prakash O, Amit K, Pawan K, Ajeet (2013) Anticancer potential of plants and natural products: a review. Am J Pharmacol Sci 1:104–115Google Scholar
  86. Prakash L, Middha SK, Mohanty SK, Swamy MK (2016) Micropropagation and validation of genetic and biochemical fidelity among regenerants of Nothapodytes nimmoniana (Graham) Mabb. employing ISSR markers and HPLC. 3. Biotech 6:171Google Scholar
  87. Premalatha B, Rajgopal G (2005) Cancer an ayurvedic perspective. Pharmacol Res 51:19–30CrossRefGoogle Scholar
  88. Pu X, Qu X, Chen F, Bao J, Zhang G, Luo Y (2013) Camptothecin-producing endophytic fungus Trichoderma atroviride LY357: isolation, identification, and fermentation conditions optimization for camptothecin production. Appl Microbiol Biotechnol 97:9365–9375PubMedCrossRefPubMedCentralGoogle Scholar
  89. Qamar U, Amanullah Khalid M, Rais-ur-Rahman S (2015) Unani medicine for cancer care: an evidence based review. Int J Ayurvedic Herb Med 5:1811–1825Google Scholar
  90. Raghavendra M, Madhusudhana AR, Pulala RY, Sudharshan AR, Siva Kumar L (2013) Comparative studies on the in vitro antioxidant properties of methanolic leafy extracts from six edible leafy vegetables of India. Asian J Pharm Clin Res 6:96–99Google Scholar
  91. Rajamanickam B, Kuo AL, Richard Y, Kheng WY (2012) Cancer and radiation therapy: current advances and future directions. Int J Med Sci 9:193–199CrossRefGoogle Scholar
  92. Rajandeep K, Jagpreet S, Gagandeep S, Harpreet K (2011) Anticancer plants: a review. J Nat Prod Plant Resour 1:131–136Google Scholar
  93. Rajeev R, Choudhary K, Panda S, Gandhi N (2012) Role of bacteria in oral carcinogenesis. S Asian J Cancer 1:78–83CrossRefGoogle Scholar
  94. Rang HP, Dale MM, Ritter JM, Moore PK (2003) Pharmacology. Churchill Livingstone, London, pp 693–710Google Scholar
  95. Rao S, Orr GA, Chaudhary AG, Kingston DG, Horwitz SB (1999) Characterization of the Taxol binding site on the microtubule. J Biol Chem 274:37990. PubMedCrossRefPubMedCentralGoogle Scholar
  96. Rastogi S, Srivastava N, Virmani T, Singh C, Gupta J (2016) A review on naturally derived compounds for potential anticancer activity. Indian J Drugs 4:75–86Google Scholar
  97. Robert van DH, Denise IJ, Wim S, Didier H, Robert V (2004) The Catharanthus alkaloids: pharmacognosy and biotechnology. Curr Med Chem 11:607–628CrossRefGoogle Scholar
  98. Saad B, Azaizeh H, Said O (2008) Arab herbal medicine. In: Preedy VR, Watson RR (eds), Botanical medicine in clinical practice. CAB International, Wallingford, p 31Google Scholar
  99. Sakarkar DM, Deshmukh VN (2011) Ethnopharmacological review of traditional medicinal plants for anticancer activity. Int J Pharm Tech Res 3:298–308Google Scholar
  100. Sankappa RU, Isloor AM, Shetty P, Pai KSR, Fun HK (2015) Synthesis and in vitro biological evaluation of new pyrazole chalcones and heterocyclic diamides as potential anticancer agents. Arab J Chem 8:317–321CrossRefGoogle Scholar
  101. Savithramma N, Yugandhar P, Bhumi G (2014) A review on medicinal plants as a potential source for cancer. Int J Pharm Sci Rev Res 26:235–248Google Scholar
  102. Schneider-Stock R, Ghantous A, Bajbouj K, Saikali M, Darwiche N (2012) Epigenetic mechanisms of plant-derived anticancer drugs. Front Biosci 17:129–173CrossRefGoogle Scholar
  103. Seigler DS (1998) Plant secondary metabolism. Kluwer Academic Press, NorwellCrossRefGoogle Scholar
  104. Sejal GP (2016) A review on medicinal plants for cancer therapy. Int J Med Pharm Res 2:105–112Google Scholar
  105. Shaikh AM, Shrivastava B, Apte KG, Navale SD (2016) Medicinal plants as potential source of anticancer agents: a review. J Pharmacogn Phytochem 5:291–295Google Scholar
  106. Shan D, Bing H, Hong MA (2012) Traditional Chinese medicinal syndromes and treatment in colorectal cancer. J Cancer Ther 3:888–897CrossRefGoogle Scholar
  107. Sharma P, Majee C (2015) A review on anticancer natural drugs. Int J Pharm Tech Res 8:131–141CrossRefGoogle Scholar
  108. Shyamala V, Ebciba C, Santhiya R, Thangaraju N (2014) Phytochemical screening and in vitro antibacterial, antioxidant and anticancer activity of Amphiroa fragilissima (Linneaus) J V Lamoroux. Int J Inn Res Sci Eng Tech 3:12933–12948Google Scholar
  109. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics 2016. CA Cancer J Clin 66:7–30CrossRefPubMedPubMedCentralGoogle Scholar
  110. Simay C, Erkan, Hasibe Y (2008) Biological activity of curcuminoids isolated from Curcuma longa. Rec Nat Prod 2:19–24Google Scholar
  111. Singh F, Newton RU, Galvão DA, Spry N, Baker MK (2013) A systematic review of pre-surgical exercise intervention studies with cancer patients. Surg Oncol 22:92–104PubMedCrossRefPubMedCentralGoogle Scholar
  112. Singh S, Sharma B, Kanwar SS, Kumar A (2016) Lead phytochemicals for anticancer drug development. Front Plant Sci 7:1667.
  113. Sirerol JA, María LR, Salvador M, Miguel AA, José ME, Angel LO (2016) Role of natural stilbenes in the prevention of cancer. Oxidative Med Cell Longev 16:1–15CrossRefGoogle Scholar
  114. Siwak DR, Shishodia S, Aggarwal BB, Kuzrock R (2005) Curcumin-induced antiproliferative and proapoptotic effects in melanoma cells are associated with suppression of IkappaB kinase and nuclear factor kappaB activity and are independent of the B-Raf/mitogen-activated/extracellular signal-regulated protein kinase pathway and the Akt pathway. Cancer 104:879–890PubMedCrossRefPubMedCentralGoogle Scholar
  115. Snyder JP, Nettles JH, Cornett B, Downing KH, Nogales E (2001) The binding conformation of taxol in b-tubulin: a model based on electron crystallographic density. Proc Natl Acad Sci 98:5312–5316PubMedCrossRefPubMedCentralGoogle Scholar
  116. Spencer JPE (2012) Flavonoids and related compounds: bioavailability and function. CRC Press, Boca RatonGoogle Scholar
  117. Stojan R, Zorica S, Boris D (2004) The pathogenesis of neoplasia. Arch Oncol 12:35CrossRefGoogle Scholar
  118. Swamy MK, Sinniah UR (2015) A comprehensive review on the phytochemical constituents and pharmacological activities of Pogostemon cablin Benth.: an aromatic medicinal plant of industrial importance. Molecules 20:8521–8547PubMedCrossRefPubMedCentralGoogle Scholar
  119. Swamy MK, Sinniah UR (2016) Patchouli (Pogostemon cablin Benth.): botany, agrotechnology and biotechnological aspects. Indust Crop Prod 87:161–176CrossRefGoogle Scholar
  120. Swamy MK, Sinniah UR, Akhtar MS (2016) Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review. Evidence-Based Compl Altern Med 22:1019.
  121. Swamy MK, Arumugam G, Kaur R, Ghasemzadeh A, Yusoff MM, Sinniah UR (2017) GC-MS based metabolite profiling, antioxidant and antimicrobial properties of different solvent extracts of Malaysian Plectranthus amboinicus leaves. Evidence-Based Compl Altern Med 2017:1517683. CrossRefGoogle Scholar
  122. Tafur S, Jone WE, Dorman DE, Logsdon EE, Svoboda GH (1975) Alkaloids of Vinca rosea L. (Catharanthus roseus G. Don) XXXVI: isolation and characterization of new dimeric alkaloids. J Pharm Sci 64:1953–1957PubMedCrossRefPubMedCentralGoogle Scholar
  123. Tamer N, Samir B, Mahmoud Y (2014) Anticancer activity of new coumarin substituted hydrazidee hydrazone derivatives. Eur J Med Chem 76:539–548CrossRefGoogle Scholar
  124. Tønnesen HH, Karlsen J, Mostad A, Samuelsson B, Enzell CR, Berg JE (1982) Structural studies of curcuminoids. I. The crystal structure of curcumin. Acta Chemica Scand B 36:475–479CrossRefGoogle Scholar
  125. Tripathi KD (2008) Chemotherapy of neoplastic diseases. In: Tripathi M (ed) Essentials of medicinal pharmacology, 6th edn. Jaypee Brothers Medical Publishers, New Delhi, pp 819–834Google Scholar
  126. Umadevi M, Sampath Kumar KP, Debjit B, Duraivel S (2013) Traditionally used anticancer herbs in India. J Med Plants Stud 1:56–74Google Scholar
  127. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84PubMedCrossRefPubMedCentralGoogle Scholar
  128. Wani MC, Taylor HL, Wall ME (1971) Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. JAM Chem Soc 93:2325–2327CrossRefGoogle Scholar
  129. Wild CP, Gong YY (2009) Mycotoxins and human disease: a largely ignored global health issue. Carcinogenesis 31:71–82PubMedCrossRefPubMedCentralGoogle Scholar
  130. Yuan H, Ma Q, Ye L, Piao G (2016) The traditional medicine and modern medicine from natural products. Molecules 21:559CrossRefGoogle Scholar
  131. Yvon AMC, Wadsworth P, Jordan MA (1999) Taxol suppresses dynamics of individual microtubules in living human tumor cells. Mol Biol Cell 10:947–959PubMedCrossRefPubMedCentralGoogle Scholar
  132. Zhou J, Giannakakou P (2005) Targeting microtubules for cancer chemotherapy. Curr Med Chem-Anti-Cancer Agents 5:65–71CrossRefGoogle Scholar
  133. Zuoqing S, Xiaohong X (2014) Advanced research on anti-tumor effects of amygdalin. J Cancer Res Ther 10:3–7Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • V. D. Ravichandra
    • 1
  • C. Ramesh
    • 1
  • Mallappa Kumara Swamy
    • 2
  • B. Purushotham
    • 3
  • Gudepalya Renukaiah Rudramurthy
    • 3
  1. 1.East West College of PharmacyBengaluruIndia
  2. 2.Department of Crop Science, Faculty of AgricultureUniversiti Putra Malaysia (UPM)SerdangMalaysia
  3. 3.Department of BiotechnologyEast-West College of ScienceBengaluruIndia

Personalised recommendations