Advertisement

Anticancer Potential of Mangrove Plants: Neglected Plant Species of the Marine Ecosystem

  • Rout George Kerry
  • Pratima Pradhan
  • Gitishree Das
  • Sushanto Gouda
  • Mallappa Kumara Swamy
  • Jayanta Kumar Patra
Chapter

Abstract

Cancer has been one of the leading causes of infirmity and fatality around the world at the present time. This group of disease constitutes an immense onus on society in both economically developed and underdeveloped countries in a similar way. The emergence of cancer is because of many common factors such as the growth and aging of the population, as well as an increasing preponderance of predetermined imperiled factors such as smoking, obesity, physical idleness, and variable reproductive arrangements associated with urbanization and economic development most of which leads to stress. Currently, cancer research has been marked by a growing appreciation of the role of herbs in the cancer treatment. This is because, the current conventional cancer treatments involve synthetic chemical drugs which are often accompanied with an increased adverse events with unsatisfactory survival rate. Recently, herbal plants of tropical origin have been investigated for their anticancer activities, leaving behind the effervescence of macromolecules with much of the unexplored ethnobotanical significance of the multifarious mangrove flora and fauna. Mangrove environmental conditions are one of the toughest ecosystems on earth. Moreover, flora and fauna in such conditions are known to contain abundant bioactive compounds, such as hormones, antioxidants, fluorescent pigments, and other nutritional or pharmacologically significant compounds. Therefore, this chapter presents a brief overview of the anticancer activity of mangrove phytocompounds in bioconjugation with certain advanced therapeutic agents such as nanoparticles or nanocarriers.

Keywords

Bioconjugation Ethnobotany Mangrove Nanocarriers Phytocompounds 

References

  1. Abdel-Lateff AG, Konig M, Fisch KM (2002) New antioxidant hydroquinone derivatives from the algicolous marine fungus Acremonium. J Nat Prod 65:1605–1611PubMedCrossRefPubMedCentralGoogle Scholar
  2. ACS (2016) Cancer treatment and survivorship facts and figures 2016–2017. ACS, Atlanta, pp 1–40Google Scholar
  3. Akhtar MS, Swamy MK, Umar A, Sahli A, Abdullah A (2015) Biosynthesis and characterization of silver nanoparticles from methanol leaf extract of Cassia didymobotyra and assessment of their antioxidant and antibacterial activities. J Nanosci Nanotechnol 15:9818–9823PubMedCrossRefPubMedCentralGoogle Scholar
  4. Alikunhi NM, Kandasamy K, Manivannan S (2010) Antidiabetic activity of the mangrove species Ceriops decandra in alloxan-induced diabetic rats. J Diabetes 2:97–103CrossRefGoogle Scholar
  5. Alikunhi NM, Kandasamy K, Manoharan C, Subramanian M (2011) Insulin-like antigen of mangrove leaves and its anti-diabetic activity in alloxan induced diabetic rats. Nat Prod Lett 26:1161–1166CrossRefGoogle Scholar
  6. Anusri P, Siwattra C, Pranom C, Sirichai A, Khanitha P (2014) Inhibitor effects flavonoids from stem of Derris indica of on the formation of advanced glycation end products. J Ethnopharmacol 158:437–441CrossRefGoogle Scholar
  7. Ariole CN, Akinduyite AE (2016) Antibacterial potential of indigenous red mangrove (Rhizophora racemosa) fungal endophytes and bioactive compounds identification. Int J Microbiol Mycol 4:14–24Google Scholar
  8. Arunachalam C, Gayathri P (2010) Studies on bioprospecting of endophytic bacteria from the medicinal plant of Andrographis paniculata for their antimicrobial activity and antibiotic susceptibility pattern. Int J Curr Pharm Res 4:63–68Google Scholar
  9. Bandaranayake WM (2002) Bioactivities, bioactive compounds and chemical constituents of mangrove plants. Wetlands Ecol Manag 10:421–452CrossRefGoogle Scholar
  10. Banker R, Carmeli S (1998) Tenuecyclamides AD, cyclic hexapeptides from the cyanobacterium Nostoc spongiaeforme var. tenue. J Nat Prod 61:1248–1251PubMedCrossRefPubMedCentralGoogle Scholar
  11. Basha SKC, Rao KRSS (2017) An intrinsic assessment of bioactive potentiality of mangroves actinomycetes. J Entomol Zoo Stud 5:20–26Google Scholar
  12. Berenguer B, Sanchez LM, Quılez A, López-Barreiro M, de Haro O, Gálvez J, Martín MJ (2006) Protective and antioxidant effects of Rhizophora mangle L. against NSAID-induced gastric ulcers. J Ethnopharmacol 103:194–200PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bhimb BV, Franco DA, Jose GM, Mathew JM, Joel EL (2011) Characterization of cytotoxic compound from mangrove derived fungi Irpex hydnoides VB4. Asian Pac J Trop Biomed 1:223–226CrossRefGoogle Scholar
  14. Boopathy NS, Kathiresan K (2010) Anticancer drugs from marine flora: an overview. J Oncol 2010:214186.  https://doi.org/10.1155/2010/214186CrossRefGoogle Scholar
  15. Chakraborty K, Raola VK (2016) Two rare antioxidant and anti-inflammatory oleanenes from loop root Asiatic mangrove Rhizophora mucronate. Phytochemistry 135:160–168CrossRefGoogle Scholar
  16. Chakraborty T, Bhuniya D, Chatterjee M, Rahaman M, Singha D, Chatterjee BN, Datta S, Rana A, Samanta K, Srivastawa S, Maitra SK, Chatterjee M (2007) Acanthus ilicifolius plant extract prevents DNA alterations in a transplantable Ehrlich ascites carcinoma-bearing murine model. World J Gastroenterol 13:6538–6548PubMedPubMedCentralGoogle Scholar
  17. Chan EWC, Wong SK, Chan HT, Baba S, Kezuka M (2016) Cerbera are coastal trees with promising anticancer properties but lethal toxicity: a short review. J Chin Pharm Sci 25:161–169CrossRefGoogle Scholar
  18. Chen ZS, Pan JH, Tang WC, Chen QC, Lin YC (2009) Biodiversity and biotechnological potential of mangrove associated fungi. J For Res 20:63–72CrossRefGoogle Scholar
  19. Dai SX, Li WX, Han FF, Guo YC, Zheng JJ, Liu JQ, Wang Q, Guo YD, Li GH, Huang JF (2016) In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database. Sci Rep 6:1–9CrossRefGoogle Scholar
  20. Das SK, Samantaray D, Thatoi H (2014) Ethnomedicinal, antimicrobial and antidiarrhoeal studies on the mangrove plants of the genus Xylocarpus: a mini review. J Bioanal Biomed 2014:S12.  https://doi.org/10.4172/1948-593X.S12-004CrossRefGoogle Scholar
  21. Debbab A, Aly AH, Lin WH, Proksch P (2010) Bioactive compounds from marine bacteria and fungi. Microb Biotechnol 3:544–563PubMedPubMedCentralCrossRefGoogle Scholar
  22. De-Faria FM, Almeida ACA, Luiz F (2012) Mechanisms of action underlying the gastric antiulcer activity of the Rhizophora mangle L. J Ethnopharmacol 139:234–243PubMedCrossRefPubMedCentralGoogle Scholar
  23. Dissanayake N, Chandrasekara U (2014) Effects of mangrove zonation and the physicochemical parameters of soil on the distribution of macrobenthic fauna in kadolkele mangrove forest, a tropical mangrove forest in Sri Lanka. Adv Ecol Res 2014:1–13CrossRefGoogle Scholar
  24. Dong BX, Wan WY, Ying H, Zi-X D, Kui H (2014) Natural products from mangrove Actinomycetes, marine drugs. Mar Drugs 12:2590–2613CrossRefGoogle Scholar
  25. Dyshlovoy SA, Madanchi R, Hauschild J, Otte K, Alsdorf WH, Schumacher U, Kalinin VI, Silchenko AS, Avilov SA, Honecker F, Stonik VA, Bokemeyer C, von Amsber G (2017) The marine triterpene glycoside frondoside A induces p53-independent apoptosis and inhibits autophagy in urothelial carcinoma cells. BMC Cancer 17:93.  https://doi.org/10.1186/s12885-017-3085-zCrossRefPubMedPubMedCentralGoogle Scholar
  26. Edreva A, Velikova V, Tsonev T, Dagnon S, Gurel A, Atkas L, Gesheva E (2008) Stress-protective role of secondary metabolites: diversity of functions and mechanisms. Gen Appl Plant Physiol 34:67–78Google Scholar
  27. Eldeen IMS, Effendy MAW (2013) Antimicrobial agents from mangrove plants and their ndophytes. In: Mendez-Vilas A (ed) Microbial pathogens and strategies for combating them: science, technology and education. Formatex Research Centre, Spain, pp 872–882Google Scholar
  28. Fardin KM, Maria C, Marx Y (2015) Antifungal potential of Avicennia schaueriana Stapf & Leech. (Acanthaceae) against Cladosporium and Colletotrichum species. Lett Appl Microbiol 61:50–57PubMedCrossRefPubMedCentralGoogle Scholar
  29. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–E386CrossRefPubMedPubMedCentralGoogle Scholar
  30. Fu P, Yang C, Wang Y et al (2012) Streptocarbazoles A and B, two novel indolocarbazoles from the marine-derived actinomycete strain Streptomyces sp. FMA. Org Lett 14:2422–2425PubMedCrossRefPubMedCentralGoogle Scholar
  31. Gerwick WH, Fenical W (1981) Ichthyotoxic and cytotoxic metabolites of the tropical brown alga Stypopodium zonale (Lamouroux) papenfuss. J Org Chem 46:22–27CrossRefGoogle Scholar
  32. Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, Masek J, Duke N (2011) Status and distribution of mangrove forests of the world using earth observation satellite data. Glob Ecol Biogeogr 20:154–159CrossRefGoogle Scholar
  33. Gopal V, Yoganandam GP, Sri D, Ratnam CSL (2016) Ethno medical survey on coringa mangrove forest situated at east Godavari district of Andhra Pradesh India. J Sci 6:430–434Google Scholar
  34. Han LJ, Huang X, Dahse HM, Moellmann U, Fu H, Grabley S, Sattler I, Lin W (2007) Unusual naphtoquinone derivatives from the twigs of Avicennia marina. J Nat Prod 70:923–927PubMedCrossRefPubMedCentralGoogle Scholar
  35. Hasan S, Ansari MI, Ahmad A, Mishra M (2015) Major bioactive metabolites from marine fungi: a review. Bioinformation 11:176–181PubMedPubMedCentralCrossRefGoogle Scholar
  36. Huang Z, Cai X, Shao C, She Z, Xia X, Chen Y, Yang J, Zhou S, Lin Y (2008) Chemistry and weak antimicrobial activities of phomopsins produced by mangrove endophytic fungus Phomopsis sp. ZSU-H76. Phytochemistry 69:1604–1608PubMedCrossRefPubMedCentralGoogle Scholar
  37. Huang C, Lu CK, Tu MC, Chang JH, Chen YJ, Tu YH, Huang HC (2016) Polyphenol-rich Avicennia marina leaf extracts induce apoptosis in human breast and liver cancer cells and in a nude mouse xenograft model. Oncotarget 7:35874–35893PubMedPubMedCentralGoogle Scholar
  38. Jha RK, Zi-Rong X (2004) Biomedical compounds from marine organisms. Mar Drugs 2:123–146PubMedCentralCrossRefGoogle Scholar
  39. Jia L, Yu J, Yang J, Song H, Liu X, Wang Y, Xu Y, Zhang C, Zhong Y, Li Q (2009) HCV antibody response and genotype distribution in different areas and races of China. Int J Biol Sci 5:421–427PubMedPubMedCentralCrossRefGoogle Scholar
  40. Joel EL, Bhimba BV (2012) Fungi from mangrove plants: their antimicrobial and anticancer potentials. Int J Pharm Pharm Sci 4:139–142Google Scholar
  41. Kathiresan K (2010) Importance of mangroves of India. J Coastal Environ 1:11–26Google Scholar
  42. Kathiresan K, Bingham BL (2001) Biology of mangroves and mangrove ecosystems. Adv Mar Biol 40:81–251CrossRefGoogle Scholar
  43. Kathiresan K, Manivannan S (2008) Bioprospecting of marine organisms for novel bioactive compounds. Sci Trans Environ Technol 1:107–120Google Scholar
  44. Khajure PV, Rathod JL (2011) Potential anticancer activity of Acanthus ilicifolius extracted from the mangroves forest of Karwar, west cost of India. World J Sci Technol 1:1–6CrossRefGoogle Scholar
  45. Kim KJ, Kim MA, Jung JH (2008) Antitumor and antioxidant activity of protocatechualdehyde produced from Streptomyces lincolnensis M-20. Arch Pharm Res 31:1572–1577PubMedCrossRefPubMedCentralGoogle Scholar
  46. Lam DM, Viet ND, Mo TT (2014) Screening for anticancer producing endophytic actinomycetes in three mangrove plant species in Nam Dinh province. J Sci Hnue 59:114–122Google Scholar
  47. Li H, Huang H, Shao C, Huang H, Jiang J, Zhu J, Liu Y, Liu L, Lu Y, Li M, Lin Y, She Z (2011) Cytotoxic norsesquiterpene peroxides from the endophytic fungus Talaromyces flavus isolated from the mangrove plant Sonneratia apetala. J Nat Prod 74:1230–1235PubMedCrossRefPubMedCentralGoogle Scholar
  48. Li W, Jiang Z, Shen L, Pedpradab P, Bruhn T, Wu J, Bringmann G (2015) Antiviral limonoids including khayanolides from the Trang mangrove plant Xylocarpus moluccensis. J Nat Prod 78:1570–1578PubMedCrossRefPubMedCentralGoogle Scholar
  49. Liu S, Dai H, Makhloufi G, Heering C, Janiak C, Hartmann R, Mandi A, Kurtán T, Müller WEG, Kassack MU, Lin W, Liu Z, Proksch P (2016) Cytotoxic 14-membered macrolides from a mangrove-derived endophytic fungus, Pestalotiopsis microspora. J Nat Prod 79:2332–2340PubMedCrossRefPubMedCentralGoogle Scholar
  50. Luesch H, Moore RE, Paul VJ, Mooberry SL, Corbett TH (2001) Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin. J Nat Prod 64:907–910PubMedCrossRefPubMedCentralGoogle Scholar
  51. Mahmud I, Islam MK, Saha S, Barman AK, Rahman MM, Anisuzzman M, Rahman T, Al-Nahain A, Jahan R, Rahmatullah M (2014) Pharmacological and ethnomedicinal overview of Heritiera fomes: future prospects. Int Sch Res Not 2014:938543.  https://doi.org/10.1155/2014/938543CrossRefPubMedPubMedCentralGoogle Scholar
  52. Mangamuri U, Muvva V, Poda S, Krishna Naragani K, Munaganti RK, Chitturi B, Yenamandra V (2016) Bioactive metabolites produced by Streptomyces cheonanensis VUK-A from Coringa mangrove sediments: isolation, structure elucidation and bioactivity. 3 Biotech 6:63.  https://doi.org/10.1007/s13205-016-0398-6CrossRefPubMedPubMedCentralGoogle Scholar
  53. Mani KT, Kumar S, Puta Z (2012) The gastroprotective role of Acanthus ilicifolius-a study to unravel the underlying mechanism of antiulcer activity. Sci Pharm 80:701–717CrossRefGoogle Scholar
  54. Manivasagan P, Venkatesan J, Sivakumar K, Kim SK (2014) Pharmaceutically active secondary metabolites of marine actinobacteria. Microbiol Res 169:262–278PubMedCrossRefPubMedCentralGoogle Scholar
  55. Medina RA, Goeger DE, Hills P, Mooberry SL, Huang N, Romero LI, Ortega-Barría E, Gerwick WH, McPhail KL (2008) Coibamide A, a potent antiproliferative cyclic depsipeptide from the panamanian marine cyanobacterium Leptolyngbya sp. J Am Chem Soc 130:6324–6325PubMedPubMedCentralCrossRefGoogle Scholar
  56. Mendhulkar VD, Yeragi LA, Kumar H (2017) Bioassay of vector larvaes with latex of blind eye mangrove plant Excoecaria agallocha Linn. Int J Mosq Res 4:33–36Google Scholar
  57. Mohanty SK, Swamy MK, Sinniah UR, Anuradha M (2017c) Leptadenia reticulata (Retz.) Wight (Jivanti): botanical, agronomical, phytochemical, pharmacological, and biotechnological aspects. Molecules 22:E1019.  https://doi.org/10.3390/molecules22061019CrossRefPubMedPubMedCentralGoogle Scholar
  58. Moore RE (1996) Cyclic peptides and depsipeptides from cyanobacteria: a review. J Ind Microbiol 16:134–143PubMedCrossRefPubMedCentralGoogle Scholar
  59. Neumann J, Yang Y, Kohler R, Giaisi M, Witzens-Harig M, Liu D, Krammer PH, Lin W, Li-Weber M (2015) Mangrove dolabrane-type of diterpenes tagalsins suppresses tumor growth via ROS-mediated apoptosis and ATM/ATR–Chk1/Chk2-regulated cell cycle arrest. Int J Cancer 137:2739–2748PubMedPubMedCentralCrossRefGoogle Scholar
  60. Nguyen TH, Pham HV, Pham NK, Quach ND, Pudhom K, Hansen PE, Nguyen KP (2015) Chemical constituents from Sonneratia ovata Backer and their in vitro cytotoxicity and acetylcholinesterase inhibitory activities. Bioorg Med Chem Lett 25:2366–2371PubMedCrossRefPubMedCentralGoogle Scholar
  61. Patil RC, Manohar SM, Upadhye MV, Katchi VI, Rao AJ, Mule A, Moghe AS (2011) Anti reverse transcriptase and anticancer activity of stem ethanol extracts of Excoecaria agallocha (Euphorbiaceae). Ceylon J Bio Sci 40:147–155Google Scholar
  62. Patra JK, Dhal NK, Thatoi HN (2011) In vitro bioactivity and phytochemical screening of Suaeda maritima (Dumort): a mangrove associate from Bhitarkanika, India. Asian Pac J Trop Med 4:727–734PubMedCrossRefPubMedCentralGoogle Scholar
  63. Patra JK, Das SK, Thatoi H (2014) Phytochemical profiling and bioactivity of a mangrove plant, Sonneratia apetala from Odisha coast of India. Chin J Integr Med 21:274–285PubMedCrossRefPubMedCentralGoogle Scholar
  64. Plummer M, de Martel C, Vignat J, Ferlay J, Bray F, Franceschi S (2016) Global burden of cancers attributable to infections in 2012: a synthetic analysis. Lancet Glob Health 4:e609–e616PubMedCrossRefPubMedCentralGoogle Scholar
  65. Prabhu VV, Guruvayoorappan C (2012) Anti-inflammatory and antitumor activity of the marine mangrove Rhizophora apiculate. J Immunotoxicol 9:341–352PubMedCrossRefPubMedCentralGoogle Scholar
  66. Prasannan P, Lekshmi M, Jayadev A (2016) Isolation and characterization of actinomycetes from mangrove samples. Int J Curr Sci Res 2:875–884Google Scholar
  67. Reddy ARK, Grace JR (2016a) Anticancer activity of methanolic extracts of selected mangrove plants. Int J Pharma Sci Res 7:3852–3856Google Scholar
  68. Reddy ARK, Grace JR (2016b) Evaluation of invitro anticancer activity of selected mangrove plant extracts against MCF7 cell line. Int J Pharma Sci Res 7:12315–12318Google Scholar
  69. Reza H, Haq WM, Das AK, Rahman S, Jahan R, Rahmatullah M (2011) Anti-hyperglycemic and antinociceptive activity of methanol lead and stem extract of Nypa fruticans Wrumb. Pak J Pharm Sci 24:485–488PubMedPubMedCentralGoogle Scholar
  70. Rudramurthy GR, Swamy MK, Sinniah UR, Ghasemzadeh A (2016) Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules 21:836CrossRefGoogle Scholar
  71. Saad S, Taher M, Susanti D, Qaralleh H, Binti NA, Rahim A (2011) Antimicrobial activity of mangrove plant (Lumnitzera littorea). Asian Pac J Trop Med 4:523–525PubMedCrossRefPubMedCentralGoogle Scholar
  72. Sain M, Sharma V (2013) Catharanthus roseus (an anti-cancerous drug yielding plant)-a review of potential therapeutic properties. Int J Pure App Biosci 1:139–142Google Scholar
  73. Samarakoon SR, Shanmuganathan C, Ediriweera MK, Tennekoon KH, Piyathilaka P, Thabrew I, de Silva ED (2016a) In vitro cytotoxic and antioxidant activity of leaf extracts of mangrove plant, Phoenix paludosa Roxb. Trop J Pharm Res 15:127–132CrossRefGoogle Scholar
  74. Samarakoon SR, Shanmuganathan C, Ediriweera MK, Piyathilaka P, Tennekoon KH, Thabrew I (2016b) Screening of fifteen mangrove plants found in Sri Lanka for in-vitro cytotoxic properties on breast (MCF-7) and hepatocellular carcinoma (HepG2) cells. Eur J Med Plants 14:1–11CrossRefGoogle Scholar
  75. Saranraj P, Sujitha D (2015) Mangrove medicinal plant: a review. Am-Eur J Toxicol Sci 7:146–156Google Scholar
  76. Sarker S, Kuri KC, Chowdhury MSM, Rahman MT (2010) Mangrove: a livelihood option for coastal community of Bangladesh. Bang Res Publ J 3:1187–1192Google Scholar
  77. Satapathy S, Satapathy S, Jena BK (2013) Antitumor and growth effector screen of leaf extracts of selected mangroves of Bhitarkanika, Odisha. Int J Tech Enhanc Emerg Eng Res 1:25–30Google Scholar
  78. Ser HL, Palanisamy UD, Yin WF, Abd Malek SN, Chan KG, Goh BH, Lee LH (2015) Presence ofantioxidative agent, Pyrrolo [1,2-a]pyrazine-1, 4-dione, hexahydro in newly isolated Streptomyces mangrovisoli sp. Front Microbiol 6:854.  https://doi.org/10.3389/fmicb.2015.00854CrossRefPubMedPubMedCentralGoogle Scholar
  79. Shareef M, Ashraf MA, Sarfraz M (2016) Natural cures for breast cancer treatment. Saudi Pharm J 24:233–240PubMedPubMedCentralCrossRefGoogle Scholar
  80. Sharma D, Pramanik A, Agrawal PK (2016) Evaluation of bioactive secondary metabolites from endophytic fungus Pestalotiopsis neglecta BAB-5510 isolated from leaves of Cupressus torulosa D. Don. 3 Biotech 6:210PubMedPubMedCentralCrossRefGoogle Scholar
  81. Simlai A, Roy A (2013) Biological activities and chemical constituents of some mangrove species from Sundarban estuary. An overview. Pharmacognosy 7:170–178CrossRefGoogle Scholar
  82. Singh D, Aeri V (2013) Phytochemical and pharmacological potential of Acanthus ilicifolius. J Pharm Bioallied Sci 5:17–20PubMedPubMedCentralCrossRefGoogle Scholar
  83. Singh AK, Ansari A, Kumar D, Sarkar UK (2012) Status, biodiversity and distribution of mangroves in India: an overview. In: Proceedings of national conference on marine biodiversity, Uttar Pradesh State Biodiversity Board, Lucknow, pp 59–67Google Scholar
  84. Smitha RB, Madhusoodanan PV, Prakashkumar R (2014) Anticancer activity of Acanthus illicifolius Linn. from Chettuva mangroves, Kerala, India. Int J Bioassays 3:3452–3455Google Scholar
  85. Sofia S, Teresa MVM (2016) Investigation of bioactive compounds and antioxidant activity of Excoecaria agallocha, L. Int J Pharm Sci Res 7:5062–5066Google Scholar
  86. Sosovele ME, Bergmann B, Lyimo TJ, Hosea KM, Mueller BI (2012) Antimalarial activity of marine actinomycetes isolated from Dar Es Salaam mangrove sediments. Int J Res Bio Sci 2:177–181Google Scholar
  87. Spalding M, Kainuma M, Collins L (2010) World atlas of mangroves. Earthscan Publisher, London, p 336CrossRefGoogle Scholar
  88. Stevenson CS, Capper EA, Roshak AK, Marquez B, Grace K, Gerwick WH, Jacobs RS, Marshall LA (2002) Scytonemin-a marine natural product inhibitor of kinases key in hyperproliferative inflammatory diseases. Inflamm Res 51:112–114PubMedCrossRefPubMedCentralGoogle Scholar
  89. Sudheer NS, Rosamma P, Singh ISB (2012) Anti-white spot syndrome virus activity of Ceriops tagal aqueous extract in giant tiger shrimp Penaeus monodon. Arch Virol 157:1665–1675PubMedCrossRefPubMedCentralGoogle Scholar
  90. Sukumaran S, Kiruba S, Mahesh M, Nisha SR, Miller PZ, Ben CP, Jeeva S (2011) Phytochemical constituents and antibacterial efficacy of the flowers of Peltophorum pterocarpum (DC.) Baker ex Heyne. Asian Pac J Trop Med 4:735–738PubMedCrossRefPubMedCentralGoogle Scholar
  91. Swamy MK, Sinniah UR, Akhtar MS (2015a) In vitro pharmacological activities and GC-MS analysis of different solvent extracts of Lantana camara leaves collected from tropical region of Malaysia. Evidence-Based Compl Altern Med 2015:506413.  https://doi.org/10.1155/2015/506413CrossRefGoogle Scholar
  92. Swamy MK, Akhtar MS, Mohanty SK, Sinniah UR (2015b) Synthesis and characterization of silver nanoparticles using fruit extract of Momordica cymbalaria and assessment of their in vitro antimicrobial, antioxidant and cytotoxicity activities. Spectrochim Acta A 151:939–944CrossRefGoogle Scholar
  93. Swamy MK, Sudipta KM, Jayanta K, Balasubramanya S (2015c) The green synthesis, characterization, and evaluation of the biological activities of silver nanoparticles synthesized from Leptadenia reticulata leaf extract. Appl Nanosci 5:73–81CrossRefGoogle Scholar
  94. Tan LTH, Ser HL, Yin WF, Chan KG, Lee LH, Goh BH (2015) Investigation of antioxidative and anticancer potentials of Streptomyces sp. MUM256 isolated from Malaysia mangrove soil. Front Microbiol 6:1316.  https://doi.org/10.3389/fmicb.2015.01316CrossRefPubMedPubMedCentralGoogle Scholar
  95. Tao LY, Zhang JY, Liang YJ, Chen LM, Zheng LS, Wang F, Mi YJ, She ZG, To KKW, Lin YC, Fu LW (2010) Anticancer effect and structure activity analysis of marine products isolated from metabolites of mangrove fungi in South China sea. Mar Drugs 8:1094–1105PubMedPubMedCentralCrossRefGoogle Scholar
  96. Thajuddin N (2005) Cyanobacterial biodiversity and potential applications in biotechnology. Curr Sci 89:47–57Google Scholar
  97. Thatoi H, Behera BC, Mishra RR (2013) Ecological role and biotechnological potential of mangrove fungi: a review. Mycology 4:54–71Google Scholar
  98. Thatoi H, Samantaray D, Das SK (2016a) The genus Avicennia, a pioneer group of dominant mangrove plant species with potential medicinal values: a review. Front Life Sci 9:267–291CrossRefGoogle Scholar
  99. Thatoi P, Kerry RG, Gouda S, Das G, Pramanik K, Thatoi H, Patra JK (2016b) Photo-mediated green synthesis of silver and zinc oxide nanoparticles using aqueous extracts of two mangrove plant species, Heritiera fomes and Sonneratia apetala and investigation of their biomedical applications. J Photochem Photobiol 163:311–318CrossRefGoogle Scholar
  100. Tomlinson PB (1986) The botany of mangroves. Cambridge University Press, Cambridge, p 413Google Scholar
  101. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108PubMedCrossRefPubMedCentralGoogle Scholar
  102. Uddin SJ, Jason TLH, Beattie KD, Grice ID, Tiralongo E (2011) (2S,3S)-sulfated Pterosin C, a cytotoxic sesquiterpene from the Bangladeshi mangrove fern Acrostichum aureum. J Nat Prod 74:1–4CrossRefGoogle Scholar
  103. Uddin SJ, Grice D, Tiralongo E (2012) Evaluation of cytotoxic activity of patriscabratine, tetracosane and various flavonoids isolated from the Bangladeshi medicinal plant Acrostichum aureum. Pharm Biol 50:1276–1280PubMedCrossRefPubMedCentralGoogle Scholar
  104. Uddin SJ, Bettadapura J, Guillon P, Darren Grice I, Mahalingam S (2013) In-vitro antiviral activity of a novel phthalic acid ester derivative isolated from the Bangladeshi mangrove fern Acrostichum aureum. J Antivir Antiretrovir 5:39–144Google Scholar
  105. Urones JG, Araujo MEM, Palma FB, Basabe P, Marcos IS, Moro RF, Lithgow AM, Pineda J (1992) Meroterpenes from Cystoseira usneoides II. Phytochemistry 31:2105–2109CrossRefGoogle Scholar
  106. Valentin B, Agnel D, Franco J, Merin M, Geena MJ, Elsa LJ, Thangaraj M (2012) Anticancer and antimicrobial activity of mangrove derived fungi Hypocrea lixii VB1. Chin J Nat Med 10:7780Google Scholar
  107. Valli S, Sugasini SS, Aysha OS, Nirmala P, Kumar PV, Reena A (2012) Antimicrobial potential of Actinomycetesspecies isolated from marine environment. Asian Pac J Trop Biomed 2:469–473PubMedPubMedCentralCrossRefGoogle Scholar
  108. Vannucci M (2000) What is so special about mangroves. Braz J Biol 61:599–603CrossRefGoogle Scholar
  109. Vijayakumar S, Menakha M (2015) Pharmaceutical applications of cyanobacteria-a review. J Acute Med 5:15–23CrossRefGoogle Scholar
  110. Wang J, Lu Z, Liu P, Wang Y, Li J, Hong K, Zhu W (2012) Cytotoxic polyphenols from the fungus Penicillium expansum 091006 endogenous with the mangrove plant Excoecaria agallocha. Planta Med 78:1861–1866PubMedCrossRefPubMedCentralGoogle Scholar
  111. Ward RD, Friess DA, Day RH, MacKenzie RA (2016) Impacts of climate change on mangrove ecosystems: a region by region overview. Ecosyst Health Sust 2:e01211CrossRefGoogle Scholar
  112. Webber M, Calumpong H, Ferreira B, Granek E, Green S, Ruwa R, Soares M (2016) Mangroves Chapter 48. In United Nations, Treaty Series 996:1–18Google Scholar
  113. Wei PH, Wu SZ, Mu XM (2015) Effect of alcohol extract of Acantus ilicifoius L. on anti-duck hepatitis B virus and protection of liver. J Ethnopharmacol 160:1–5PubMedCrossRefPubMedCentralGoogle Scholar
  114. Wei-Yan QI, Na OU, Xiao-Dong WU, Han-Mei XU (2016) New arbutin derivatives from the leaves of Heliciopsis lobata with cytotoxicity. Chin J Nat Med 10:1–6Google Scholar
  115. Wenqiang G, Dan L, Jixing P, Tianjiao Z, Qianqun G, Dehai L (2015) Penicitols A−C and penixanacid A from the mangrove-derived Penicillium chrysogenum HDN11-24. J Nat Prod 78:306–310CrossRefGoogle Scholar
  116. WHO (2017) Cancer fact sheet 2017, France (http://www.who.int/mediacentre/factsheets/fs297/en/; Accessed on 19th May 2017)
  117. Wibowo M, Prachyawarakorn V, Aree T, Mahidol C, Ruchirawat S, Kittakoop P (2016) Cytotoxic sesquiterpenes from the endophytic fungus Pseudolagarobasidium acaciicola. Phytochemistry 122:126–138PubMedCrossRefPubMedCentralGoogle Scholar
  118. Xie G, Zhu X, Li Q, Gu M, He Z, Wu J, Li J, Lin Y, Li M, She Z, Yuan J (2010) SZ-685C, a marineanthraquinone, is a potent inducer of apoptosis with anticancer activity by suppression of the Akt/FOXO pathway. Brit J Pharmacol 159:689–697CrossRefGoogle Scholar
  119. Xu DB, Ye WW, Han Y, Deng ZX, Hong K (2014) Natural products from mangrove Actinomycetes. Mar Drugs 12:2590–2613PubMedPubMedCentralCrossRefGoogle Scholar
  120. Yang Y, Zhang Y, Liu D, Li-Weber M, Shao B, Lin W (2015) Dolabrane-type diterpenes from the mangrove plant Ceriops tagal with antitumor activities. Fitoterapia 103:277–282PubMedCrossRefPubMedCentralGoogle Scholar
  121. Yin S, Can CQ, Wang XN, Lin LP, Ding J, Yue J (2006) Xylogranatins A-D: novel tetra-nortriterpenoids with an unusual 9, 10-secoscaffold from marine mangrove Xylocarpus grantum. Org Lett 8:4935–4938PubMedCrossRefPubMedCentralGoogle Scholar
  122. Yin S, Wang XN, Fan LLP, Ding J, Yue JM (2007) Limonoids from the seeds of the marine mangrove Xylocarpus granatum. J Nat Prod 70:682–685PubMedCrossRefPubMedCentralGoogle Scholar
  123. Yin SY, Wei WC, Jian FY, Yang NS (2013) Therapeutic applications of herbal medicines for cancer patients. Evidence-Based Compl Altern Med 2013:302426.  https://doi.org/10.1155/2013/302426CrossRefGoogle Scholar
  124. Yuan G, Hong K, Lin H (2013) Newazalomycin F analogs from mangrove Streptomyces sp. 211726 with activity against microbes and cancer cells. Mar Drugs 11:817–829PubMedPubMedCentralCrossRefGoogle Scholar
  125. Yue Q, Gao G, Zou G, Yu H, Zheng X (2017) Natural products as adjunctive treatment for pancreatic cancer: recent trends and advancements. Biomed Res Int 2017:8412508.  https://doi.org/10.1155/2017/8412508CrossRefPubMedPubMedCentralGoogle Scholar
  126. Zang LY, Wei W, Guo Y, Wang T, Jiao RH, Ng SK, Tan RX, Ge HM (2012) Sesquiterpenoids from the mangrove-derived endophytic fungus Diaporthe sp. J Nat Prod 75:1744–1749CrossRefGoogle Scholar
  127. Zhou ZF, Taglialatela-Scafati O, Liu HL, Gu YC, Kong LY, Guo YW (2014) Apotirucallane protolimonoids from the Chinese mangrove, Xylocarpus granatum Koenig. J Fitoterapia 97:192–197CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Rout George Kerry
    • 1
  • Pratima Pradhan
    • 2
  • Gitishree Das
    • 3
  • Sushanto Gouda
    • 4
  • Mallappa Kumara Swamy
    • 5
  • Jayanta Kumar Patra
    • 3
  1. 1.P. G. Department of BiotechnologyUtkal UniversityBhubaneswarIndia
  2. 2.Department of BiotechnologyAMIT CollegeKhurdaIndia
  3. 3.Research Institute of Biotechnology & Medical Converged ScienceDongguk UniversitySeoulRepublic of Korea
  4. 4.Amity Institute of Wildlife ScienceAmity UniversityNoidaIndia
  5. 5.Department of Crop Science, Faculty of AgricultureUniversiti Putra Malaysia (UPM)SerdangMalaysia

Personalised recommendations