Advertisement

Effectiveness of Region Growing Based Segmentation Technique for Various Medical Images - A Study

  • Manju DabassEmail author
  • Sharda VashisthEmail author
  • Rekha Vig
Conference paper
  • 1.1k Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 799)

Abstract

Due to rapid and continuous progress along with higher fidelity rate, medical imaging is becoming one of the most crucial fields in scientific imaging. Both microscopic and macroscopic modalities are probed and their resulting images are analyzed and interpreted in medical imaging for the early detection, diagnosis, and treatment of various ailments like a tumor, cancer, gallstones, etc. Although the field of medical image processing is growing significantly and persistently, there still exist a number of challenges in this field. Among these challenges, the frequently occurring and critically significant one is image segmentation. The theme work presented in this paper includes challenges involved and comparative analysis of segmentation using region growing techniques frequently utilized in various biomedical images like retinal vessel image, mammograms, magnetic resonance images, PET-CT image, coronary artery image, microscopy image, ultrasound image, etc. It discusses the effectiveness of the region growing technique applied on various medical images.

Keywords

Biomedical image processing Image segmentation Threshold Region growing 

References

  1. 1.
    Jiang, X., Mojon, D.: Adaptive local thresholding by verification based multi-threshold probing with application to vessel detection in retinal images. IEEE Trans. Pattern Anal. Mach. Intell. 25(1), 131–137 (2003)CrossRefGoogle Scholar
  2. 2.
    Mendonca, A.M., Campilho, A.: Segmentation of retinal blood vessels by combing the detection of centerlines and morphological reconstruction. IEEE Trans. Med. Imaging 25(9), 1200–1213 (2006)CrossRefGoogle Scholar
  3. 3.
    Martinez-Perez, M.E., Hughes, A.D., Thom, S.A., Bharath, A.A., Parker, K.H.: Segmentation of blood vessels from red-free and fluorescein retinal images. Med. Image Anal. 11(1), 47–61 (2007)CrossRefGoogle Scholar
  4. 4.
    You, X., Peng, Q., Yuan, Y., Cheung, Y., Lei, J.: A segmentation of retinal blood vessels using the radial projection and semi-supervised approach. Pattern Recogn. 44(10), 2314–2324 (2011)CrossRefGoogle Scholar
  5. 5.
    Marin, D., Aquino, A., Gegundez-Arias, M.E., Bravo, J.M.: A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans. Med. Imaging 30(1), 146–158 (2011)CrossRefGoogle Scholar
  6. 6.
    Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., Goldbaum, M.: Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans. Med. Imaging 8(3), 263–269 (1989)CrossRefGoogle Scholar
  7. 7.
    Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by the piecewise threshold of a matched filter response. IEEE Trans. Med. Imaging 19(3), 203–210 (2000)CrossRefGoogle Scholar
  8. 8.
    Zhang, B., Zhang, L., Zhang, L., Karray, F.: Retinal vessel extraction by matched filter with a first-order derivative of Gaussian. Comput. Biol. Med. 40(4), 438–445 (2010)CrossRefGoogle Scholar
  9. 9.
    Stankiewicz, A., Marciniak, T., Dabrowski, A., Stopa, M., Rakowicz, P., Marciniak, E.: Improving segmentation of 3D retina layers based on graph theory approach for low-quality OCT images. Metrol. Meas. Syst. 23(2), 269–280 (2016)CrossRefGoogle Scholar
  10. 10.
    Zhao, Y.Q., Wang, X.H., Wang, X.F., Shih, F.Y.: Retinal vessels segmentation based on level set and region growing. Pattern Recogn. 47, 2437–2446 (2014)CrossRefGoogle Scholar
  11. 11.
    Cao, Y., Hao, X., Zhu, X., Xia, S.: An adaptive region growing algorithm for breast masses in mammograms. Front. Electr. Electron. Eng. China 5(2), 128–136 (2014)CrossRefGoogle Scholar
  12. 12.
    Freer, T.W., Ullissey, M.J.: Screening mammography with the computer-aided detection-perspective study of 12,860 patients in a community breast center. Radiology 220(3), 781–786 (2001)CrossRefGoogle Scholar
  13. 13.
    Tahmasbi, A., Saki, F., Shokouhi, S.B.: Classification of benign and malignant masses based on Zernike moments. Comput. Biol. Med. 41(8), 726–735 (2011)CrossRefGoogle Scholar
  14. 14.
    Wei, C.H., Chen, S.Y., Liu, X.: Mammogram retrieval on similar mass lesions. Comput. Methods Programs Biomed. 106(3), 234–248 (2012)CrossRefGoogle Scholar
  15. 15.
    Rouhi, R., Jafari, M., Kasaei, S., Keshavarzian, P.: Benign and malignant breast tumors classification based on region growing and CNN segmentation. Expert Syst. Appl. 42(3), 990–1002 (2015)CrossRefGoogle Scholar
  16. 16.
    McNitt-Gray, M.: Lung nodules and beyond-approaches, challenges and opportunities in thoracic CAD. In: Proceedings of 18th International Congress and Exhibition on Computer Assisted Radiology and Surgery, pp. 896–901 (2004)Google Scholar
  17. 17.
    Denison, D.M., Morgan, M.D., Milla, A.B.: Estimation of regional gas and tissue volumes of the lung in supine man using computed tomography. Thorax 41(8), 620–628 (1986)CrossRefGoogle Scholar
  18. 18.
    Kalender, W.A., Fichte, H., Bautz, W., Skalej, M.: Semiautomatic evaluation procedures for quantitative CT of the lung. J. Comput. Assist. Tomogr. 15(2), 248–255 (1991)CrossRefGoogle Scholar
  19. 19.
    Sun, X., Zhang, H., Duan, H.: 3D computerized segmentation of lung volume with computed tomography. Acad. Radiol. 13(6), 670–677 (2006)CrossRefGoogle Scholar
  20. 20.
    Pu, J., Roos, J., Chin, A.Y., Napel, S., Rubin, G.D., Paik, D.S.: Adaptive border marching algorithm: automatic lung segmentation on chest CT images. Comput. Med. Imaging Graph. 32(6), 452–462 (2008)CrossRefGoogle Scholar
  21. 21.
    Van Rikxoort, E.M., de Hoop, B., Viergever, M.A., Prokop, M., Ginneken, B.V.: Automatic lung segmentation from thoracic computed tomography scans using a hybrid approach with error detection. Med. Phys. 36(7), 2934–2947 (2009)CrossRefGoogle Scholar
  22. 22.
    Korfiatis, P., Skiadopoulos, S., Sakellaropoulos, P., Kalogeropoulou, C., Costaridou, L.: Combining 2D wavelet edge highlighting and 3D thresholding for lung segmentation in thin-slice CT. Br. J. Radiol. 80(960), 996–1004 (2014)CrossRefGoogle Scholar
  23. 23.
    Zhao, J., Ji, G., Han, X., Qiang, Y., Liao, X.: An automated pulmonary parenchyma segmentation method based on an improved region growing algorithm in PET-CT imaging. Front. Comput. Sci. 10(1), 189–200 (2016)CrossRefGoogle Scholar
  24. 24.
    Li, Z., Zhang, Y., Liu, G., Shao, H., Li, W., Tang, X.: A robust coronary artery identification and centerline extraction method in angiographies. Biomed. Sig. Process. Control 16, 1–8 (2015)CrossRefGoogle Scholar
  25. 25.
    Sato, Y., Araki, T., Hanayama, M., Naito, H., Tamura, S.: A viewpoint determination system for stenosis diagnosis and quantification in coronary angiographic image acquisition. IEEE Trans. Med. Imaging 17(1), 37–121 (1998)CrossRefGoogle Scholar
  26. 26.
    Liao, R., Luc, D., Sun, Y., Kirchberg, K.: 3-D reconstruction of the coronary artery tree from multiple views of a rotational X-ray angiography. Int. J. Cardiovasc. Imaging 26, 49–733 (2010)CrossRefGoogle Scholar
  27. 27.
    Zheng, S., Zhou, Y.: Assessing cardiac dynamics based on X-ray coronary angiogram. J. Multimedia 8(1), 48–55 (2013)MathSciNetGoogle Scholar
  28. 28.
    Suri, J., Liu, K., Reden, L., Laxminarayan, S.: A review on MR vascular image processing: skeleton versus non-skeleton approaches: part II. IEEE Trans. Inf. Technol. Biomed. 6(4), 50–338 (2002)Google Scholar
  29. 29.
    O’Brien, J.F., Ezquerra, N.F.: Automated segmentation of coronary vessels in angiographic image sequences utilizing temporal, spatial, and structural constraints. In: Visualization in Biomedical Computing 1994, pp. 25–37. International Society for Optics and Photonics (1994)Google Scholar
  30. 30.
    Li, Y., Zhou, S., Wu, J., Ma, X., Peng, K.: A novel method of vessel segmentation for X-ray coronary angiography images. In: 2012 Fourth International Conference on Computational and Information Sciences (ICCIS), pp. 468–471. IEEE (2012)Google Scholar
  31. 31.
    Lesage, D., Angelini, E.D., Bloch, I., Funka-Lea, G.: A review of 3D vessel lumen segmentation techniques-models, features and extraction schemes. Med. Image Anal. 13(6), 819–845 (2009)CrossRefGoogle Scholar
  32. 32.
    Lara, D.S., Faria, A.W., Araújo, A., Menotti, D.: A semi-automatic method for segmentation of the coronary artery tree from angiography. In: XXII Brazilian Symposium on Computer Graphics and Image Processing, pp. 194–201. IEEE (2009)Google Scholar
  33. 33.
    Nimura, Y., Kitasaka, T., Mori, K.: Blood vessel segmentation using line-direction vector based on the Hessian analysis. In: SPIE Medical Imaging, p. 76233Q. International Society for Optics and Photonics (2010)Google Scholar
  34. 34.
    Kerkeni, A., Benabdallah, A., Manzanera, A., Bedoui, M.H.: A coronary artery segmentation method based on multiscale analysis and region growing. Computer. Med. Imaging Graph. 48, 49–61 (2016)CrossRefGoogle Scholar
  35. 35.
    Westwood, M., Anderson, L.J., Firmin, D.N., Gatehouse, P.D., Charrier, C.C., Wonke, B., Pennell, D.J.: A single breath-hold multiecho T2* cardiovascular magnetic resonance technique for diagnosis of myocardial iron overload. J. Magn. Reson. Imaging 18, 33–39 (2003)CrossRefGoogle Scholar
  36. 36.
    Boon-Chieng, E., Duangchaemkarn, K.: Myocardial iron measurement in thalassemia using cardiac magnetic resonance image processing software. In: Biomedical Engineering International Conference (BMEiCON), pp. 1–4 (2012)Google Scholar
  37. 37.
    Zheng, Q., Feng, Y., Wei, X., Feng, M., Chen, W., Lu, Z., Xu, Y., Chen, H., He, T.: Automated interventricular septum segmentation for black-blood myocardial T2* measurement in thalassemia. J. Magn. Reson. Imaging 41, 1242–1250 (2015)CrossRefGoogle Scholar
  38. 38.
    Wantanajittikul, K., Theera-Umpon, N., Saekho, S., Auephanwiriyakul, S., Phrommintikul, A., Leemasawat, K.: Automatic cardiac T2* relaxation time estimation from magnetic resonance images using region growing method with automatically initialized seed points. Comput. Methods Programs Biomed. 130, 76–86 (2016)CrossRefGoogle Scholar
  39. 39.
    Tatanun, C., Ritthipravat, P., Bhongmakapat, T., Tuntiyatorn, L.: Automatic segmentation of nasopharyngeal carcinoma from CT images: region growing based technique. In: 2010 2nd International Conference on Signal Processing Systems (ICSPS), pp. V2-537–V2-541 (2010)Google Scholar
  40. 40.
    Huang, W., Chan, K.L., Chong, V.: Nasopharyngeal carcinoma lesion extraction using clustering via semi-supervised metric learning with side-information. In: 2008 5th International Conference on Visual Information Engineering (VIE 2008) (2008)Google Scholar
  41. 41.
    Chanapai, W., Bhongmakapat, T., Tuntiyatorn, L., Ritthipravat, P.: Nasopharyngeal carcinoma segmentation using a region growing technique. Int. J. Comput. Assist. Radiol. Surg. 7, 413–422 (2012)CrossRefGoogle Scholar
  42. 42.
    Zhang, J., Ma, K.-K., Er, M.-H., Chong, V.: Tumor segmentation from magnetic resonance imaging by learning via one-class support vector machine. In: International Workshop on Advanced Image Technology (IWAIT 2004), pp. 207–211 (2004)Google Scholar
  43. 43.
    Zhou, J., Chan, K.L., Xu, P., Chong, V.F.: Nasopharyngeal carcinoma lesion segmentation from MR images by support vector machine. In: 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro 2006, pp. 1364–1367 (2006)Google Scholar
  44. 44.
    Zhou, J., Chong, V., Lim, T.-K., Houng, J.: MRI tumor segmentation for nasopharyngeal carcinoma using knowledge-based fuzzy clustering. Int. J. Inf. Technol. 8 (2002)Google Scholar
  45. 45.
    Mohammed, M.A., Ghani, M.K.A., Hamed, R.I., Abdullah, M.K., Ibrahim, D.A.: Automatic segmentation and automatic seed point selection of nasopharyngeal carcinoma from microscopy images using region growing based approach. J. Comput. Sci. 20(5), 61–69 (2017)CrossRefGoogle Scholar
  46. 46.
    Ciecholewski, M., Chocholowicz, J.: Gallbladder shape extraction from ultrasound images using active contour models. Comput. Biol. Med. 43(12), 2238–2255 (2013)CrossRefGoogle Scholar
  47. 47.
    Xie, W., Ma, Y., Shi, B., Wang, Z.: Gallstone segmentation and extraction from ultrasound images using the level set method. In: IEEE Bio-signals and Bio-robotics Conference (2013)Google Scholar
  48. 48.
    Gupta, D., Anand, R.S., Tyagi, B.: A hybrid segmentation method based on Gaussian kernel fuzzy clustering and region-based active contour model for ultrasound medical images. Biomed. Sig. Process. Control 16, 98–112 (2015)CrossRefGoogle Scholar
  49. 49.
    Lian, J., Ma, Y., Ma, Y., Shi, B., Liu, J., Yang, Z., Guo, Y.: Automatic gallbladder and gallstone regions segmentation in the ultrasound image. Int. J. Comput. Assist. Radiol. Surg. 12(4), 553–568 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.The NorthCap UniversityGurgaonIndia

Personalised recommendations