Advertisement

A Method for the Full Automation of Euler Deconvolution for the Interpretation of Magnetic Data

  • Nuraddeen UsmanEmail author
  • Khiruddin Abdullah
  • Mohd Nawawi
Conference paper

Abstract

The conventional Euler deconvolution methodology requires the user to choose appropriate structural index (SI) in order to compute the source parameters, and this makes the operation tedious and time consuming. To solve the mentioned problem, a method based on Euler’s homogeneity relation for full automation of magnetic data interpretation is presented in this paper. The technique uses multiple linear regression (MLR) methodology to estimate background, horizontal coordinate (x0 and y0), depth and structural index (SI) simultaneously is prepared and used for this task. The technique involves the use of first-order derivatives, independent of analytic signal (AS) and the derivatives are computed directly from the total field grid. It is fast means of magnetic data interpretation and easy to implement.

Keywords

Euler deconvolution Multiple linear regression Structural index Automatic interpretation 

References

  1. Barbosa, V. C., & Silva, J. B. (2011). Reconstruction of geologic bodies in depth associated with a sedimentary basin using gravity and magnetic data. Geophysical Prospecting, 59(6), 1021–1034.CrossRefGoogle Scholar
  2. Bhattacharyya, B. K. (1964). Magnetic anomalies due to prism-shaped bodies with arbitrary polarization. Geophysics, 29(4), 517–531.CrossRefGoogle Scholar
  3. Breiner, S., (1973). Applications manual for portable magnetometers.Google Scholar
  4. Chambers, J., Ogilvy, R., Kuras, O., Cripps, J., & Meldrum, P. (2002). 3D electrical imaging of known targets at a controlled environmental test site. Environmental Geology, 41(6), 690–704.CrossRefGoogle Scholar
  5. Chen, Q., Dong, Y., Cheng, G. S., Han, L., Xu, H. H., & Chen, H. (2014). Interpretation of fault system in the Tana Sag, Kenya, using edge recognition techniques and Euler deconvolution. Journal of Applied Geophysics, 109, 150–161.CrossRefGoogle Scholar
  6. Cooper, G. R. (2014). Using the analytic signal amplitude to determine the location and depth of thin dikes from magnetic data. Geophysics, 80(1), J1–J6.CrossRefGoogle Scholar
  7. Cooper, G. R., & Whitehead, R. C. (2016). Determining the distance to magnetic sources. Geophysics, 81(2), J25–J34.CrossRefGoogle Scholar
  8. Gerovska, D., & Araúzo-Bravo, M. J. (2003). Automatic interpretation of magnetic data based on Euler deconvolution with un-prescribed structural index. Computers & Geosciences, 29(8), 949–960.CrossRefGoogle Scholar
  9. Gerovska, D., Araúzo-Bravo, M. J., Stavrev, P., & Whaler, K. (2010). MaGSoundDST—3D automatic inversion of magnetic and gravity data based on the differential similarity transform. Geophysics, 75(1), L25–L38.CrossRefGoogle Scholar
  10. Hsu, S. K., Sibuet, J. C., & Shyu, C. T. (1996). High-resolution detection of geologic boundaries from potential-field anomalies: An enhanced analytic signal technique. Geophysics, 61(2), 373–386.CrossRefGoogle Scholar
  11. Keating, P., & Pilkington, M. (2004). Euler deconvolution of the analytic signal and its application to magnetic interpretation. Geophysical Prospecting, 52(3), 165–182.CrossRefGoogle Scholar
  12. Levine, D. M., Ramsey, P. P., & Smidt, R. K. (2001). Applied statistics for engineers and scientists: Using Microsoft Excel and Minitab. London: Pearson.Google Scholar
  13. Loke, M. H., Chambers, J. E., Rucker, D. F., Kuras, O., & Wilkinson, P. B. (2013). New developments in the direct-current geoelectrical imaging method. Journal of Applied Geophysics, 95, 135–156.CrossRefGoogle Scholar
  14. Mushayandebvu, M. F., Lesur, V., Reid, A. B., & Fairhead, J. D. (2004). Grid Euler deconvolution with constraints for 2D structures. Geophysics, 69(2), 489–496.CrossRefGoogle Scholar
  15. Nouraliee, J., Porkhial, S., Mohammadzadeh-Moghaddam, M., Mirzaei, S., Ebrahimi, D., & Rahmani, M. R. (2015). Investigation of density contrasts and geologic structures of hot springs in the Markazi Province of Iran using the gravity method. Russian Geology and Geophysics, 56(12), 1791–1800.CrossRefGoogle Scholar
  16. Oruc, B., & Selim, H. (2011). Interpretation of magnetic data in the Sinop area of Mid Black Sea, Turkey, using tilt derivative, Euler deconvolution, and discrete wavelet transform. Journal of Applied Geophysics, 74, 194–204.CrossRefGoogle Scholar
  17. Reid, A. B., Allsop, J. M., Granser, H., Millett, A. T., & Somerton, I. W. (1990). Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics, 55(1), 80–91.CrossRefGoogle Scholar
  18. Salem, A., Williams, S., Fairhead, D., Smith, R., & Ravat, D. (2007). Interpretation of magnetic data using tilt-angle derivatives. Geophysics, 73(1), L1–L10.CrossRefGoogle Scholar
  19. Stavrev, P. Y. (1997). Euler deconvolution using differential similarity transformations of gravity or magnetic anomalies. Geophysical Prospecting, 45(2), 207–246.CrossRefGoogle Scholar
  20. Thompson, D. T. (1982). EULDPH: A new technique for making computer-assisted depth estimates from magnetic data. Geophysics, 47(1), 31–37.CrossRefGoogle Scholar
  21. Ugalde, H., & Morris, W. A. (2010). Cluster analysis of Euler deconvolution solutions: New filtering techniques and geologic strike determination. Geophysics, 75, L61–L70.CrossRefGoogle Scholar
  22. Yang, J., Agterberg, F. P., & Cheng, Q. (2015). A novel filtering technique for enhancing mineralization associated geochemical and geophysical anomalies. Computers & Geosciences, 79, 94–104.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Nuraddeen Usman
    • 1
    Email author
  • Khiruddin Abdullah
    • 1
  • Mohd Nawawi
    • 1
  1. 1.School of PhysicsUniversiti Sains MalaysiaGelugorMalaysia

Personalised recommendations