Viral RNA-Dependent RNA Polymerases: A Structural Overview

Part of the Subcellular Biochemistry book series (SCBI, volume 88)


Most emerging and re-emerging human and animal viral diseases are associated with RNA viruses. All these pathogens, with the exception of retroviruses, encode a specialized enzyme called RNA-dependent RNA polymerase (RdRP), which catalyze phosphodiester-bond formation between ribonucleotides (NTPs) in an RNA template-dependent manner. These enzymes function either as single polypeptides or in complex with other viral or host components to transcribe and replicate the viral RNA genome. The structures of RdRPs and RdRP catalytic complexes, currently available for several members of (+) ssRNA, (−)ssRNA and dsRNA virus families, have provided high resolution snapshots of the functional steps underlying replication and transcription of viral RNA genomes and their regulatory mechanisms.


Polymerase RNA Viruses RNA-dependent RNA polymerase RNA synthesis Structure Viral replication 



We acknowledge the funding from the Spanish Ministry of Economy Industry and Competitiveness (BIO2014-54588-P and Maria de Maeztu action MDM-2014-0435).


  1. Ago H, Adachi T, Yoshida A, Yamamoto M et al (1999) Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus. Structure 7:1417–1426PubMedGoogle Scholar
  2. Albertini AA, Wernimont AK, Muziol T, Ravelli RB, Clapier CRet al. (2006) Crystal structure of the rabies virus nucleoprotein-RNA complex. Science 313(5785):360–363PubMedGoogle Scholar
  3. Appleby TC, Luecke H, Shim JH, Wu JZ, Cheney IW et al (2005) Crystal structure of complete rhinovirus RNA polymerase suggests front loading of protein primer. J Virol 79(1):277–288PubMedPubMedCentralGoogle Scholar
  4. Appleby TC, Perry JK, Murakami E, Barauskas O, Feng J et al (2015) Viral replication. Structural basis for RNA replication by the hepatitis C virus polymerase. Science 347(6223):771–775PubMedGoogle Scholar
  5. Bahar MW, Sarin LP, Graham SC, Pang J, Bamford DH et al (2013) Structure of a VP1-VP3 complex suggests how birnaviruses package the VP1 polymerase. J Virol 87(6):3229–3236PubMedPubMedCentralGoogle Scholar
  6. Ball AL (2007) Virus replication strategies. In: Knipe DM, Howley PM (eds) Fields virology. Wolters Kluwer Health/ Lippincott Williams & Wilkins, Philadelphia, pp 119–140Google Scholar
  7. Bentham M, Holmes K, Forrest S, Rowlands DJ, Stonehouse NJ (2012) Formation of higher-order foot-and-mouth disease virus 3Dpol complexes is dependent on elongation activity. J Virol 86(4):2371–2374PubMedPubMedCentralGoogle Scholar
  8. Brautigam CA, Steitz TA (1998) Structural and functional insights provided by crystal structures of DNA polymerases and their substrate complexes. Curr Opin Struct Biol 8(1):54–63PubMedGoogle Scholar
  9. Bressanelli S, Tomei L, Roussel A, Incitti I, Vitale RL et al (1999) Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus. PNAS 96:13034–13099PubMedGoogle Scholar
  10. Bressanelli S, Tomei L, Rey FA, De Francesco R (2002) Structural analysis of the hepatitis C virus RNA polymerase in complex with ribonucleotides. J Virol 76:3482–3492PubMedPubMedCentralGoogle Scholar
  11. Bruenn JA (2003) A structural and primary sequence comparison of the viral RNA-dependent RNA polymerases. Nucleic Acids Res 31:1821–1829PubMedPubMedCentralGoogle Scholar
  12. Bussetta C, Choi KH (2012) Dengue virus nonstructural protein 5 adopts multiple conformations in solution. Biochemistry 51:5921–5931PubMedPubMedCentralGoogle Scholar
  13. Butcher SJ, Grimes JM, Makeyev EV, Bamford DH, Stuart DI (2001) A mechanism for initiating RNA-dependent RNA polymerization. Nature 410(6825):235–240PubMedGoogle Scholar
  14. Campagnola G, Weygandt M, Scoggin K, Peersen O (2008) Crystal structure of coxsackievirus B3 3Dpol highlights the functional importance of residue 5 in picornavirus polymerases. J Virol 82(19):9458–9464PubMedPubMedCentralGoogle Scholar
  15. Castro C, Smidansky ED, Arnold JJ, Maksimchuk KR, Moustafa I et al (2009) Nucleic acid polymerases use a general acid for nucleotidyl transfer. Nat Struct Mol Biol 16:212–218PubMedPubMedCentralGoogle Scholar
  16. Çevik B, Holmes DE, Vrotsos E, Feller JA, Smallwood S et al (2004) The phosphoprotein (P) and L binding sites reside in the N-terminus of the L subunit of the measles virus RNA polymerase. Virology 327:297–306PubMedGoogle Scholar
  17. Çevik B, Smallwood S, Moyer SA (2007) Two N-terminal regions of the Sendai virus L RNA polymerase protein participate in oligomerization. Virology 363:189–197PubMedGoogle Scholar
  18. Chang S, Sun D, Liang H, Wang J, Li J et al (2015) Cryo-EM structure of influenza virus RNA polymerase complex at 4.3 Å resolution. Mol Cell 57:925–935PubMedGoogle Scholar
  19. Chen C, Wang Y, Shan C, Sun Y, Xu P et al (2013) Crystal structure of enterovirus 71 RNA-dependent RNA polymerase complexed with its protein primer VPg: implication for a trans mechanism of VPg uridylylation. J Virol 87(10):5755–5768PubMedPubMedCentralGoogle Scholar
  20. Cheng Y (2015) Single-particle Cryo-EM at crystallographic resolution. Cell 161:450–457PubMedPubMedCentralGoogle Scholar
  21. Chinnaswamy S, Murali A, Li P, Fujisaki K, Kao CC (2010) Regulation of de novo-initiated RNA synthesis in hepatitis C virus RNA-dependent RNA polymerase by intermolecular interactions. J Virol 84:5923–5935PubMedPubMedCentralGoogle Scholar
  22. Choi KH, Groarke JM, Young DC, Kuhn RJ, Smith JL et al (2004) The structure of the RNA-dependent RNA polymerase from bovine viral diarrhea virus establishes the role of GTP in de novo initiation. PNAS 101:4425–4430PubMedGoogle Scholar
  23. Choi KH, Gallei A, Becher P, Rossmann MG (2006) The structure of bovine viral diarrhea virus RNA-dependent RNA polymerase and its amino-terminal domain. Structure 14:1107–1113PubMedGoogle Scholar
  24. Choi KH, Rossmann MG (2009) RNA-dependent RNA polymerases from Flaviviridae. Curr Opin Struct Biol 19:746–751PubMedGoogle Scholar
  25. Clemente-Casares P, López-Jiménez AJ, Bellón-Echeverría I, Encinar JA, Martínez-Alfaro E et al (2011) De novo polymerase activity and Oligomerization of hepatitis C virus RNA-dependent RNA-polymerases from genotypes 1 to 5. PLoS One 6(4):e18515PubMedPubMedCentralGoogle Scholar
  26. Collier AM, Lyytinen OL, Guo YR, Toh Y, Poranen MM et al (2016) Initiation of RNA polymerization and polymerase Encapsidation by a small dsRNA virus. PLoS Pathog 12(4):e1005523PubMedPubMedCentralGoogle Scholar
  27. Das K, Arnold E (2015) Negative-strand RNA virus L proteins: one machine, many activities. Cell 162(2):239–241PubMedGoogle Scholar
  28. Davidson AD (2009) Chapter 2 new insights into Flavivirus nonstructural protein 5. In: Maramorosch K, Shatkin AJ, Purphy FA (eds) Advances in virus research, Vol 74. Elsevier Inc., pp 41–101Google Scholar
  29. den Boon J, Diaz A, Alquist P (2010) Cytoplasmic vial replication complexes. Cell Host Microbe 8(1):77–85Google Scholar
  30. Deval J, Jin Z, Chuang YC, Kao CC (2017) Structure(s), function(s), and inhibition of the RNA-dependent RNA polymerase of noroviruses. Virus Res 234:21–33PubMedGoogle Scholar
  31. Estes MK, Kapikian AZ (2007) Rotaviruses. In: Knipe DM, Howley PM (eds) Fields virology pp. 1917–1974. Wolters Kluwer Health/ Lippincott Williams & Wilkins. PhiladelphiaGoogle Scholar
  32. Estrozi LF, Settembre EC, Goret G, McClain B, Zhang X et al (2013) Location of the dsRNA-DependentPolymerase, VP1, in Rotavirus Particles. J MolBiol 425:124–132Google Scholar
  33. Ferrer-Orta C, Arias A, Perez-Luque R, Escarmís C, Domingo E et al (2004) Structure of foot-and-mouth disease virus RNA-dependent RNA polymerase and its complex with a template-primer RNA. J Biol Chem 279(45):47212–47221PubMedGoogle Scholar
  34. Ferrer-Orta C, Arias A, Escarmís C, Verdaguer N (2006a) A comparison of viral RNA-dependent RNA polymerases. Curr Opin Struct Biol 16:27–34PubMedGoogle Scholar
  35. Ferrer-Orta C, Arias A, Agudo R, Pérez-Luque R, Escarmís C et al (2006b) The structure of a protein primer-polymerase complex in the initiation of genome replication. EMBO J 25(4):880–888PubMedPubMedCentralGoogle Scholar
  36. Ferrer-Orta C, Arias A, Pérez-Luque R, Escarmís C, Domingo E et al (2007) Sequential structures provide insights into the fidelity of RNA replication. Proc Natl Acad Sci U S A 104(22):9463–9468PubMedPubMedCentralGoogle Scholar
  37. Ferrer-Orta C, Verdaguer N (2009) Chapter 18 RNA virus polymerases. In: Cameron CE, Götte M, Raney KD (eds) Viral genome replication. Springer Inc, pp 383–401Google Scholar
  38. Ferrero DS, Buxaderas M, Rodriguez JF, Verdaguer N (2015) The structure of the RNA-dependent RNA polymerase of a Permutotetravirus suggests a link between primer-dependent and primer-independent polymerases. PLoS Pathog 11(12):e1005265PubMedPubMedCentralGoogle Scholar
  39. Forss S, Schaller H (1982) A tandem repeat gene in a picornavirus. Nucleic Acids Res 10(20):6441–6450PubMedPubMedCentralGoogle Scholar
  40. Garriga D, Navarro A, Querol-Audi J, Abaitua F et al (2007) Activation mechanism of a noncanonical RNA-dependent RNA polymerase. Proc Natl Acad Sci U S A 104(51):20540–20545PubMedPubMedCentralGoogle Scholar
  41. Garriga D, Ferrer-Orta C, Querol-Audí J, Oliva B, Verdaguer N (2013) Role of motif B loop in allosteric regulation of RNA-dependent RNA polymerization activity. J Mol Biol 425(13):2279–2287PubMedGoogle Scholar
  42. Gerlach P, Malet H, Cusack S, Reguera J (2015) Structural insights into Bunyavirus replication and its regulation by the vRNA promoter. Cell 161:1267–1279PubMedPubMedCentralGoogle Scholar
  43. Godoy AS, Lima GM, Oliveira KI, Torres NU, Maluf FV et al (2017) Crystal structure of Zika virus NS5 RNA-dependent RNA polymerase. Nat Commun 8:14764PubMedPubMedCentralGoogle Scholar
  44. Gohara DW, Arnold JJ, Cameron CE (2004) Poliovirus RNA-dependent RNA polymerase (3Dpol): kinetic, thermodynamic, and structural analysis of Ribonucleotide selection. Biochemistry 43(18):5149–5158PubMedPubMedCentralGoogle Scholar
  45. Gong P, Peersen OB (2010) Structural basis for active site closure by the poliovirus RNA-dependent RNA polymerase. Proc Natl Acad Sci U S A 107(52):22505–22510PubMedPubMedCentralGoogle Scholar
  46. Gong P, Kortus MG, Nix JC, Davis RE, Peersen OB (2013) Structures of coxsackievirus, rhinovirus, and poliovirus polymerase elongation complexes solved by engineering RNA mediated crystal contacts. PLoS One 8(5):e60272PubMedPubMedCentralGoogle Scholar
  47. Goodfellow I (2011) The genome-linked protein VPg of vertebrate viruses – a multifaceted protein. Curr Opin Virol 1(5):355–362PubMedPubMedCentralGoogle Scholar
  48. Gorbalenya AE, Pringle FM, Zeddam JL, Luke BT, Cameron CE et al (2002) The palm subdomain-based active site is internally permuted in viral RNA-dependent RNA polymerases of an ancient lineage. J Mol Biol 324:47–62PubMedGoogle Scholar
  49. Graham SC, Sarin LP, Bahar MW, Myers RA, Stuart DIet al. (2011) The N-terminus of the RNA polymerase from infectious pancreatic necrosis virus is the determinant of genome attachment. PLoS Pathog 7:e1002085PubMedPubMedCentralGoogle Scholar
  50. Green TJ, Zhang X, Wertz GW, Luo M (2006) Structure of the vesicular stomatitis virus nucleoprotein-RNA complex. Science 313(5785):357–360PubMedGoogle Scholar
  51. Gridley C, Patton J (2014) Regulation of rotavirus polymerase activity by inner capsid proteins. Curr Opin Virol 9:31–38PubMedGoogle Scholar
  52. Gruez A, Selisko B, Roberts M, Bricogne G, Bussetta C et al (2008) The crystal structure of coxsackievirus B3 RNA-dependent RNA polymerase in complex with its protein primer VPg confirms the existence of a second VPg binding site on Picornaviridae polymerases. J Virol 82(19):9577–9590PubMedPubMedCentralGoogle Scholar
  53. Hansen JL, Long AM, Schultz SC (1997) Structure of the RNA-dependent RNA polymerase of poliovirus. Structure 5:1109–1122PubMedGoogle Scholar
  54. Harak C, Lohmann V (2015) Ultrastructure of the replication sites of positive-strand RNA viruses. Virology 479:418–433PubMedGoogle Scholar
  55. Hengrung N, EI Omari K, Serna Martin I, Vreede FT, Cusack S et al (2015) Crystal structure of the RNA-dependent RNA polymerase from influenza C virus. Nature 527(7576):114–117PubMedPubMedCentralGoogle Scholar
  56. Hobson SD, Rosenblum ES, Richards OC, Richmond K, Kirkegaard K et al (2001) Oligomeric structures of poliovirus polymerase are important for function. EMBO J 20:1153–1163PubMedPubMedCentralGoogle Scholar
  57. Högbom M, Jager K, Robel I, Unge T, Rohayem J (2009) The active form of the norovirus RNA-dependent RNA polymerase is a homodimer with cooperative activity. J Gen Virol 90:281–291PubMedGoogle Scholar
  58. Huang H, Chopra R, Verdine GL, Harrison SC (1998) Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science 282:1669–1675PubMedGoogle Scholar
  59. Ilca SL, Kotecha A, Sun X, Poranen MM, Stuart DI et al (2015) Localized reconstruction of subunits from electron cryomicroscopy images of macromolecular complexes. Nat Commun 6:8843PubMedPubMedCentralGoogle Scholar
  60. Jackson RJ, Howell MT, Kaminski A (1990) The novel mechanism of initiation of picornavirus RNA translation. Trends Biochem Sci 15:477–483PubMedGoogle Scholar
  61. Kaiser WJ, Chaudhry Y, Sosnovtsev SV, Goodfellow IG (2006) Analysis of protein-protein interactions in the feline calicivirus replication complex. J Gen Virol 87:363–368PubMedGoogle Scholar
  62. Kao CC, Singh P, Ecker DJ (2001) De novo initiation of viral RNA-dependent RNA synthesis. Virology 287(2):251–260PubMedGoogle Scholar
  63. King AMQ, Sangar DV, Harris TJR, Brown F (1980) Heterogeneity of the genome-linked protein of foot-and-mouth disease virus. Virol 34:627–634Google Scholar
  64. Klema VJ, Ye M, Hindupur A, Teramoto T, Gottipati K et al (2016) Dengue virus nonstructural protein 5 (NS5) assembles into a dimer with a unique Methyltransferase and polymerase Interface. PLoS Pathog 12(2):e1005451PubMedPubMedCentralGoogle Scholar
  65. Lai VC, Kao CC, Ferrari E, Park J, Uss AS et al (1999) Mutational analysis of bovine viral diarrhea virus RNA-dependent RNA polymerase. J Virol 73:10129–10136PubMedPubMedCentralGoogle Scholar
  66. Le Breton M, Meyniel-Schicklin L, Deloire A, Coutard B, Canard B et al (2011) Flavivirus NS3 and NS5 proteins interaction network: a high-throughput yeast two-hybrid screen. BMC Microbiol 11:234PubMedPubMedCentralGoogle Scholar
  67. Lee J, Alam I, Han KR, Cho S, Shin S et al (2011) Crystal structure of murine norovirus-1 RNA-dependent RNA polymerase. J General Virology 92:1607–1616Google Scholar
  68. Lesburg CA, Cable MB, Ferrari E, Hong Z, Mannarino AF et al (1999) Crystal structure of the RNA-dependent RNA polymerase from hepatitis C virus reveals a fully encircled active site. Nat Struct Biol 6:937–943PubMedGoogle Scholar
  69. Lescar J, Canard B (2009) RNA-dependent RNA polymerases from flaviviruses and Picornaviridae. Curr Opin Struct Biol 19(6):759–767PubMedGoogle Scholar
  70. Li J, Rahmeh A, Morelli M, Whelan SP (2008) A conserved motif in region v of the large polymerase proteins of nonsegmented negative-sense RNA viruses that is essential for mRNA capping. J Virol 82:775–784PubMedGoogle Scholar
  71. Li X, Zhou N, Chen W, Zhu B, Wang X et al (2017) Near-atomic resolution structure determination of a Cypovirus capsid and polymerase complex using Cryo-EM at 200kV. J Mol Biol 429(1):79–87PubMedGoogle Scholar
  72. Liang B, Li Z, Jenni S, Rahmeh AA, Morin BM et al (2015) Structure of the L protein of vesicular stomatitis virus from electron Cryomicroscopy. Cell 162:314–327PubMedPubMedCentralGoogle Scholar
  73. Lim SP, Koh JHK, Seh CC, Liew CW, Davidson AD et al (2013) A crystal structure of the dengue virus non-structural protein 5 (NS5) polymerase delineates interdomain amino acid residues that enhance its thermostability and de novo initiation activities. J Biol Chem 288:31105–31114PubMedPubMedCentralGoogle Scholar
  74. Liu H, Cheng L (2015) Cryo-EM shows thepolymerasestructures and a nonspooledgenomewithin a dsRNA virus. Science 349(6254):1347–1350PubMedGoogle Scholar
  75. Love RA, Maegley KA, Yu X, Ferre RA, Lingardo LK et al (2004) The crystal structure of the RNA-dependent RNA polymerase from human rhinovirus: a dual function target for common cold antiviral therapy. Structure 12(8):1533–1544PubMedGoogle Scholar
  76. Lu G, Gong P (2013) Crystal structure of the full-length Japanese encephalitis virus NS5 reveals a conserved methyltransferase-polymerase interface. PLoS Pathog 9(8):e1003549PubMedPubMedCentralGoogle Scholar
  77. Lu X, Mc Donald SM, Tortorici MA, Tao YJ, Vasquez-Del Carpio R et al (2008) Mechanism for coordinated RNA packaging and genome replication by rotavirus polymerase VP1. Structure 16(11):1678–1688PubMedPubMedCentralGoogle Scholar
  78. Luque D, Rivas G, Alfonso C, Carrascosa JL, Rodriguez JF et al (2009a) Infectious bursal disease virus is an icosahedral polyploid dsRNA virus. PNAS 106(7):2148–2152PubMedGoogle Scholar
  79. Luque D, Saugar I, Rejas MT, Carrascosa JL, Rodriguez JF et al (2009b) Infectious bursal disease virus: ribonucleoprotein complexes of a double-stranded RNA virus. J Mol Biol 386(3):891–901PubMedGoogle Scholar
  80. Lyle JM, Clewell A, Richmond K, Richards OC, Hope DA et al (2002) Similar structural basis for membrane localization and protein priming by an RNA-dependent RNA polymerase. J Biol Chem 277(18):16324–16331PubMedGoogle Scholar
  81. Mairiang D, Zhang H, Sodja A, Murali T, Suriyaphol P et al (2013) Identification of new protein interactions between dengue fever virus and its hosts, human and mosquito. PLoS One 8(1):e53535PubMedPubMedCentralGoogle Scholar
  82. Malet H, Egloff MP, Selisko B, Butcher RE, Wright PJ et al (2007) Crystal structure of the RNA polymerase domain of the West Nile virus non-structural protein 5. J Biol Chem 282(14):10678–10689PubMedGoogle Scholar
  83. Marcotte LL, Wass AB, Gohara DW, Pathak HB, Arnold JJ et al (2007) Crystal structure of poliovirus 3CD protein: virally encoded protease and precursor to the RNA-dependent RNA polymerase. J Virol 81:3583–3596PubMedPubMedCentralGoogle Scholar
  84. Mas A, Clemente-Casares P, Ramirez E, Sabariegos R (2016) The HCV replicase interactome. American JVirol 5(1):8–14Google Scholar
  85. McDonald SM, Tao YJ, Patton JT (2009) The ins and outs of four-tunneled RNA-dependent RNA polymerases. Curr Opin Struct Biol 19(6):775–782PubMedPubMedCentralGoogle Scholar
  86. Mosley RT, Edwards TE, Murakami E, Lam AM, Grice RL et al (2012) Structure of hepatitis C virus polymerase in complex with primer-template RNA. J Virol 86:6503–6511PubMedPubMedCentralGoogle Scholar
  87. Nakamura T, Zhao Y, Yamagata Y, Hua YJ, Yang W (2012) Watching DNA polymerase η make a phosphodiester bond. Nature 487:196–201PubMedPubMedCentralGoogle Scholar
  88. Ng KK, Cherney MM, Vazquez AL, Machin A, Alonso JM et al (2002) Crystal structures of active and inactive conformations of a caliciviral RNA-dependent RNA polymerase. J Biol Chem 277(2):1381–1387PubMedGoogle Scholar
  89. Ng KK, Pendás-Franco N, Rojo J, Boga JA, Machín A et al (2004) Crystal structure of norwalk virus polymerase reveals the carboxyl terminus in the active site cleft. J Biol Chem 279(16):16638–16645PubMedGoogle Scholar
  90. O’Reilly EK, Kao CC (1998) Analysis of RNA-dependent RNA polymerase structure and function as guided by known polymerase structures and computer predictions of secondary structure. Virology 252:287–303PubMedGoogle Scholar
  91. Ogino T, Banerjee AK (2007) Unconventional mechanism of mRNA capping by the RNA-dependent RNA polymerase of vesicular stomatitis virus. Mol Cell 25(1):85–97PubMedGoogle Scholar
  92. Pan J, Vakharia VN, Tao YJ (2007) Structural of a birnavirus polymerase reveals a distinct active site topology. Proc Natl Acad Sci U S A 104:7385–7390PubMedPubMedCentralGoogle Scholar
  93. Pathak HB, Oh HS, Goodfellow IG, Arnold JJ, Cameron CE (2008) Picornavirus genome replication: roles of precursor proteins and rate-limiting steps in oriI-dependent VPg uridylylation. J Biol Chem 283:30677–30688PubMedPubMedCentralGoogle Scholar
  94. Pata JD, Schultz SC, Kirkegaard K (1995) Functional oligomerization of poliovirus RNA-dependent RNA polymerase. RNA 5:466–477Google Scholar
  95. Patton JT, Jones MT, Kalbach AN, He YW, Xiaobo J (1997) Rotavirus RNA polymerase requires the core shell protein to synthesize the double-stranded RNA genome. J Virol 71:9618–9626PubMedPubMedCentralGoogle Scholar
  96. Paul AV, van Boom JH, Filippov D, Wimmer E (1998) Protein-primed RNA synthesis by purified poliovirus RNA polymerase. Nature 393:280–284PubMedGoogle Scholar
  97. Paul AV, Peters J, Mugavero J, Yin J, van Boom JH et al (2003) Biochemical and genetic studies of the VPg uridylylation reaction catalyzed by the RNA polymerase of poliovirus. J Virol 77(2):891–904PubMedPubMedCentralGoogle Scholar
  98. Paul AV, Wimmer E (2015) Initiation of protein-primed picornavirus RNA synthesis. Virus Res 206:12–26PubMedPubMedCentralGoogle Scholar
  99. Peersen OB (2017) Picornaviral polymerase structure, function, and fidelity modulation. Virus Res 234:4–20PubMedPubMedCentralGoogle Scholar
  100. Pflug A, Guilligay D, Reich S, Cusack S (2014) Structure of influenza a polymerase bound to the viral RNA promoter. Nature 516:355–360PubMedPubMedCentralGoogle Scholar
  101. Plotch SJ, Bouloy M, Ulmanen I, Krug RM (1981) A unique cap(mGpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell 23(3):847–858PubMedGoogle Scholar
  102. Potisopon S, Priet S, Collet A, Decroly E, Canard B et al (2014) The methytransferase domain of the dengue virus protein NS5 ensures efficient RNA synthesis initiation and elongation by the polymerase domain. Nucleic Acids Res 42(18):11642–11656PubMedPubMedCentralGoogle Scholar
  103. Rahmeh AA, Schenk AD, Danek EI, Kranzuch PJ, Liang B et al (2010) Molecular architecture of the vesicular stomatitis virus RNA polymerase. Proc Natl Acad Sci U S A 107(46):20075–20080PubMedPubMedCentralGoogle Scholar
  104. Reguera J, Gerlach P, Cusack S (2016) Towards a structural understanding of RNA synthesis by negative strand RNA viral polymerases. Curr Opin Struct Biol 36:75–84PubMedGoogle Scholar
  105. Reich S, Guilligay D, Pflug A, Alexander MH, Berger I et al (2014) Structural insight into cap-snatching and RNA synthesis by influenza polymerase. Nature 516(7531):361–366PubMedGoogle Scholar
  106. Ren Z, C Franklin M, Ghose R (2013) Structure of the RNA-directed RNA polymerase from the cystovirus φ12. Proteins, 81(8):1479–1484Google Scholar
  107. Salgado PS, Makeyev EV, Butcher SJ, Bamford DH, Stuart DI et al (2004) The structural basis for RNA specificity and Ca2+ inhibition of an RNA-dependent RNA polymerase. Structure 12(2):307–316PubMedGoogle Scholar
  108. Saw WG, Tria G, Gruber A, Subramanian Manimekalai MS, Zhao Y, Chandramohan A et al (2015) Structural insight and flexible features of NS5 proteins from all four serotypes of dengue virus in solution. Acta Cryst D71:2309–2327Google Scholar
  109. Schiff LA, Nibert ML, Tyler KL (2007) Orthoreoviruses and their replication. In: Knipe DM, Howley PM (eds) Fields virology. Wolters Kluwer Health/ Lippincott Williams & Wilkins, Philadelphia, pp 1853–1916Google Scholar
  110. Selisko B, Wang C, Harris E, Canard B (2014) Regulation of Flavivirus RNA synthesis and replication. Curr Opin Virol 0:74–83PubMedCentralGoogle Scholar
  111. Shen H, Sun H, Li G (2012) What is the role of motif D in the nucleotide incorporation catalyzed by the RNA-dependent RNA polymerase from poliovirus? PLoS Comput Biol 8(12):e1002851PubMedPubMedCentralGoogle Scholar
  112. Sholders AJ, Peersen OB (2014) Distinct conformations of a putative translocation element in poliovirus polymerase. J Mol Biol 426(7):1407–1419PubMedPubMedCentralGoogle Scholar
  113. Shu B, Gong P (2016) Structural basis of viral RNA-dependent RNA polymerase catalysis and translocation. PNAS 113(28):E4005–E4014PubMedGoogle Scholar
  114. Smallwood S, Hovel T, Neubert WJ, Moyer SA (2002) Different substitutions at conserved amino acids in domains II and III in the Sendai L RNA polymerase protein inactivate viral RNA synthesis. Virology 304:135–145PubMedGoogle Scholar
  115. Smallwood S, Moyer SA (2004) The L polymerase protein of parainfluenza virus 3 forms an oligomer and can interact with the heterologous Sendai virus L, P and C proteins. Virology 318:439–450PubMedGoogle Scholar
  116. Spagnolo JF, Rossignol E, Bullitt E, Kirkegaard K (2010) Enzymatic and nonenzymatic functions of viral RNA-dependent RNA polymerases within oligomeric arrays. RNA 16:382–393PubMedPubMedCentralGoogle Scholar
  117. Steitz TA (1998) A mechanism for all polymerases. Nature 391(6664):231–232PubMedGoogle Scholar
  118. Subramanian Manimekalai MS, Saw WG, Pan A, Gruber A, Gruber G (2016) Identification of the critical linker residues conferring differences in the compactness of NS5 from dengue virus serotype 4 and NS5 from dengue virus serotypes 1–3. Acta Cryst D72:795–807Google Scholar
  119. Surana P, Satchidanandam V, Nair DT (2014) RNA-dependent RNA polymerase of Japanese encephalitis virus binds the initiator nucleotide GTP to form a mechanistically important pre-initiation state. Nucleic Acids Res 42(4):2758–2773PubMedGoogle Scholar
  120. Tao L, Farsetta DL, Nibert ML, Harrison SC (2002) RNA Synthesis in a Cage—structural studies of reovirus polymerase λ3. Cell, 111:733–745PubMedGoogle Scholar
  121. Tay MYF, Smith K, Ng IHW, Chan KWK, Zhao Y et al (2016) The C-terminal 18 amino acid region of dengue virus NS5 regulates its subcellular localization and contains a conserved arginine residue essential for infectious virus production. PLoS Pathog 12(9):e1005886PubMedPubMedCentralGoogle Scholar
  122. te Velthuis AJW (2014) Common and unique features of viral RNA-dependent polymerase. Cell Mol Life Sci 71:4403–4420Google Scholar
  123. te Velthuis AJW, Fodor E (2016) Influenza virus RNA polymerase: insights into the mechanisms of viral RNA synthesis. Nat Rev Microbiol 14:479–493Google Scholar
  124. Tellez AB, Wang J, Tanner EJ, Spagnolo JF, Kirkegaard K et al (2011) Interstitial contacts in an RNA-dependent RNA polymerase lattice. J Mol Biol 412:737–750PubMedPubMedCentralGoogle Scholar
  125. Thompson AA, Peersen OB (2004) Structural basis for proteolysis-dependent activation of the poliovirus RNA-dependent RNA polymerase. EMBO J 23:3462–3471PubMedPubMedCentralGoogle Scholar
  126. Thompson AA, Albertini RA, Peersen OB (2007) Stabilization of poliovirus polymerase by NTP binding and fingers-thumb interactions. J Mol Biol 366:1459–1474PubMedGoogle Scholar
  127. Tortorici MA, Broering TJ, Nibert ML, Patton JT (2003) Template recognition and formation of initiation complexes by the replicase of a segmented double-stranded RNA virus. J Biol Chem 278:32673–32682PubMedGoogle Scholar
  128. Upadhyay AK, Cyr M, Longenecker K, Tripathi R, Sun C, Kempf DL (2017) Crystal structure of full-length Zika virus NS5 protein reveals a conformation similar to Japanese encephalitis virus NS5. Acta Cryst F 73:116–122Google Scholar
  129. van Dijk AA, Makeyev EV, Bamford DH (2004) Initiation of viral RNA-dependent RNA polymerization. J Gen Virol 85(5):1077–1093PubMedGoogle Scholar
  130. Verdaguer N, Ferrer-Orta C (2012) Conformational changes in motif D of RdRPs as fidelity determinant. Structure 20(9):1448–1450PubMedGoogle Scholar
  131. Vives-Adrian L, Lujan C, Oliva B, van der Linden L, Selisko B et al (2014) The crystal structure of a cardiovirus RNA-dependent RNA polymerase reveals an unusual conformation of the polymerase active site. J Virol 88(10):5595–5607PubMedPubMedCentralGoogle Scholar
  132. Wang C, Wang C, Li Q, Wang Z, Xie W (2017) Crystal structure and thermostability characterization of EV-D68-3Dpol. J Virol, JVI:00876–00817Google Scholar
  133. Wang J, Lyle JM, Bullitt E (2013) Surface for catalysis by poliovirus RNA-dependent RNA polymerase. J Mol Biol 425:2529–2540PubMedPubMedCentralGoogle Scholar
  134. Wang QM, Hockman MA, Staschke K, Johnson RB, Case KA et al (2002) Oligomerization and cooperative RNA synthesis activity of hepatitis C virus RNA-dependent RNA polymerase. J Virol 76(8):3865–3872PubMedPubMedCentralGoogle Scholar
  135. Wu Y, Lou Z, Miao Y, Yu Y, Dong H et al (2010) Structures of EV71 RNA-dependent RNA polymerase in complex with substrate and analogue provide a drug target against the hand-foot-and-mouth disease pandemic in China. Protein Cell 1(5):491–500PubMedPubMedCentralGoogle Scholar
  136. Yang X, Smidansky ED, Maksimchuk KR, Lum D, Welch JL et al (2012) Motif D of viral RNA-dependent RNA polymerases determines efficiency and fidelity of nucleotide addition. Structure 20(9):1519–1527PubMedPubMedCentralGoogle Scholar
  137. Yap TL, Xu T, Chen YL, Malet H, Egloff MP et al (2007) Crystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85-angstrom resolution. J Virol 81(9):4753–4765PubMedPubMedCentralGoogle Scholar
  138. Zamoto-Niikura A, Terasaki K, Ikegami T, Peters CJ, Makino S (2009) Rift valley fever virus L protein forms a biologically active oligomer. J Virol 83:12779–12789PubMedPubMedCentralGoogle Scholar
  139. Zamyatkin DF, Parra F, Alonso JM, Harki DA, Peterson BR et al (2008) Structural insights into mechanisms of catalysis and inhibition in Norwalk virus polymerase. J Biol Chem 283(12):7705–7712PubMedGoogle Scholar
  140. Zeddam JL, Gordon KH, Lauber C, Alves CA, Luke BT et al (2010) Euprosterna elaeasa virus genome sequence and evolution of the Tetraviridae family: emergence of bipartite genomes and conservation of the VPg signal with the dsRNA Birnaviridae family. Virology 397:145–154PubMedGoogle Scholar
  141. Zhang X, Walker SB, Chipman PR, Nibert ML et al (2003) Virus polymerase λ3 localized by cryo-electron microscopy of virions at a resolution of 7.6 Å. Nature StrucBiol 10(12):1011–1018Google Scholar
  142. Zhang X, Ding K, Yu X, Chang W, Sun J et al (2015) In situ structures of the segmented genome and RNA polymerase complex inside a dsRNA virus. Nature 527:531–534PubMedPubMedCentralGoogle Scholar
  143. Zhao Y, Soh TS, Lim SP, Chung KY, Swaminathan K et al (2015a) Molecular basis for specific viral RNA recognition and 2'-O-ribose methylation by the dengue virus nonstructural protein 5 (NS5). Proc Natl Acad Sci U S A 112(48):14834–14839PubMedPubMedCentralGoogle Scholar
  144. Zhao Y, Soh TS, Zheng J, Chan KWK, Phoo WWet al. (2015b) A crystal structure of the dengue virus NS5 protein reveals a novel inter-domain interface essential for protein flexibility and virus replication. PLoS Pathog 11(3):e1004682PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Structural Biology Unit, Institut de Biologia Molecular de Barcelona (IBMB-CSIC)BarcelonaSpain

Personalised recommendations