Advertisement

Frame-Based Semantic Patterns for Relation Extraction

  • Angrosh Mandya
  • Danushka Bollegala
  • Frans Coenen
  • Katie Atkinson
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 781)

Abstract

This paper presents novel frame-based semantic patterns, exploiting frame element and frame annotations, provided by FrameNet for relation extraction. The proposed frame-based patterns are evaluated against state-of-the-art dependency based syntactic patterns and lexico-syntactic patterns, on three independent datasets that differ in size and construction. The results show that the proposed frame-based patterns significantly improve performance, both in terms of scoring higher precision and higher recall for relation extraction, in comparison to dependency and lexico-syntactic patterns on all three datasets.

References

  1. 1.
    Agichtein, E., Gravano, L.: Snowball: extracting relations from large plain-text collections. In: Proceedings of the Fifth ACM Conference on Digital Libraries, pp. 85–94. ACM (2000)Google Scholar
  2. 2.
    Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Ives, Z.: Dbpedia: a nucleus for a web of open data. In: 6th International Semantic Web Conference, Busan, Korea (2007)Google Scholar
  3. 3.
    Baker, C.F., Fillmore, C.J., Lowe, J.B.: The berkeley framenet project. In: Proceedings of the 17th International Conference on Computational Linguistics, vol. 1, pp. 86–90. Association for Computational Linguistics (1998)Google Scholar
  4. 4.
    Banko, M., Cafarella, M.J., Soderland, S., Broadhead, M., Etzioni, O.: Open information extraction for the web. In: Proceedings of IJCAI, vol. 7, pp. 2670–2676 (2007)Google Scholar
  5. 5.
    Brin, S.: Extracting patterns and relations from the world wide web. In: Atzeni, P., Mendelzon, A., Mecca, G. (eds.) WebDB 1998. LNCS, vol. 1590, pp. 172–183. Springer, Heidelberg (1999).  https://doi.org/10.1007/10704656_11 CrossRefGoogle Scholar
  6. 6.
    Das, D., Chen, D., Martins, A.F., Schneider, N., Smith, N.A.: Frame-semantic parsing. Comput. Linguist. 40(1), 9–56 (2014)CrossRefGoogle Scholar
  7. 7.
    Fillmore, C.: Frame semantics. In: Linguistics in the Morning Calm, pp. 111–137 (1982)Google Scholar
  8. 8.
    Fillmore, C.J., Johnson, C.R., Petruck, M.R.: Background to framenet. Int. J. Lexicogr. 16(3), 235–250 (2003)CrossRefGoogle Scholar
  9. 9.
    Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In: Proceedings of the COLING, pp. 539–545. Association for Computational Linguistics (1992)Google Scholar
  10. 10.
    Hendrickx, I., Kim, S.N., Kozareva, Z., Nakov, P., Ó Séaghdha, D., Padó, S., Pennacchiotti, M., Romano, L., Szpakowicz, S.: Semeval-2010 task 8: multi-way classification of semantic relations between pairs of nominals. In: Proceedings of the Workshop on Semantic Evaluations: Recent Achievements and Future Directions, pp. 94–99. Association for Computational Linguistics (2009)Google Scholar
  11. 11.
    Jijkoun, V., De Rijke, M., Mur, J.: Information extraction for question answering: improving recall through syntactic patterns. In: Proceedings of the COLING, p. 1284. Association for Computational Linguistics (2004)Google Scholar
  12. 12.
    Kim, J.T., Moldovan, D., et al.: Acquisition of linguistic patterns for knowledge-based information extraction. IEEE Trans. Knowl. Data Eng. 7(5), 713–724 (1995)CrossRefGoogle Scholar
  13. 13.
    Liu, S., Chen, Y., He, S., Liu, K., Zhao, J.: Leveraging framenet to improve automatic event detection. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, vol. 1, pp. 2134–2143. Association for Computational Linguistics, Berlin, August 2016. Long Papers. http://www.aclweb.org/anthology/P16-1201
  14. 14.
    Mintz, M., Bills, S., Snow, R., Jurafsky, D.: Distant supervision for relation extraction without labeled data. In: Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP, vol. 2, pp. 1003–1011. Association for Computational Linguistics (2009)Google Scholar
  15. 15.
    Ravichandran, D., Hovy, E.: Learning surface text patterns for a question answering system. In: Proceedings of the COLING, pp. 41–47. Association for Computational Linguistics (2002)Google Scholar
  16. 16.
    Riedel, S., Yao, L., McCallum, A.: Modeling relations and their mentions without labeled text. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS (LNAI), vol. 6323, pp. 148–163. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15939-8_10 CrossRefGoogle Scholar
  17. 17.
    Søgaard, A., Plank, B., Alonso, H.M.: Using frame semantics for knowledge extraction from twitter. In: Proceedings of AAAI (2015)Google Scholar
  18. 18.
    Surdeanu, M., Ciaramita, M.: Robust information extraction with perceptrons. In: Proceedings of the NIST 2007 Automatic Content Extraction Workshop (ACE07) (2007)Google Scholar
  19. 19.
    Wu, F., Weld, D.S.: Open information extraction using wikipedia. In: Proceedings of COLING, pp. 118–127. Association for Computational Linguistics (2010)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Angrosh Mandya
    • 1
  • Danushka Bollegala
    • 1
  • Frans Coenen
    • 1
  • Katie Atkinson
    • 1
  1. 1.Department of Computer ScienceUniversity of LiverpoolLiverpoolUK

Personalised recommendations