BolLy: Annotation of Sentiment Polarity in Bollywood Lyrics Dataset

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 781)

Abstract

This work presents a corpus of Bollywood song lyrics and its metadata, annotated with sentiment polarity. We call this BolLy. It contains lyrics of 1055 songs ranging from those composed in the year 1970 to the most recent ones. This dataset is of utmost value as all the annotation is done manually by three annotators and this makes it a very rich dataset for training purposes. In this work, we describe the creation and annotation process, content, and the possible uses of the dataset. As an experiment, we have built a basic classification system to identify the emotion polarity of the song based solely on the lyrics and this can be used as a baseline algorithm for the same. BolLy can also be used for studying code-mixing with respect to lyrics.

References

  1. 1.
    Abburi, H., Akkireddy, E.S.A., Gangashetty, S.V., Mamidi, R.: Multimodal sentiment analysis of Telugu songs. In: Proceedings of the 4th Workshop on Sentiment Analysis Where AI Meets Psychology (SAAIP 2016), pp. 48–52 (2016)Google Scholar
  2. 2.
    Bischoff, K., Firan, C.S., Paiu, R., Nejdl, W., Laurier, C., Sordo, M.: Music mood and theme classification-a hybrid approach. In: ISMIR (2009)Google Scholar
  3. 3.
    Fu, Z., Lu, G., Ting, K.M., Zhang, D.: A survey of audio-based music classification and annotation. IEEE Trans. Multimedia 13, 303–319 (2011)CrossRefGoogle Scholar
  4. 4.
    Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 168–177. ACM (2004)Google Scholar
  5. 5.
    Hu, X., Stephen Downie, J., Laurier, C., Bay, M., Ehmann, A.F.: The 2007 MIREX audio mood classification task: lessons learned. In: Proceedings of the 9th International Conference on Music Information Retrieval (2008)Google Scholar
  6. 6.
    Hu, Y., Chen, X., Yang, D.: Lyric-based song emotion detection with affective lexicon and fuzzy clustering method. In: ISMIR (2009)Google Scholar
  7. 7.
    Katayose, H., Imai, M., Inokuchi, M.: Sentiment extraction in music. In: 9th International Conference on Pattern Recognition (1988)Google Scholar
  8. 8.
    Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical data. Biometrics 33, 159–174 (1977)CrossRefMATHGoogle Scholar
  9. 9.
    Laurier, C., Grivolla, J., Herrera, P.: Multimodal music mood classification using audio and lyrics. In: Seventh International Conference on Machine Learning and Applications, ICMLA 2008, pp. 688–693. IEEE (2008)Google Scholar
  10. 10.
    Laurier, C., Sordo, M., Herrera, P.: Mood cloud 2.0: music mood browsing based on social networks. In: Proceedings of the 10th International Society for Music Information Conference (ISMIR 2009), Kobe, Japan (2009)Google Scholar
  11. 11.
    Liu, B.: Sentiment analysis and opinion mining. Synth. Lect. Hum. Lang. Technol. 5(1), 1–167 (2012)CrossRefGoogle Scholar
  12. 12.
    Lu, L., Liu, D., Zhang, H.-J.: Automatic mood detection and tracking of music audio signals. Trans. Audio Speech Lang. Process. 14, 5–18 (2006)CrossRefGoogle Scholar
  13. 13.
    Lie, L., Liu, D., Zhang, H.-J.: Automatic mood detection and tracking of music audio signals. IEEE Trans. Audio Speech Lang. Process. 14(1), 5–18 (2006)CrossRefGoogle Scholar
  14. 14.
    McCallum, A., Nigam, K., et al.: A comparison of event models for Naive Bayes text classification. In: AAAI-98 Workshop on Learning for Text Categorization, vol. 752, pp. 41–48. Citeseer (1998)Google Scholar
  15. 15.
    Patra, B.G., Das, D., Bandyopadhyay, S.: Automatic music mood classification of Hindi songs. In: Proceedings of the 3rd Workshop on Sentiment Analysis Where AI Meets Psychology (2013)Google Scholar
  16. 16.
    Patra, B.G., Das, D., Bandyopadhyay, S.: Mood classification of Hindi songs based on lyrics. In: Proceedings of the 12th International Conference on Natural Language Processing (ICON 2015) (2015)Google Scholar
  17. 17.
    Patra, B.G., Das, D., Bandyopadhyay, S.: Multimodal mood classification - a case study of differences in Hindi and western songs. In: COLING (2016)Google Scholar
  18. 18.
    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetMATHGoogle Scholar
  19. 19.
    Russell, J.A.: A circumplex model of affect. J. Pers. Soc. Psychol. 39, 1161–1178 (1980)CrossRefGoogle Scholar
  20. 20.
    Shakoor, A.A., Sahebdin, W.B., Pudaruth, S.: Exploring the evolutionary change in bollywood lyrics over the last two decades. In: The Second International Conference on Data Mining, Internet Computing, and Big Data (BigData 2015), p. 46 (2015)Google Scholar
  21. 21.
    Szabó, M.K., Vincze, V., Simkó, K.I., Varga, V., Hangya, V.: A Hungarian sentiment corpus manually annotated at aspect level (2016)Google Scholar
  22. 22.
    Thayer, R.E.: The Biopsychology of Mood and Arousal. Oxford University Press, New York (1989)Google Scholar
  23. 23.
    Trohidis, K., Tsoumakas, G., Kalliris, G., Vlahavas, I.P.: Multi-label classification of music into emotions. In: ISMIR, vol. 8, pp. 325–330 (2008)Google Scholar
  24. 24.
    Turney, P.D.: Thumbs up or thumbs down?: Semantic orientation applied to unsupervised classification of reviews. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, pp. 417–424. Association for Computational Linguistics (2002)Google Scholar
  25. 25.
    Ujlambkar, A.M., Attar, V.Z.: Automatic mood classification model for Indian popular music. In: 2012 Sixth Asia Modelling Symposium (AMS), pp. 7–12. IEEE (2012)Google Scholar
  26. 26.
    Yang, Y.-H., Lin, Y.-C., Cheng, H.-T., Liao, I.-B., Ho, Y.-C., Chen, H.H.: Toward multi-modal music emotion classification. In: Huang, Y.-M.R., Xu, C., Cheng, K.-S., Yang, J.-F.K., Swamy, M.N.S., Li, S., Ding, J.-W. (eds.) PCM 2008. LNCS, vol. 5353, pp. 70–79. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-89796-5_8 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.NLP-MT Lab, KCISIIIT-HyderabadHyderabadIndia

Personalised recommendations