A Robust Algorithm for Pathological-Speech Correction

  • Naim TerbehEmail author
  • Mounir Zrigui
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 781)


The current work presents an original approach based on the probabilistic-phonetic modeling to develop an algorithm permitting the correction of pathological Arabic speech. For this purpose, we follow three steps. The first consists in detecting the voice defects manifesting in the Arabic speech. Second, the sounds begetting degraded speeches are identified. The last task consists in proposing an original algorithm based on probabilistic-phonetic modeling to correct the pathological pronunciations. The developed algorithm is highly efficient. Indeed, we have attained a correction performance of 97%. Accordingly, researchers in computer sciences, in speech therapy and in biology can support in our contribution to the pathological speeches processing.


Arabic language Healthy/pathological speech Probabilistic-phonetic modeling Vocal pathology Speech correction 


  1. 1.
    Terbeh, N., Maraoui, M., Zrigui, M.: Probabilistic approach for detection of vocal pathologies in the arabic speech. In: Gelbukh, A. (ed.) CICLing 2015. LNCS, vol. 9042, pp. 606–616. Springer, Cham (2015). Google Scholar
  2. 2.
    Alghamdi, M., Almuhtasib, H., Elshafei, M.: Arabic phonological rules. King Saud Univ. J. Comput. Sci. Inf. 16, 1–25 (2004)Google Scholar
  3. 3.
    Patane, G., Russo, M.: The enhanced LBG Algorithm. Neural Netw. 14(9), 1219–1237 (2001)CrossRefGoogle Scholar
  4. 4.
    Bréhilin, L., Gascuel, O.: Modèles de Markov caches et apprentissage de sequencesGoogle Scholar
  5. 5.
    Majidnezhad, V., Kheidorov, I.: An ANN-based method for detecting vocal fold pathology. Int. J. Comput. Appl. 62(7), 1–4 (2013)Google Scholar
  6. 6.
    Majidnezhad, V., Kheidorov, I.: A HMM-based method for vocal fold pathology diagnosis. IJCSI Int. J. Comput. Sci. Issues 9(6), 135–138 (2012). No 2Google Scholar
  7. 7.
    Paquet, P.: L’utilisation des réseaux de neurones artificiels en finance. Document de recherche n° 1997-1 (1997)Google Scholar
  8. 8.
    Terbeh, N., Zrigui, M.: Vocal pathologies detection and mispronounced phonemes identification: case of arabic continuous speech. In: LREC 2016, 23–28 May 2016, Portorož-Slovenia (2016)Google Scholar
  9. 9.
    Hawashin, B., Mansour, A., Aljawarneh, S., Fahmy, A.A., Al Raddady, F., Shrivastava, A., Rajawat, A.S., Malika, C.R., Mishra, S., Yadav, R.N.: An efficient feature selection method for arabic text classification. Int. J. Comput. Appl. 83(17), 1–6 (2013)Google Scholar
  10. 10.
    Zhou, Z., Meng, H.M., Lo, W.K.: A multi-pass error detection and correction framework for Mandarin LVCSR. In: Proceedings of the International Conference on Spoken Language Processing, Pittsburgh, PA, pp. 1646–1649 (2006)Google Scholar
  11. 11.
    Kaki, S., Sumita, E., Iida, H.: A method for correcting errors in speech recognition using the statistical features of character co-occurrence. In: COLING-ACL, Montreal, Quebec, Canada, pp. 653–657 (1998)Google Scholar
  12. 12.
    Ajibola, A.S., Rashid, N.K.B.A.M., Sediono, W., Hashim, N.N.W.N.: A novel approach to stuttered speech correction. Jurnal Ilmu Komputer dan Informasi 9(2), 80–87 (2016)CrossRefGoogle Scholar
  13. 13.
    Bassil, Y., Alwani, M.: Post-editing error correction algorithm for speech recognition using bing spelling suggestion. Int. J. Adv. Comput. Sci. Appl. 3(2), 95–101 (2012)Google Scholar
  14. 14.
    Muhammad, G., Alsulaiman, M., Ali, Z., Malki, K., Mesallam, T., Farahat, M.: Voice pathology detection and classification using auto-correlation and entropy features in different frequency regions. IEEE Access PP(99), 1 (2017)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.LaTICE Laboratory, Faculty of Sciences of MonastirMonastirTunisia

Personalised recommendations