Myanmar Number Normalization for Text-to-Speech

  • Aye Mya HlaingEmail author
  • Win Pa Pa
  • Ye Kyaw Thu
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 781)


Text Normalization is an essential module for Text-to-Speech (TTS) system as TTS systems need to work on real text. This paper describes Myanmar number normalization designed for Myanmar Text-to-Speech system. Semiotic classes for Myanmar language are identified by the study of Myanmar text corpus and Weighted Finite State Transducers (WFST) based Myanmar number normalization is implemented. Number suffixes and prefixes are also applied for token classification and finally, post-processing has been done for tokens that cannot be classified. This approach achieves average tag accuracy of 93.5% for classification phase and average Word Error Rate (WER) 0.95% for overall performance which is 5.65% lower than rule-based system. The results show that this approach can be used in Myanmar TTS system, and to our knowledge, this is the first published work of Myanmar number normalization system designed for Myanmar TTS system.


Myanmar number normalization Text normalization Weighted finite state transducer Myanmar text-to-speech Myanmar 



This work is partly supported by the ASEAN IVO project “Open Collaboration for Developing and Using Asian Language Treebank”.


  1. 1.
    Taylor, P.: Text-to-Speech Synthesis. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  2. 2.
    Sproat, R., Black, A.W., Chen, S., Kumar, S., Ostendorf, M., Richards, C.: Normalization of non-standard words. Comput. Speech Lang. 15(3), 287–333 (2001)CrossRefGoogle Scholar
  3. 3.
    Ebden, P., Sproat, R.: The kestrel TTS text normalization system. Nat. Lang. Eng. 21(03), 333–353 (2015)CrossRefGoogle Scholar
  4. 4.
    Thu, Y.K., Pa, W.P., Ni, J., Shiga, Y., Finch, A., Hori, C., Kawai, H., Sumita, E.: Hmm based myanmar text to speech system. In: Sixteenth Annual Conference of the International Speech Communication Association (2015)Google Scholar
  5. 5.
    Beliga, S., Martinčić-Ipšić, S.: Text normalization for croatian speech synthesis. In: MIPRO, 2011 Proceedings of the 34th International Convention, pp. 1664–1669. IEEE (2011)Google Scholar
  6. 6.
    Alam, F., Habib, S., Khan, M.: Text normalization system for bangla. Technical report, BRAC University (2008)Google Scholar
  7. 7.
    Zhou, T., Dong, Y., Huang, D., Liu, W., Wang, H.: A three-stage text normalization strategy for mandarin text-to-speech systems. In: 6th International Symposium on Chinese Spoken Language Processing, ISCSLP 2008, pp. 1–4. IEEE (2008)Google Scholar
  8. 8.
    Panchapagesan, K., Talukdar, P.P., Krishna, N.S., Bali, K., Ramakrishnan, A.: Hindi text normalization. In: Fifth International Conference on Knowledge Based Computer Systems (KBCS), pp. 19–22. Citeseer (2004)Google Scholar
  9. 9.
    Sproat, R.: Lightly supervised learning of text normalization: Russian number names. In: 2010 IEEE Spoken Language Technology Workshop (SLT), pp. 436–441. IEEE (2010)Google Scholar
  10. 10.
    Nguyen, T.T.T., Pham, T.T., Tran, D.D.: A method for vietnamese text normalization to improve the quality of speech synthesis. In: Proceedings of the 2010 Symposium on Information and Communication Technology, pp. 78–85. ACM (2010)Google Scholar
  11. 11.
    Sproat, R., Jaitly, N.: RNN approaches to text normalization: a challenge. arXiv preprint arXiv:1611.00068 (2016)
  12. 12.
    Riza, H., Purwoadi, M., Gunarso, Uliniansyah, T., et al.: Introduction of the asian language treebank. Oriental COCOSDA (2016)Google Scholar
  13. 13.
    Roark, B., Sproat, R., Allauzen, C., Riley, M., Sorensen, J., Tai, T.: The opengrm open-source finite-state grammar software libraries. In: Proceedings of the ACL 2012 System Demonstrations, pp. 61–66. Association for Computational Linguistics (2012)Google Scholar
  14. 14.
    Sproat, R.: Multilingual text analysis for text-to-speech synthesis. In: Proceedings of the Fourth International Conference on Spoken Language, ICSLP 1996, vol. 3, pp. 1365–1368. IEEE (1996)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Natural Language Processing LabUCSYYangonMyanmar
  2. 2.Artificial Intelligence LabOkayama Prefectural UniversityOkayamaJapan

Personalised recommendations