Skip to main content

Detecting Earthquake Survivors with Serious Mental Affliction

  • Conference paper
  • First Online:
  • 860 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 781))

Abstract

The 2011 Great East Japan Earthquake and 2016 Kumamoto earthquakes had a great impact on numerous people all over the world. In this paper, we focus on social media and the mental health of 2016 Kumamoto earthquake survivors. We first focus on the users who had experienced an earthquake and track their sentiments before and after the disaster using Twitter as a sensor. Consequently, we found that their emotional polarities switch from nervous during earthquakes and return to normal after huge earthquakes. However, we also found that some people did not go back to normal even after huge earthquakes subside. Against this background, we attempted to identify survivors who are suffering from serious mental distress concerning earthquakes. Our experimental results suggest that, besides the frequency of words related to earthquakes, the deviation in sentiment and lexical factors during the earthquake represent the mental conditions of Twitter users. We believe that the findings of this study will contribute to early mental health care for people suffering the aftereffects of a huge disaster.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    IBM®Watson Explorer Advanced Edition Analytical Components V11.0 is a trademark in the United States and/or other countries of International Business Machines Corporation.

  2. 2.

    We extracted expressions which occur with high frequency and correlation by using WEX and defined them as earthquake-related words:  (earthquake),  (aftershock),  (immediate report),  (shelter),  (shaking) and  (goods).

  3. 3.

    The actual annotation was a three class label: a user who does not care about the disaster, a user who is slightly concerned with the disaster, and user who is severely affected by the disaster. This annotation was conducted by two human annotators, and Cohen’s kappa for that is 0.75. By merging the first two classes into one class, we created an experimental dataset with two classes.

  4. 4.

    https://personality-insights-livedemo.mybluemix.net.

References

  1. Aramaki, E., Maskawa, S., Morita, M.: Twitter catches the flu: detecting influenza epidemics using Twitter. In: Proceedings of EMNLP 2011, pp. 1568–1576 (2011)

    Google Scholar 

  2. Backstrom, L., Sun, E., Marlow, C.: Find me if you can: improving geographical prediction with social and spatial proximity. In: Proceedings of WWW 2010, pp. 61–70 (2010)

    Google Scholar 

  3. Choudhury, M.D., Counts, S., Horvitz, E.: Predicting postpartum changes in emotion and behavior via social media. In: Proceedings of CHI 2013, pp. 3267–3276 (2013)

    Google Scholar 

  4. Choudhury, M.D., Gamon, M., Counts, S., Horvitz, E.: Predicting depression via social media. In: Proceedings of ICWSM 2013 (2013)

    Google Scholar 

  5. Coppersmith, G., Dredze, M., Harman, C.: Quantifying mental health signals in Twitter. In: Proceedings of Workshop on Computational Linguistics and Clinical Psychology, pp. 51–60 (2014)

    Google Scholar 

  6. Coppersmith, G., Dredze, M., Harman, C., Hollingshead, K.: From ADHD to SAD: analyzing the language of mental health on Twitter through self-reported diagnoses. In: Proceedings of Workshop on Computational Linguistics and Clinical Psychology, pp. 1–10 (2015)

    Google Scholar 

  7. Gkotsis, G., Oellrich, A., Hubbard, T., Dobson, R., Liakata, M., Velupillai, S., Dutta, R.: The language of mental health problems in social media. In: Proceedings of Workshop on Computational Linguistics and Clinical Psychology, pp. 63–73 (2016)

    Google Scholar 

  8. Higashiyama, M., Inui, K., Matsumoto, Y.: Learning sentiment of nouns from selectional preferences of verbs and adjectives. In: Proceedings of Annual Meeting of the Association for Natural Language Processing (in Japanese), pp. 584–587 (2008)

    Google Scholar 

  9. Kumar, M., Dredze, M., Coppersmith, G., Choudhury, M.D.: Detecting changes in suicide content manifested in social media following celebrity suicides. In: Proceedings of HT 2015, pp. 85–94 (2015)

    Google Scholar 

  10. Lamb, A., Paul, M.J., Dredze, M.: Separating fact from fear: tracking flu infections on Twitter. In: Proceedings of NAACL:HLT 2013, pp. 789–795 (2013)

    Google Scholar 

  11. Lin, H., Jia, J., Nie, L., Shen, G., Chua, T.: What does social media say about your stress? In: Proceedings of IJCAI 2016, pp. 3775–3781 (2016)

    Google Scholar 

  12. Neubig, G., Matsubayashi, Y., Hagiwara, M., Murakami, K.: Safety information mining-what can NLP do in a disaster-. In: Proceedings of IJCNLP 2011, pp. 965–973 (2011)

    Google Scholar 

  13. O’Connor, B., Balasubramanyan, R., Routledge, B.R., Smith, N.A.: From tweets to polls: linking text sentiment to public opinion time series. In: Proceedings of ICWSM 2010, pp. 23–26 (2010)

    Google Scholar 

  14. Okazaki, N., Nabeshima, K., Watanabe, K., Mizuno, J., Inui, K.: Extracting and aggregating false information from microblogs. In: Proceedings of Workshop on Language Processing and Crisis Information, pp. 36–43 (2013)

    Google Scholar 

  15. Pennebaker, J.W., Francis, M.E., Booth, R.J.: Linguistic inquiry and word count: LIWC 2001. Lawrence Erlbaum Associates (2001)

    Google Scholar 

  16. Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes Twitter users: real-time event detection by social sensors. In: Proceedings of WWW 2010, pp. 851–860 (2010)

    Google Scholar 

  17. Takamura, H., Inui, T., Okumura, M.: Extracting semantic orientations of words using spin model. In: Proceedings of ACL 2005, pp. 133–140 (2005)

    Google Scholar 

  18. Varga, I., Sano, M., Torisawa, K., Hashimoto, C., Ohtake, K., Kawai, T., Oh, J.H., De Saeger, S.: Aid is out there: looking for help from tweets during a large scale disaster. In: Proceedings of ACL 2013, pp. 1619–1629 (2013)

    Google Scholar 

  19. Vieweg, S., Hughes, A.L., Starbird, K., Palen, L.: Microblogging during two natural hazards events: what Twitter may contribute to situational awareness. In: Proceedings of CHI 2010, pp. 1079–1088 (2010)

    Google Scholar 

Download references

Acknowledgements

We are grateful to Koichi Kamijoh, Hiroshi Kanayama, Masayasu Muraoka, and the members of the IBM Research - Tokyo text mining team for their helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Aoki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aoki, T., Yoshikawa, K., Nasukawa, T., Takamura, H., Okumura, M. (2018). Detecting Earthquake Survivors with Serious Mental Affliction. In: Hasida, K., Pa, W. (eds) Computational Linguistics. PACLING 2017. Communications in Computer and Information Science, vol 781. Springer, Singapore. https://doi.org/10.1007/978-981-10-8438-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8438-6_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8437-9

  • Online ISBN: 978-981-10-8438-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics