Introduction of Telecardiology and Challenges in Developing Countries

  • Kui Lin Kam
  • Hoe Tung Yew
  • Yuan Wen HauEmail author
Part of the Series in BioEngineering book series (SERBIOENG)


Telecardiology is the delivery of cardiac care services by using information and communication technology (ICT) at distance. Research has proven telecardiology is useful for improving cardiac diseases management and reducing unnecessary hospitalizations and travelling. Although telecardiology is not a new cutting edge technology, yet the infrastructure is still not well established in most of the developing countries. This chapter reviews the development of telecardiology system in some of the developing countries such as Malaysia and Indonesia, the related research works, and the challenges of telecardiology deployment in terms of human resource, financial, technology, user acceptance and policy.


Developing countries Issues and challenges Telecardiology deployment 



This research is supported and funded by Ministry of Higher Education (MoHE) Trans-Disciplinary Research Grant Scheme (TRGS) with Grant no. TRGS/1/2015/UTM/02/3/3 (UTM vote no. R.J130000.7845.4L842) and Universiti Teknologi Malaysia Research University Grant with vote no. Q.J130000.2545.16H83.


  1. 1.
    World Health Organization (WHO): Fact sheet: Cardiovascular Diseases (CVDs). (2017). Accessed on 4 Jan 2018
  2. 2.
    Ministry of Health (MoH) Malaysia: Health Facts Malaysia 2001–2017. Health Informatics Centre, Planning and Development Division, Ministry of Health (MoH) Malaysia, Malaysia (2017)Google Scholar
  3. 3.
  4. 4.
    Harian Kompas: Jumlah Ahli Kardiovaskular Belum Memadai. (2017). Accessed on 4 Jan 2018
  5. 5.
    Hackett, D.: Cardiac Workforce Requirements in the UK. British Cardiac Society, London (2005)Google Scholar
  6. 6.
    Ministry of Health (MoH) Malaysia: Health Indicators 2016: Indicator for Monitoring and Evaluation of Strategy Health for All. Health Informatics Centre Planning Division, Ministry of Health (MoH) Malaysia, Malaysia (2016)Google Scholar
  7. 7.
    Sivasampu, S., Foo, C.Y., Aimi, N.J., et al.: National Healthcare Establishment and Workforce Statistics (Hospital) 2012–2013. The National Healthcare Statistics Initiative (NHSI), National Clinical Research Centre, Ministry of Health Malaysia, Malaysia (2015)Google Scholar
  8. 8.
    Ahmad, W.A., Ali, R.M., Khanom, M., et al.: The journey of Malaysia NCVD-PCI (national cardiovascular disease database-percutaneous coronary intervention) registry: a summary of three years report. Int. J. Cardiol. 165(1), 161–164 (2013)CrossRefGoogle Scholar
  9. 9.
    Ahmad, W.A., Sim, K.H.: Annual Report of the NCVD-PCI Registry 2007–2009. National Cardiovascular Disease Database, National Heart of Association Malaysia and Clinic Research Centre, Ministry of Health (MoH) Malaysia, Malaysia (2011)Google Scholar
  10. 10.
    Raju, P.K., Prasad, S.G.: Telemedicine and cardiology—decade of our experience. J. Indian Coll. Cardiol. 2(1), 4–16 (2012)CrossRefGoogle Scholar
  11. 11.
    Backman, W., Bendel, D., Rakhit, R.: The telecardiology revolution: improving the management of cardiac disease in primary care. J. R. Soc. Med. 103(11), 442–446 (2010)CrossRefGoogle Scholar
  12. 12.
    Brown, J.P., Mahmud, E., Dunford, J.V., et al.: Effect of prehospital 12-lead electrocardiogram on activation of the cardiac catheterization laboratory and door-to-balloon time in ST-segment elevation acute myocardial infarction. Am. J. Cardiol. 101(2), 158–161 (2008)CrossRefGoogle Scholar
  13. 13.
    Brunetti, N.D., De Gennaro, L., Amodio, G., et al.: Telecardiology improves quality of diagnosis and reduces delay to treatment in elderly patients with acute myocardial infarction and atypical presentation. Eur. J. Cardiovas. Prev. Rehabil. 17(6), 615–620 (2010)CrossRefGoogle Scholar
  14. 14.
    Brunetti, N.D., De Gennaro, L., Dellegrottaglie, G., et al.: Fast and furious: telecardiology in acute myocardial infarction triage in the emergency room setting. Eur. Res. Telemed. 2(2), 75–78 (2013)CrossRefGoogle Scholar
  15. 15.
    Chaudhry, S.I., Barton, B., Mattera, J., et al.: Clinical trials: methods and design, randomized trial of telemonitoring to improve heart failure outcomes (Tele-HF): study design. J. Cardiac Fail. 13(9), 709–714 (2007)CrossRefGoogle Scholar
  16. 16.
    Sorensen, J.T., Clemmensen, P., Sejersten, M.: Telecardiology: past, present and future. Rev. Esp. Cardiol. 66(3), 212–218 (2013)CrossRefGoogle Scholar
  17. 17.
    PausJenssen, A.M., Spooner, B.A., Wilson, M.P., et al.: Cardiovascular risk reduction via telehealth: a feasibility study. Can. J. Cardiol. 24(1), 57–60 (2008)CrossRefGoogle Scholar
  18. 18.
    Adeogun, O., Tiwari, A., Alock, J.R.: Models of information exchange for UK telehealth systems. Int. J. Med. Inform. 80(5), 359–370 (2011)CrossRefGoogle Scholar
  19. 19.
    Maarop, N., Win, K.T.: The interplay of environmental factors in the acceptance of teleconsultation technology: a mixed methods study. Open Int. J. Inform. (OIJI) 1(1), 46–48 (2012)Google Scholar
  20. 20.
    Wootton, R.: Realtime telemedicine. J. Telemed. Telecare 12(7), 328–336 (2006)CrossRefGoogle Scholar
  21. 21.
    Campbell, P.T., Patterson, J., Cromer, D., et al.: Prehospital triage of acute myocardial infarction: wireless transmission of electrocardiograms to the on-call cardiologist via a handheld computer. J. Electrocardiol. 38(4), 300–309 (2005)CrossRefGoogle Scholar
  22. 22.
    Mahesh, V., Kandaswamy, A., Venkatesan, R.: Telecardiology for rural health care. Int. J. Recent Trends Eng. (IJRTE) 2(1), 6–9 (2009)Google Scholar
  23. 23.
    Ozen, N., Karlik, B.: A telecardiology system design with real-time diagnosis and teleconsultation. In: The First International Conference on the Applications of Digital Information and Web Technologies (ICADIWT), pp. 500–506 (2008)Google Scholar
  24. 24.
    Kong, K.Y., Ng, C.Y., Ong, K.: Web-based monitoring of real-time ECG data. Comput. Cardiol. 2000, 189–192 (2000)Google Scholar
  25. 25.
    Kohila, S., Gowri, K.: A novel real-time intelligent tele cardiology system using wireless technology to detect cardiac abnormalities. Glob. J. Comput. Sci. Technol. 11(12), 51–57 (2011)Google Scholar
  26. 26.
    Wright, D., Androuchko, L.: Telemedicine and developing countries. J. Telemed. Telecare 2(2), 63–70 (1996)CrossRefGoogle Scholar
  27. 27.
    Armstrong, I.J., Haston, W.S.: Medical decision support for remote general practitioners using telemedicine. J. Telemed. Telecare 3(1), 27–34 (1997)CrossRefGoogle Scholar
  28. 28.
    Cai, K., Liang, X.: Development of WI-FI based telecardiology monitoring system. In: 2010 2nd International Workshop on Intelligent Systems and Applications (ISA), pp. 1–4 (2010)Google Scholar
  29. 29.
    Abo-Zahhad, M., Ahmed, S.M., Elnahas, O.: A wireless emergency telemedicine system for patients monitoring and diagnosis. Int. J. Telemed. Appl. 2014, 4 (2014)Google Scholar
  30. 30.
    Mitra, S., Mitra, M., Chaudhuri, B.B.: Rural cardiac healthcare system—a scheme for developing countries. In: TENCON 2008—2008 IEEE Region 10 Conference, pp. 1–5 (2008)Google Scholar
  31. 31.
    Elena, M., Quero, J.M., Tarrida, C.L., et al.: Design of a mobile telecardiology system using GPRS/GSM technology. In: Engineering in Medicine and Biology, 2002. 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society EMBS/BMES Conference, 2002. Proceedings of the Second Joint, Houston, Texas, USA, pp. 1859–1860 (2002)Google Scholar
  32. 32.
    Anpeng, H., Chao, C., Kaigui, B., et al.: WE-CARE: an intelligent mobile telecardiology system to enable mHealth applications. IEEE J. Biomed. Health Inform. 18(2), 693–702 (2014)CrossRefGoogle Scholar
  33. 33.
    Chin-Teng, L., Kuan-Cheng, C., Chun-Ling, L., et al.: An intelligent telecardiology system using a wearable and wireless ECG to detect atrial fibrillation. IEEE Trans. Inf. Technol. Biomed. 14(3), 726–733 (2010)CrossRefGoogle Scholar
  34. 34.
    Niyato, D., Hossain, E., Diamond, J.: IEEE 802.16/WiMAX-based broadband wireless access and its application for telemedicine/e-health services. IEEE Wirel. Commun. 14(1), 72–83 (2007)CrossRefGoogle Scholar
  35. 35.
    Chorbev, I., Mihajlov, M.: Wireless telemedicine services as part of an integrated system for e-medicine. In: MELECON 2008. The 14th IEEE Mediterranean Electrotechnical Conference, pp. 264–269 (2008)Google Scholar
  36. 36.
    Pareit, D., Lannoo, B., Moerman, I., et al.: The history of WiMAX: a complete survey of the evolution in certification and standardization for IEEE 802.16 and WiMAX. IEEE Commun. Surv. Tutor. 14(4), 1183–1211 (2012)CrossRefGoogle Scholar
  37. 37.
    Mair, F., Fraser, S., Ferguson, J.: Telemedicine via satellite to support offshore oil platforms. J. Telemed. Telecare 14(3), 129–131 (2008)CrossRefGoogle Scholar
  38. 38.
    de Barbara, A.H.A.: The Spanish ministry of defence (MOD) telemedicine system. In: Advances in Telemedicine: Technologies, Enabling Factors and Scenarios. InTech (2011)Google Scholar
  39. 39.
    Clarke, M., Jones, R.W., Lioupis, D.: AIDMAN-telecardiology over a high-speed satellite network. Comput. Cardiol. 2000, 657–660 (2000)Google Scholar
  40. 40.
    Bergrath, S., Rortgen, D., Rossaint, R., et al.: Technical and organisational feasibility of a multifunctional telemedicine system in an emergency medical service—an observational study. J. Telemed. Telecare 17(7), 371–377 (2011)CrossRefGoogle Scholar
  41. 41.
    Sejersten, M., Sillesen, M., Hansen, P.R., et al.: Effect on treatment delay of prehospital teletransmission of 12-lead electrocardiogram to a cardiologist for immediate triage and direct referral of patients with ST-segment elevation acute myocardial infarction to primary percutaneous coronary intervention. Am. J. Cardiol. 101(7), 941–946 (2008)CrossRefGoogle Scholar
  42. 42.
    Bond, R.R., Finlay, D.D., Nugent, C.D., et al.: A review of ECG storage formats. Int. J. Med. Inform. 80(10), 681–697 (2011)CrossRefGoogle Scholar
  43. 43.
    Hsieh, J.C., Hsu, M.W.: A cloud computing based 12-lead ECG telemedicine service. BMC Med. Inform. Decis. Mak. 12(1), 77 (2012)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Hsieh, J.C., Lo, H.C.: The clinical application of a PACS-dependent 12-lead ECG and image information system in E-medicine and telemedicine. J. Digit. Imaging 23(4), 501–513 (2010)CrossRefGoogle Scholar
  45. 45.
    Kumar, M.A., Srinivasan, A., Bussa, N.: HTML5 powered web application for telecardiology: a case study using ECGs. In: 2013 IEEE Point-of-Care Healthcare Technologies (PHT), pp. 156–159 (2013)Google Scholar
  46. 46.
    World Health Organization (WHO): Telemedicine: Opportunities and Developments in Member States: Report on the Second Global Survey on eHealth 2009. In: Global Observatory for eHealth Series, vol. 2. WHO, Geneva (2010)Google Scholar
  47. 47.
    Maarop, N., Win, K.T., Masrom, M., et al.: Exploring factors that affect teleconsultation adoption: in the case of Malaysia. In: 15th Pacific Asia Conference on Information Systems (PACIS 2011): Quality Research in Pacific, pp. 1–12 (2011)Google Scholar
  48. 48.
    Ministry of Health (MoH) Malaysia: Teleconsultation Portal. (2015). Accessed on 7 May 2015
  49. 49.
    Supriyanto, E., Yew, H.T., Satria, H.: Telecardiology for rural area in developing countries: challenges. In: WSEAS Proceeding of the 18th International Conference on Circuits, Systems, Communications and Computers (CSCC ‘14), Greece, pp. 124–128 (2014)Google Scholar
  50. 50.
    Thomas, A.I., Mars, A.C.: Telemedicine in Indonesia: country experiences. Meeting presentation at WHO SEA Regional Consultation on Telemedicine, Pyongyang, DPRK. (2013). Accessed on 4 Jan 2018
  51. 51.
    Wootton, R.: Telemedicine support for the developing world. J. Telemed. Telecare 14(3), 109–114 (2008)CrossRefGoogle Scholar
  52. 52.
    Yellowlees, P.M.: Successfully developing a telemedicine system. J. Telemed. Telecare 11(7), 331–335 (2005)CrossRefGoogle Scholar
  53. 53.
    LeRouge, C., Garfield, M.J.: Crossing the telemedicine chasm: have the U.S. barriers to widespread adoption of telemedicine been significantly reduced? Int. J. Environ. Res. Public Health 10(12), 6472–6484 (2013)CrossRefGoogle Scholar
  54. 54.
    Yew, H.T., Satria, M.H., Hau, Y.W., et al.: A telecardiology framework for rural area. In: WSEAS Proceeding of the 13th International Conference on Applied Computer and Applied Computational Science (ACACOS ‘14), Kuala Lumpur, pp. 140–148 (2014)Google Scholar
  55. 55.
    Pejovic, V.: Adaptive and resource-efficient rural area wireless networks. Ph.D. Thesis, University of California (2012)Google Scholar
  56. 56.
    Moffatt, J.J., Eley, D.S.: Barriers to the up-take of telemedicine in Australia—a view from providers. Rural Remote Health 11(1581), 1–6 (2011)Google Scholar
  57. 57.
    Yew, H.T., Aditya, Y., Satria, H., et al.: Telecardiology system for fourth generation heterogeneous wireless networks. ARPN J. Eng. Appl. Sci. 10(2), 600–607 (2015)Google Scholar
  58. 58.
    International Standards Office: Health Informatics—Standard Communication Protocol—Part 91064: Computer-Assisted Electrocardiography (ISO 11073-91064:2009). ISO, Geneva (2009)Google Scholar
  59. 59.
    DICOM Standards Committee, Working Group 1—Cardiac and Vascular Information: Digital Imaging and Communications in Medicine (DICOM) Supplement 30: Waveform Interchange. (2000). Accessed 23 July 2017
  60. 60.
    Brown, B.D., Badilini, F.: HL7 aECG Implementation Guide. (2005). Accessed 23 July 2017
  61. 61.
    Wang, H., Azuaje, F., Jung, B., et al.: A markup language for electrocardiogram data acquisition and analysis (ecgML). BMC Med. Inform. Decis. Mak. 3(1), 4 (2003)CrossRefGoogle Scholar
  62. 62.
    Kimura, E., Norihiko, T., Ishihara, K.: Development MFER (medical waveform format encoding rules) parser. In: AMIA 2006 Annual Symposium Proceedings, p. 985 (2006)Google Scholar
  63. 63.
    Helfenbein, E.D., Gregg, R., Zhou, S.: Philips medical systems support for open ECG and standardization efforts. Comput. Cardiol. 2004, 393–396 (2004)Google Scholar
  64. 64.
    Lu, X., Duan, H., Zheng, H.: XML-ECG: An XML-based ECG presentation for data exchanging. In: 2007 1st International Conference on Bioinformatics and Biomedical Engineering (ICBBE), pp. 1141–1144 (2007)Google Scholar
  65. 65.
    Fang, Q., Sufi, F., Cosic, I.: A mobile device based ECG analysis system. In: Data Mining in Medical and Biological Research, pp. 209–226. InTech (2008)Google Scholar
  66. 66.
    Gonçalves, B., Pereira Filho, J.G., Andreão, R.V.: ECGWARE: an ECG markup language for ambulatory telemonitoring and decision making support. In: International Conference on Health Informatics (HEALTHINF), pp. 37–43 (2008)Google Scholar
  67. 67.
  68. 68.
  69. 69.
    Schiller: SEMA-200 Data Management Solution Product Brochure. (2015). Accessed on 4 Jan 2018
  70. 70.
    Chronaki, C.E., Chiarugi, F., Lees, P.J., et al.: Open ECG: A European project to promote the SCP-ECG standard, a further step towards interoperability in electrocardiography. In: Computers in Cardiology, pp. 285–288 (2002)Google Scholar
  71. 71.
    Lees, P.J., Chronaki, C.E., Chiarugi, F.: Standards and interoperability in digital electrocardiography. The OpenECG project. Hell. J. Cardiol. 45, 364–369 (2004)Google Scholar
  72. 72.
    Chronaki, C.E., Chiarugi, F., Macerata, A., et al.: Interoperability in digital electrocardiography after the openECG project. In: Computers in Cardiology, pp. 49–52 (2004)Google Scholar
  73. 73.
    Integrating the Healthcare Enterprise (IHE): IHE Cardiology (CARD) Technical Framework, Volume 1 (CARD TF-1): Integration Profiles. (2013). Accessed on 4 Jan 2018
  74. 74.
    Imani, B., Hajalizadeh, A., Jahangiri, A., et al.: The challenges of ICT development in rural area case study: Village Aleni, Meshkin Shahr in Ardebil Province. Aust. J. Basic Appl. Sci. 6(9), 674–682 (2012)Google Scholar
  75. 75.
    Sharma, U., Barnett, J., Clarke, M.: Clinical users’ perspective on telemonitoring of patients with long-term conditions: understood through concepts of Giddens’s structuration theory & consequence of modernity. Stud. Health Technol. Inform. 160(1), 545–549 (2010)Google Scholar
  76. 76.
    Brewster, L., Mountain, G., Wessels, B., et al.: Factors affecting frontline staff acceptance of telehealth technologies: a mixed-method systematic review. J. Adv. Nurs. 70(1), 21–33 (2014)CrossRefGoogle Scholar
  77. 77.
    Mair, F., Hiscock, J., Beaton, S.C.: Understanding factors that inhibit or promote the utilization of telecare in chronic lung disease. Chronic Illn. 4(2), 110–117 (2008)CrossRefGoogle Scholar
  78. 78.
    Buck, S.: Nine human factors contributing to the user acceptance of telemedicine application: a cognitive-emotional approach. J. Telemed. Telecare 15(2), 55–58 (2009)CrossRefGoogle Scholar
  79. 79.
    Chau, P.Y.K., Hu, P.J.H.: Investigating healthcare professionals’ decisions to accept telemedicine technology: an empirical test of competing theories. Inf. Manag. 39(4), 297–311 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.UTM-IJN Cardiovascular Engineering Centre, School of Biomedical Engineering and Health Sciences, Faculty of EngineeringUniversiti Teknologi MalaysiaJohor BahruMalaysia
  2. 2.Faculty of EngineeringUniversiti Malaysia SabahKota KinabaluMalaysia

Personalised recommendations