Advertisement

Biofertilizers Based on Bacterial Endophytes Isolated from Cereals: Potential Solution to Enhance These Crops

  • Lorena Celador-LeraEmail author
  • Alejandro Jiménez-Gómez
  • Esther Menéndez
  • Raul Rivas
Chapter

Abstract

Due to the increasing demand for the use of agricultural products, along with new and more restrictive policies regarding the application of fertilizers, the search for alternative ways to increase crop production in a responsible way with respect to the environment is necessary, especially considering that the use of nitrogen-based fertilizers are both very costly and polluting. As regards this chapter focuses on the production of cereals because they represent the most important source of total food consumption, particularly in developing countries with diets based mainly on these types of crops. One possible solution is the application of microbial-based fertilizers (biofertilizers) to enhance crop production. In the literature, bacteria that not only promote plant growth but are also capable of colonizing the interior of plants, known as endophytic bacteria, have been described. Several studies have characterized the different ways of locating these bacteria inside plants, as well as the effects of their colonization. In addition, some entophytes are able to fix nitrogen for their hosts, produce phytohormones (auxins, cytokinins, gibberellins), degrade harmful compounds, decrease the effects of saline stress and improve seed germination, among others benefits. Several companies have attempted to exploit the positive effects caused by endophytic bacteria on their hosts by developing different products, used worldwide (e.g. Inogro®, QuickRoots®), that are based on these types of bacteria. The application of these products occurs despite the governing legislation of the different countries where it is used, and there are usually no specific regulations controlling the process of production, security and marketing of these biofertilizers.

Keywords

PGPBEs Biofertilization Maize Azospirillum Bioinoculants 

Notes

Acknowledgements

The authors acknowledge financial support provided by the Spanish Government (Ministerio de Economía y Competitividad; MINECO) through the projects AGL2011-29227 and AGL2015-70510-R, by the Junta de Castilla y León (regional government) through the project JCyL SA169U14 and by the Diputación de Salamanca (local government) through the project V113/463AC06. AJG is thankful to a PhD grant from the Spanish Government (Ministerio de Educación, Cultura y Deporte). The authors are grateful to Emma Jane Keck for correcting English style.

References

  1. Ahmad M, Nadeem SM, Naveed M, Zahir ZA (2016) Potassium-solubilizing bacteria and their application in agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 293–313.  https://doi.org/10.1007/978-81-322-2776-2_21 CrossRefGoogle Scholar
  2. Alves GC, Videira SS, Urquiaga S, Reis VM (2015) Differential plant growth promotion and nitrogen fixation in two genotypes of maize by several Herbaspirillum inoculants. Plant Soil 387(1–2):307–321CrossRefGoogle Scholar
  3. Argueso CT, Hansen M, Kieber J (2007) Regulation of ethylene biosynthesis. J Plant Growth Regul 26(2):92–105CrossRefGoogle Scholar
  4. Babalola OO, Glick BR (2012) Indigenous African agriculture and plant associated microbes: current practice and future transgenic prospects. Sci Res Essays 7(28):2431–2439Google Scholar
  5. Bahadur I, Meena VS, Kumar S (2014) Importance and application of potassic biofertilizer in Indian agriculture. Int Res J Biol Sci 3:80–85Google Scholar
  6. Bahadur I, Maurya BR, Kumar A, Meena VS, Raghuwanshi R (2016a) Towards the soil sustainability and potassium-solubilizing microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 225–266.  https://doi.org/10.1007/978-81-322-2776-2_18 CrossRefGoogle Scholar
  7. Bahadur I, Maurya BR, Meena VS, Saha M, Kumar A, Aeron A (2016b) Mineral release dynamics of tricalcium phosphate and waste muscovite by mineral-solubilizing rhizobacteria isolated from indo-gangetic plain of India. Geomicrobiology Journal.  https://doi.org/10.1080/01490451.2016.1219431
  8. Baldani VLD, Baldani JI, Döbereiner J (2000) Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia spp. Biol Fertil Soils 30:485–491CrossRefGoogle Scholar
  9. Baldani JI, Reis VM, Baldani VL, Döbereiner J (2002) Review: a brief story of nitrogen fixation in sugarcane-reasons for success in Brazil. Funct Plant Biol 29(4):417–423CrossRefGoogle Scholar
  10. Bashan Y, Levanony H (1990) Current status of Azospirillum inoculation technology: Azospirillum as a challenge for agriculture. Can J Microbiol 36:591–608CrossRefGoogle Scholar
  11. Bashan Y, De-Bashan LE, Prabhu SR, Hernandez JP (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378(1–2):1–33CrossRefGoogle Scholar
  12. Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microb Ecol 68:1–13CrossRefGoogle Scholar
  13. Biswas JC, Ladha, JK, Dazzo FB (2000) Rhizobia inoculation improves nutrient uptake and growth of lowland rice. Pak J Bot l64:1644–1650CrossRefGoogle Scholar
  14. Boddey RM, Dobereiner J (1995) Nitrogen fixation associated with grasses and cereals: recent progress and perspectives for the future. Fert Res 42(1–3):241–250CrossRefGoogle Scholar
  15. Bulgarelli D, Garrido-Oter R, Münch PC, Weiman A, Dröge J, Pan Y, McHardy AC, Schulze-Lefert P (2015) Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17(3):392–403PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cavalcante VA, Dobereiner J (1988) A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane. Plant Soil 108:23–31CrossRefGoogle Scholar
  17. Chaintreuil C, Giraud E, Prin Y, Lorquin J, Ba A, Gillis M, de Lajudie P, Dreyfus B (2000) Photosynthetic Bradyrhizobia are natural endophytes of the African wild rice Oryza breviligulata. Appl Environ Microbiol 66:5437–5447PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chanway CP, Shishido M, Nairn J, Jungwirth S, Markham J, Xiao G, Holl FB (2000) Endophytic colonization and field responses of hybrid spruce seedlings after inoculation with plant growth-promoting rhizobacteria. Forest Ecol Manag 133(1):81–88CrossRefGoogle Scholar
  19. Chauhan H, Bagyaraj DJ, Selvakumar G, Sundaram SP (2015) Novel plant growth promoting rhizobacteria-prospects and potential. Appl Soil Ecol 95:38–53CrossRefGoogle Scholar
  20. Chelius MK, Triplett EW (2000) Dyadobacter fermentans gen. Nov., sp. nov., a novel gram-negative bacterium isolated from surface-sterilized Zea mays stems. Int J Syst Evol Microbiol 50(2):751–758PubMedCrossRefGoogle Scholar
  21. Chi F, Shen SH, Cheng HP, Jing YX, Yanni YG, Dazzo FB (2005) Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl Environ Microbiol 71(11):7271–7278PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cocking EC (2003) Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant Soil 252(1):169–175CrossRefGoogle Scholar
  23. Combes-Meynet E, Pothier JF, Moenne-Loccoz Y, Prigent-Combaret C (2011) The pseudomonas secondary metabolite 2, 4-diacetylphloroglucinol is a signal inducing rhizoplane expression of Azospirillum genes involved in plant-growth promotion. Mol Plant-Microbe Interact 24:271–284PubMedCrossRefGoogle Scholar
  24. Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959PubMedPubMedCentralCrossRefGoogle Scholar
  25. Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42(5):669–678CrossRefGoogle Scholar
  26. Conn KL, Nowak J, Lazarovitz G (1997) A gnotobiotic bioassay for studying interactions between potato and plant growth-promoting rhizobacteria. Can J Microbiol 43:801–808CrossRefGoogle Scholar
  27. Contesto C, Desbrosses G, Lefoulon C, Béna G, Borel F, Galland M, Gamet L, Varoquaux F, Touraine B (2008) Effects of rhizobacterial ACC deaminase activity on Arabidopsis indicate that ethylene mediates local root responses to plant growth-promoting rhizobacteria. Plant Sci 175:178–189CrossRefGoogle Scholar
  28. Couillerot O, Ramírez-Trujillo A, Walker V, Felten A, Jansa J, Maurhofer M, Défago G, Prigent-Combaret C, Comte G, Caballero-Mellado J, Moënne-Loccoz Y (2013) Comparison of prominent Azospirillum strains in Azospirillum–Pseudomonas–Glomus consortia for promotion of maize growth. Appl Microbiol Biotechnol 97(10):4639–4649PubMedCrossRefGoogle Scholar
  29. Das I, Pradhan M (2016) Potassium-solubilizing microorganisms and their role in enhancing soil fertility and health. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 281–291.  https://doi.org/10.1007/978-81-322-2776-2_20 CrossRefGoogle Scholar
  30. de Salamone IEG, Dobereiner J, Urquiaga S, Boddey RM (1996) Biological nitrogen fixation in Azospirillum strain-maize genotype associations as evaluated by the 15N isotope dilution technique. Biol Fertil Soils 23:249–256CrossRefGoogle Scholar
  31. Dewasthale G, Bondre (2008) Marketing of biofertilizers. Conference on rural marketing. Indian Institute of Management, KozhikodeGoogle Scholar
  32. Díaz-Herrera S, Grossi C, Zawoznik M, Groppa MD (2016) Wheat seeds harbour bacterial endophytes with potential as plant growth promoters and biocontrol agents of Fusarium graminearum. Microbiol Res 186–187:37–43PubMedCrossRefGoogle Scholar
  33. Dobbelaere S, Croonenborghs A, Thys A, Broek AV, Vanderleyden J (1999) Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212:155–164CrossRefGoogle Scholar
  34. Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, Labandera-Gonzalez C, Caballero-Mellado J, Aguirre JF, Kapulnik Y, Brener S, Burdman S, Kadouri D, Sarig S, Okon Y (2001) Responses of agronomically important crops to inoculation with Azospirillum. Aust J Plant Physiol 28:871–879Google Scholar
  35. Dobermann A (2007) Nutrient use efficiency-measurement and management in a time of new challenges. In: Proceedings of the IFA International Workshop on Fertilizer Best Management Practices. Fertilizer Best Management Practices, 7–9 March 2007, Brussels, Belgium. International Fertilizer Industry Association, pp 1–28Google Scholar
  36. Dominguez-Nunez JA, Benito B, Berrocal-Lobo M, Albanesi A (2016) Mycorrhizal fungi: role in the solubilization of potassium. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 77–98.  https://doi.org/10.1007/978-81-322-2776-2_6 CrossRefGoogle Scholar
  37. Dotaniya ML, Meena VD, Basak BB, Meena RS (2016) Potassium uptake by crops as well as microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 267–280.  https://doi.org/10.1007/978-81-322-2776-2_19 CrossRefGoogle Scholar
  38. Elbeltagy AK, Sato NT, Suzuki H, Ye B, Hamada T, Isawa T, Mitsui H, Minamisawa K (2001) Endophytic colonization and in plant nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Appl Environ Microbiol 67:5285–5293PubMedPubMedCentralCrossRefGoogle Scholar
  39. Elmerich, C (2007) Historical perspective: from bacterization to endophytes. In: Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations. Springer, Dordrecht, pp 1–20Google Scholar
  40. Engelhard M, Hurek T, Reinhold-Hurek B (2000) Preferential occurrence of diazotrophic endophytes, Azoarcus spp., in wild rice species and land races of Oryza sativa in comparison with modern races. Environ Microbiol 2:131–141PubMedCrossRefGoogle Scholar
  41. Estrada P, Mavingui P, Cournoyer B, Fontaine F, Balandreau J, Caballero-Mellado J (2005) A N-fixing endophytic Burkholderia sp. associated with maize plants cultivated in Mexico. Int J Syst Evol Microbiol 55:1233–1237CrossRefGoogle Scholar
  42. Etesami H, Hosseini HM, Alikhani HA (2014) Bacterial biosynthesis of 1-aminocyclopropane-1-caboxylate (ACC) deaminase, a useful trait to elongation and endophytic colonization of the roots of rice under constant flooded conditions. Physiol Mol Biol Plants 20(4):425–434PubMedPubMedCentralCrossRefGoogle Scholar
  43. FAO (1991) Organic recycling in Asia and the Pacific. Regional office for Asia and Pacific (RAPA)/FAO, Bangkok, ThailandGoogle Scholar
  44. Flozyme Corporation Inc; Agriculture, Inogro. Flozyme Corporation Web. http://www.flozyme.com/agriculture/ (2016). Accessed 21 Nov 2016
  45. Fox AR, Soto G, Valverde C, Russo D, Lagares A, Zorreguieta A, Alleva K, Pascuan C, Frare R, Mercado-Blanco J, Dixon R, Ayub ND (2016) Major cereal crops benefit from biological nitrogen fixation when inoculated with the nitrogen-fixing bacterium Pseudomonas protegens Pf-5 X940. Environ Microbiol 18(10):3522–3534PubMedCrossRefGoogle Scholar
  46. Francine M, Walker P, Prayiton J, Rolfe BG, Weinman JJ, Hocart CH (2007) Infection process and the interaction of rice roots with rhizobia. J Exp Bot 58(12):3343–3350CrossRefGoogle Scholar
  47. Fuentes-Ramirez LE, Caballero-Mellado J (2005) Bacterial biofertilizers. In: PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 143–172Google Scholar
  48. Fuentes-Ramirez LE, Jiminez-Salgado T, Abarca-Ocampo IR, Caballero-Mellado J (1993) Acetobacter diazotrophicus, an indolacetic acid-producing bacterium isolated from sugarcane cultivars in Mexico. Plant Soil 154:145–150CrossRefGoogle Scholar
  49. Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield KE (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100(9):1738–1175PubMedCrossRefGoogle Scholar
  50. Gamalero E, Glick BR (2015) Bacterial modulation of plant ethylene levels. Plant Physiol 169:13–22PubMedPubMedCentralCrossRefGoogle Scholar
  51. García-Fraile P, Menéndez E, Rivas R (2015) Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioeng 2:183–205.  https://doi.org/10.3934/bioeng.2015.3.183 CrossRefGoogle Scholar
  52. Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39PubMedPubMedCentralCrossRefGoogle Scholar
  53. Goormachtig S, Capoen W, James E, Holsters M (2004) Switch from intracellular to intercellular invasion during water stress-tolerant legume nodulation. Proc Natl Acad Sci USA 101:6303–6308PubMedPubMedCentralCrossRefGoogle Scholar
  54. Govindarajan M, Balandreau J, Muthukumarasamy R, Revathi G, Lakshminarasimhan C (2006) Improved yield of micropropagated sugarcane following inoculation by endophytic Burkholderia vietnamiensis. Plant Soil 280(1–2):239–252CrossRefGoogle Scholar
  55. Govindarajan M, Kwon SW, Weon HY (2007) Isolation, molecular characterization and growth-promoting activities of endophytic sugarcane diazotroph Klebsiella sp. GR9. World J Microbiol Biotechnol 23(7):997–1006CrossRefGoogle Scholar
  56. Govindarajan M, Balandreau J, Kwon SW, Weon HY, Lakshminarasimhan C (2008) Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microb Ecol 55(1):21–37PubMedCrossRefGoogle Scholar
  57. Gregory PJ (2006) Plant roots: growth, activity and interaction with soils. Blackwell Publishing, Oxford, 318 ppCrossRefGoogle Scholar
  58. Gutierrez-Zamora ML, Martınez-Romero E (2001) Natural endophytic association between Rhizobium etli and maize (Zea mays L.) J Biotechnol 91(2):117–126PubMedCrossRefGoogle Scholar
  59. Gyaneshwar P, James EK, Mathan N, Reinhold-Hurek B, Ladha JK (2001) Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. J Biotechnol 183:2634–2645Google Scholar
  60. Gyaneshwar P, James EK, Reddy PM et al (2002) Herbaspirillum colonization increases growth and nitrogen accumulation in aluminium-tolerant rice varieties. New Phytol 154(1):131–145CrossRefGoogle Scholar
  61. Hardoim PR, Van Overbeek LS, Berg G, Ladha JK (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:3CrossRefGoogle Scholar
  62. Hartmann A, Stoffels M, Eckert B, Kirchhof G, Schloter M, Triplett EW (2000) Analysis of the presence and diversity of diazotrophic endophytes. Prokaryotic nitrogen fixation: a model system for the analysis of a biological process, pp 727–736Google Scholar
  63. Hilali A, Prévost D, Broughton WJ, Antoun H (2001) Effets de l’inoculation avec des souches de Rhizobium leguminosarum biovar trifolii sur la croissance du blé dans deux sols du Maroc. Can J Microbiol 47(6):590–593PubMedCrossRefGoogle Scholar
  64. Iniguez L, Dong Y, Carter HD, Ahmer BM, Stone JM, Triplett EW (2005) Regulation of enteric endophytic bacterial colonization by plant defences. MPMI 18(2):169–178PubMedCrossRefGoogle Scholar
  65. Jain V, Gupta K (2003) The flavonoid naringenin enhances intercellular colonization of rice roots by Azorhizobium caulinodans. Biol Fertil Soils 38:119–123CrossRefGoogle Scholar
  66. Jaiswal DK, Verma JP, Prakash S, Meena VS, Meena RS (2016) Potassium as an important plant nutrient in sustainable agriculture: a state of the art. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 21–29.  https://doi.org/10.1007/978-81-322-2776-2_2 CrossRefGoogle Scholar
  67. James EK, Gyaneshwar P, Mathan N, Barraquio WL, Reddy PM, Iannetta PPM, Olivares FL, Ladha JK (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant-Microbe Interact 15:894–906PubMedCrossRefGoogle Scholar
  68. Jat LK, Singh YV, Meena SK, Meena SK, Parihar M, Jatav HS, Meena RK, Meena VS (2015) Does integrated nutrient management enhance agricultural productivity? J Pure Appl Microbiol 9(2):1211–1221Google Scholar
  69. Jeyabal A, Kupuswamy G (2001) Recycling of organic wastes for the production of vermicompost and its response in rice-legume cropping system and soil fertility. Eur J Agron 15:153–170CrossRefGoogle Scholar
  70. Jha Y, Subramanian RB (2016) Regulation of plant physiology and antioxidant enzymes for alleviating salinity stress by potassium-mobilizing bacteria. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 149–162.  https://doi.org/10.1007/978-81-322-2776-2_11 CrossRefGoogle Scholar
  71. Ji SH, Gururani MA, Chun SC (2014) Expression analysis of rice pathogenesis-related proteins involved in stress response and endophytic colonization properties of gfp-tagged Bacillus subtilis CB-R05. Appl Biochem Biotechnol 174(1):231–241PubMedCrossRefGoogle Scholar
  72. Khan Z, Roman D, Kintz T, Delas Alas M, Yap R, Doty S (2014) Degradation, phytoprotection and phytoremediation of phenanthrene by endophyte Pseudomonas putida, PD1. Environ Sci Technol 48(20):12221–12228PubMedCrossRefGoogle Scholar
  73. Khan AL, Halo BA, Elyassi A, Ali S, Al-Hosni K, Hussai J, Al-Harrasi A, Lee I (2016) Indole acetic acid and ACC deaminase fromendophytic bacteria improves the growth of Solanum lycopersicum. Electron J Biotechnol 21:58–64CrossRefGoogle Scholar
  74. Kudoyarova GR, Melentiev AL, Martynenko EV, Timergalina LN, Arkhipova TN, Shendel GV, Kuz'mina LY, Dodd IC, Veselov SY (2014) Cytokinin producing bacteria stimulate amino acid deposition by wheat roots. Plant Physiol Biochem 83:285–291PubMedCrossRefGoogle Scholar
  75. Kuklinsky-Sobral J, Araújo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6(12):1244–1251PubMedPubMedCentralCrossRefGoogle Scholar
  76. Kumar A, Bahadur I, Maurya BR, Raghuwanshi R, Meena VS, Singh DK, Dixit J (2015) Does a plant growth-promoting rhizobacteria enhance agricultural sustainability? J Pure ApplMicrobiol 9:715–724Google Scholar
  77. Kumar A, Meena R, Meena VS, Bisht JK, Pattanayak A (2016a) Towards the stress management and environmental sustainability. J Clean Prod 137:821–822CrossRefGoogle Scholar
  78. Kumar A, Patel JS, Bahadur I, Meena VS (2016b) The molecular mechanisms of KSMs for enhancement of crop production under organic farming. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 61–75.  https://doi.org/10.1007/978-81-322-2776-2_5 CrossRefGoogle Scholar
  79. Kumar A, Maurya BR, Raghuwanshi R, Meena VS, Islam MT (2017) Co-inoculation with Enterobacter and Rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under indo-gangetic plain of India. J Plant Growth Regul.  https://doi.org/10.1007/s00344-016-9663-5
  80. Ladha JK, Kundu DK, Coppenolle MGA, Carangal VR, Peoples MB, Dart PJ (1996) Legume productivity and soil nitrogen dynamics in lowland rice-based cropping systems. Soil Sci Soc Amer J 60:183–192CrossRefGoogle Scholar
  81. Ladha JK, Padre AT, Punzalan GC, Castillo E, Singh U, Reddy CK (1998) Nondestructive estimation of shoot nitrogen in different rice genotypes. Agron J 90:33–40CrossRefGoogle Scholar
  82. Lakhani SH, Gediya KM, Patel AP (2014) Response of pearl millet (Pennisetum glaucum L.) to sowing methods and bio-fertilizers during summer season under middle Gujarat conditions. Trends Biosc 7(21):3423–3427Google Scholar
  83. Lalande R, Bissonnette N, Coutlée D, Antoun H (1989) Identification of rhizobacteria from maize and determination of their plant-growth promoting potential. Plant Soil 115(1):7–11CrossRefGoogle Scholar
  84. Li R, MacRae IC (1992) Specific identification and enumeration of Acetobacter diazotrophicus in sugarcane. Soil Biol Biochem 24:413–419CrossRefGoogle Scholar
  85. Liu JFBD, Dazzo FB, Glagoleva O, Yu B, Jain AK (2001) CMEIAS: a computer-aided system for the image analysis of bacterial morphotypes in microbial communities. Microb Ecol 41(3):173–194PubMedCrossRefGoogle Scholar
  86. Lodewychx C, Vangronsveld J, Porteous F, Moore ER, Taghavi S, Mezgeay M, der Lelie DV (2002) Endophytic bacteria and their potential applications. Cr Rev Plant Sci 21:583–606CrossRefGoogle Scholar
  87. Long HH, Schmidt DD, Baldwin IT (2008) Native bacterial endophytes promote host growth in a species-specific manner; phytohormone manipulations do not result in common growth responses. PLoS One 3:e2702PubMedPubMedCentralCrossRefGoogle Scholar
  88. MacMillan J (2001) Occurrence of gibberellins in vascular plants, fungi and bacteria. J Plant Growth Regul 20(4):387–442PubMedCrossRefGoogle Scholar
  89. Mäder P, Kaiser F, Adholeya A, Singh R, Uppalb HS, Sharmac AK, Srivastavac R, Sahaid V, Aragnoe M, Wiemkenf A, Johrig BN, Friedh PM (2011) Inoculation of root microorganisms for sustainable wheat-rice and wheat-black gram rotations in India. Soil Biol Biochem 43:609–619CrossRefGoogle Scholar
  90. Malusá E, Vassilev N (2014) A contribution to set a legal framework for biofertilisers. Appl Microbiol Biotechnol 98(15):6599–6607PubMedPubMedCentralCrossRefGoogle Scholar
  91. Masciarelli O, Urbani L, Reinoso H, Luna V (2013) Alternative mechanism for the evaluation of indole-3-acetic acid (IAA) production by Azospirillum brasilense strains and its effects on the germination and growth of maize seedlings. J Microbiol 51(5):590–597PubMedCrossRefGoogle Scholar
  92. Masood S, Bano A (2016) Mechanism of potassium solubilization in the agricultural soils by the help of soil microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 137–147.  https://doi.org/10.1007/978-81-322-2776-2_10 CrossRefGoogle Scholar
  93. Masso C, Jefwa JM, Jemo M, Thuita M, Tarus D, Vanlauwe B (2014) Chapter twenty-two impact of inadequate regulatory frameworks on the adoption of bio-fertilizer (eg PGPR) Technologies. Recent advances in biofertilizers and biofungicides (PGPR) for sustainable agriculture, p 258Google Scholar
  94. Maurya BR, Meena VS, Meena OP (2014) Influence of Inceptisol and Alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. Vegetos 27:181–187Google Scholar
  95. Meena OP, Maurya BR, Meena VS (2013a) Influence of K-solubilizing bacteria on release of potassium from waste mica. Agric Sust Dev 1:53–56Google Scholar
  96. Meena VS, Maurya BR, Bohra JS, Verma R, Meena MD (2013b) Effect of concentrate manure and nutrient levels on enzymatic activities and microbial population under submerged rice in alluvium soil of Varanasi. Crop Res 45(1,2 & 3):6–12Google Scholar
  97. Meena VS, Maurya BR, Verma R, Meena RS, Jatav GK, Meena SK, Meena SK (2013c) Soil microbial population and selected enzyme activities as influenced by concentrate manure and inorganic fertilizer in alluvium soil of Varanasi. Bioscan 8(3):931–935Google Scholar
  98. Meena VS, Maurya BR, Bahadur I (2014a) Potassium solubilization by bacterial strain in waste mica. Bang J Bot 43:235–237Google Scholar
  99. Meena VS, Maurya BR, Verma JP (2014b) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347PubMedPubMedCentralCrossRefGoogle Scholar
  100. Meena RS, Meena VS, Meena SK, Verma JP (2015a) The needs of healthy soils for a healthy world. J Clean Prod 102:560–561CrossRefGoogle Scholar
  101. Meena RS, Meena VS, Meena SK, Verma JP (2015b) Towards the plant stress mitigate the agricultural productivity: a book review. J Clean Prod 102:552–553CrossRefGoogle Scholar
  102. Meena VS, Maurya BR, Meena RS (2015c) Residual impact of wellgrow formulation and NPK on growth and yield of wheat (Triticum aestivum L.) Bangladesh J Bot 44(1):143–146CrossRefGoogle Scholar
  103. Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015d) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347CrossRefGoogle Scholar
  104. Meena VS, Meena SK, Verma JP, Meena RS, Ghosh BN (2015e) The needs of nutrient use efficiency for sustainable agriculture. J Clean Prod 102:562–563.  https://doi.org/10.1016/j.jclepro.2015.04.044 CrossRefGoogle Scholar
  105. Meena VS, Verma JP, Meena SK (2015f) Towards the current scenario of nutrient use efficiency in crop species. J Clean Prod 102:556–557.  https://doi.org/10.1016/j.jclepro.2015.04.030 CrossRefGoogle Scholar
  106. Meena RK, Singh RK, Singh NP, Meena SK, Meena VS (2016a) Isolation of low temperature surviving plant growth-promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatalysis Agricult Biotechnol 4:806–811CrossRefGoogle Scholar
  107. Meena RS, Bohra JS, Singh SP, Meena VS, Verma JP, Verma SK, Sihag SK (2016b) Towards the prime response of manure to enhance nutrient use efficiency and soil sustainability a current need: a book review. J Clean Prod 112(1):1258–1260CrossRefGoogle Scholar
  108. Meena SK, Rakshit A, Meena VS (2016c) Effect of seed bio-priming and N doses under varied soil type on nitrogen use efficiency (NUE) of wheat (Triticum aestivum L.) under greenhouse conditions. Biocatal Agric Biotechnol 6:68–75Google Scholar
  109. Meena VS, Bahadur I, Maurya BR, Kumar A, Meena RK, Meena SK, Verma JP (2016d) Potassium-solubilizing microorganism in evergreen agriculture: an overview. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 1–20.  https://doi.org/10.1007/978-81-322-2776-2_1 CrossRefGoogle Scholar
  110. Meena VS, Meena SK, Bisht JK, Pattanayak A (2016e) Conservation agricultural practices in sustainable food production. J Clean Prod 137:690–691CrossRefGoogle Scholar
  111. Meena VS, Maurya BR, Meena SK, Meena RK, Kumar A, Verma JP, Singh NP (2017) Can Bacillus species enhance nutrient availability in agricultural soils?. In: Islam MT, Rahman M, Pandey P, Jha CK, Aeron A (eds) Bacilli and agrobiotechnology. Springer, Cham, pp 367–395.  https://doi.org/10.1007/978-3-319-44409-3_16 CrossRefGoogle Scholar
  112. Mehnaz S, Lazarovits G (2006) Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans, and Azospirillum lipoferum on corn plant growth under greenhouse conditions. Microb Ecol 51(3):326–335PubMedPubMedCentralCrossRefGoogle Scholar
  113. Merzaeva OV, Shirokikh IG (2010) The production of auxins by the endophytic bacteria of winter rye. Appl Biochem Microbiol 44:44–50CrossRefGoogle Scholar
  114. Mia MB, Shamsuddin ZH (2010) Rhizobium as a crop enhancer and biofertilizer for increased cereal production. Afr J Biotechnol 9(37):6001–6009Google Scholar
  115. Miché L, Battistoni F, Gemmer S, Belghazi M, Reinhold-Hurek B (2006) Upregulation of jasmonate-inducible defense proteins and differential colonization of roots of Oryza sativa cultivars with the endophyte Azoarcus sp. Mol Plant-Microbe Interact 19:502–511PubMedCrossRefGoogle Scholar
  116. Mirza MS, Ahmad W, Latif F, Haurat J, Bally R, Normand P, Malik KA (2001) Isolation, partial characterization, and effect of plant growth promoting bacteria (PGPB) on micropropagated sugarcane in vitro. Plant Soil 237:47–54CrossRefGoogle Scholar
  117. Mitra S (2014) Interaction of Rhizobium sp. Strain IRBG74 with a Legume (Sesbania Cannabina) and a Cereal (Oryza Sativa)Google Scholar
  118. Molla AH, Shamsuddin ZH, Halimi MS, Morziah M, Puteh AB (2001) Potential for enhancement of root growth and nodulation of soybean co-inoculated with Azospirillum and Bradyrhizobium in laboratory systems. Soil Biol Biochem 33(4):457–463CrossRefGoogle Scholar
  119. Morley R (2013) Impact of free-living diazotrophs, Azospirillum lipoferum and Gluconacetobacter azotocaptans, on growth and nitrogen utilization by wheat (Triticum aestivum cv. Lillian)Google Scholar
  120. Muñoz-Rojas J, Caballero-Mellado J (2003) Population dynamics of Gluconacetobacter diazotrophicus in sugarcane cultivars and its effect on plant growth. Microb Ecol 46(4):454–464PubMedCrossRefGoogle Scholar
  121. Muthukumarasamy R, Cleenwerck I, Revathi G, Vadivelu M, Janssens D, Hoste B, Kang Ui Gum KU, Park K, Son CY, Sa T, Caballero-Mellado J (2005) Natural association of Gluconacetobacter diazotrophicus and diazotrophic Acetobacter peroxydans with wetland rice. Syst Appl Microbiol 28(3):277–286PubMedCrossRefGoogle Scholar
  122. Naveed M, Mehboob I, Shaker MA, Hussain MB, Farooq M (2015) Biofertilizers in Pakistan: initiatives and limitations. Int J Agril Biol 17:411–420CrossRefGoogle Scholar
  123. Oliveira AD, Urquiaga S, Döbereiner J, Baldani JI (2002) The effect of inoculating endophytic N2-fixing bacteria on micropropagated sugarcane plants. Plant Soil 242(2):205–215CrossRefGoogle Scholar
  124. Pan D, Mionetto A, Tiscornia S, Bettucci (2015) Endophytic bacteria from wheat grain as biocontrol agents of Fusarium graminearum and deoxynivalenol production in wheat. Mycotoxin Res 31:137PubMedCrossRefGoogle Scholar
  125. Parewa HP, Yadav J, Rakshit A, Meena VS, Karthikeyan N (2014) Plant growth promoting rhizobacteria enhance growth and nutrient uptake of crops. Agricult Sustain Dev 2(2):101–116Google Scholar
  126. Perez-Montaño F, Alías-Villegas C, Bellogín RA, Del Cerro P, Espuny MR, Jiménez-Guerrero I, López-Baena FJ, Ollero FJ, Cubo T (2014) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Rev 169:325–336Google Scholar
  127. Perrine-Walker FM, Gartner E, Hocart CH, Becker A, Rolfe BG (2007a) Rhizobium-initiated rice growth inhibition caused by nitric oxide accumulation. Mol Plant-Microbe Interact 20:283–292PubMedCrossRefGoogle Scholar
  128. Perrine-Walker FM, Prayitno J, Rolfe BG, Weinman JJ, Hocart CH (2007b) Infection process and the interaction of rice roots with rhizobia. J Exp Bot 58(12):3343–3350PubMedCrossRefGoogle Scholar
  129. Piccinin GG, Braccini AL, Dan LG, Scapim CA, Ricci TT, Bazo GL (2013) Efficiency of seed inoculation with Azospirillum brasilense on agronomic characteristics and yield of wheat. Ind Crop Prod 43:393–397CrossRefGoogle Scholar
  130. Pieterse CMJ, Van Wees SCM, Ton J, Van Pelt JA, Van Loon LC (2002) Signaling in rhizobacteria-induced systemic resistance in Arabidopsis thaliana. Plant Biol (Stuttgrat) 4:535–544CrossRefGoogle Scholar
  131. Prakash S, Verma JP (2016) Global perspective of potash for fertilizer production. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 327–331.  https://doi.org/10.1007/978-81-322-2776-2_23 CrossRefGoogle Scholar
  132. Prayitno J, Stefaniak J, Mclever J, Weinman JJ, Dazzo FB, Ladha JK, Barraquio W, Yanni G, Rolfe BG (1999) Interactions of rice seedlings with bacteria isolated from rice roots. Aust J Plant Physiol 26:521–535CrossRefGoogle Scholar
  133. Priyadharsini P, Muthukumar T (2016) Interactions between arbuscular mycorrhizal fungi and potassium-solubilizing microorganisms on agricultural productivity. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 111–125.  https://doi.org/10.1007/978-81-322-2776-2_8 CrossRefGoogle Scholar
  134. Quadt-Hallmann A, Kloepper JW (1996) Immunological detection and localization of the cotton endophyte Enterobacter asburiae JM22 in different plant species. Can J Microbiol 42(11):1144–1154CrossRefGoogle Scholar
  135. Raghavendra MP, Nayaka NC, Nuthan BR (2016) Role of rhizosphere microflora in potassium solubilization. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 43–59.  https://doi.org/10.1007/978-81-322-2776-2_4 CrossRefGoogle Scholar
  136. Ramos HJ, Roncato-Maccari LD, Souza EM, Soares-Ramos JR, Hungria M, Pedrosa FO (2002) Monitoring Azospirillum-wheat interactions using the gfp and gusA genes constitutively expressed from a new broad-host range vector. Aust J Biotechnol l97(3):243–252CrossRefGoogle Scholar
  137. Rawat J, Sanwal P, Saxena J (2016) Potassium and its role in sustainable agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 235–253.  https://doi.org/10.1007/978-81-322-2776-2_17 CrossRefGoogle Scholar
  138. Reinhold-Hurek B, Hurek T (1997) Azoarcus spp. and their interactions with grass roots. Plant Soil 194:57–64CrossRefGoogle Scholar
  139. Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443PubMedCrossRefGoogle Scholar
  140. Reinhold-Hurek B, Hurek T, Claeyssens M, Van Montagu M (1993) Cloning, expression in Escherichia coli, and characterization of cellulolytic enzymes of Azoarcus sp., a root-invading diazotroph. J Bacteriol 175:7056–7065PubMedPubMedCentralCrossRefGoogle Scholar
  141. Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339CrossRefGoogle Scholar
  142. Riggs PJ, Chelius MK, Iniguez AL, Kaeppler SM, Triplett EW (2001) Enhanced maize productivity by inoculation with diazotrophic bacteria. Aust J Plant Physiol 28:829–836Google Scholar
  143. Rocha FR, Papini-Terzi FS, Nishiyama MY, Vêncio RZN, Vicentini R, RDC D, De Rosa VE Jr, Vinagre F, Barsalobres C, Medeiros AH, Rodrigues FA, Ulian EC, Zingaretti SM, Galbiatti JA, Almeida RS, AVO F, Hemerly AS, Silva-Filho MC, Menossi M, Souza GM (2007) Signal transduction-related responses to phytohormones and environmental challenges in sugarcane. BMC Genomics 8(1):1CrossRefGoogle Scholar
  144. Rothballer M, Schmid M, Hartmann A (2003) In situ localization and PGPR-effect of Azospirillum brasilense strains colonizing roots of different wheat varieties. Symbiosis 34(3):261–279Google Scholar
  145. Saha M, Maurya BR, Bahadur I, Kumar A, Meena VS (2016a) Can potassium-solubilising bacteria mitigate the potassium problems in India? In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 127–136.  https://doi.org/10.1007/978-81-322-2776-2_9 CrossRefGoogle Scholar
  146. Saha M, Maurya BR, Meena VS, Bahadur I, Kumar A (2016b) Identification and characterization of potassium solubilizing bacteria (KSB) from indo-Gangetic Plains of India. Biocatal Agric Biotechnol 7:202–209Google Scholar
  147. Sahai R, Saxena AK, Tilak KV (2015) Effect of Gluconacetobacter diazotrophicus on sweet sorghum (Sorghum bicolor) in tropical semi-arid soil. Agribiol Res 4(4):347–353Google Scholar
  148. Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111(5):743–767PubMedPubMedCentralCrossRefGoogle Scholar
  149. Saravanan VS, Madhaiyan M, Osborne J, Thangaraju M, Sa TM (2008) Ecological occurrence of Gluconacetobacter diazotrophicus and nitrogen-fixing Acetobacteraceae members: their possible role in plant growth promotion. Microb Ecol 55(1):130–140PubMedCrossRefGoogle Scholar
  150. Sarig S, Okon Y, Blum A (1992) Effect of Azospirillum brasilense inoculation on growth dynamics and hydraulic conductivity of Sorghum bicolor roots. J Plant Nutr 15(6–7):805–819CrossRefGoogle Scholar
  151. Shaharoona B, Arshad M, Zahir ZA (2006) Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.) Lett Appl Microbiol 42:155–159PubMedCrossRefGoogle Scholar
  152. Shahzad R, Waqas M, Al K, Asaf S, Khan MA, Kang S, Yun B, Lee I (2016) Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa. Plant Physiol Biochem 106:236–243PubMedCrossRefGoogle Scholar
  153. Sharma A, Shankhdhar D, Shankhdhar SC (2016) Potassium-solubilizing microorganisms: mechanism and their role in potassium solubilization and uptake. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 203–219.  https://doi.org/10.1007/978-81-322-2776-2_15 CrossRefGoogle Scholar
  154. Shi Y, Lou K, Li C (2009) Promotion of plant growth by phytohormone producing endophytic microbe of sugar beet. Biol Fertil Soils 45:645–653CrossRefGoogle Scholar
  155. Shrivastava M, Srivastava PC, D’Souza SF (2016) KSM soil diversity and mineral solubilization, in relation to crop production and molecular mechanism. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 221–234.  https://doi.org/10.1007/978-81-322-2776-2_16 CrossRefGoogle Scholar
  156. Sindhu SS, Parmar P, Phour M, Sehrawat A (2016) Potassium-solubilizing microorganisms (KSMs) and its effect on plant growth improvement. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 171–185.  https://doi.org/10.1007/978-81-322-2776-2_13 CrossRefGoogle Scholar
  157. Singh NP, Singh RK, Meena VS, Meena RK (2015) Can we use maize (Zea Mays) rhizobacteria as plant growth promoter? Vegetos 28(1):86–99.  https://doi.org/10.5958/2229-4473.2015.00012.9 CrossRefGoogle Scholar
  158. Singh M, Dotaniya ML, Mishra A, Dotaniya CK, Regar KL, Lata M (2016) Role of biofertilizers in conservation agriculture. In: Bisht JK, Meena VS, Mishra PK, Pattanayak A (eds) Conservation agriculture: an approach to combat climate change in Indian Himalaya. Springer, Singapore, pp 113–134.  https://doi.org/10.1007/978-981-10-2558-7_4 CrossRefGoogle Scholar
  159. Sorty Am, Meena KK, Choudhary K, Bitla UM, Minhas PS, Krishnani KK (2016) Effect of plant growth promoting bacteria associated with halophytic weed (Psoralea corylifolia L) on germination and seedling growth of wheat under saline conditions. Appl Biochem Biotechnol 180(5):872–882PubMedCrossRefGoogle Scholar
  160. Stets MI, Pinto AS, Huergo LF, Souza EM, Guimarães VF, Alves AC, Steffens MBR, Monteiro RA, Pedrosa FO, Cruz LM (2013) Rapid identification of bacterial isolates from wheat roots by high resolution whole cell MALDI-TOF MS analysis. J Biotechnol 165(3):167–174PubMedCrossRefGoogle Scholar
  161. Suman A, Gaur A, Shrivastava AK, Yadav RL (2005) Improving sugarcane growth and nutrient uptake by inoculating Gluconacetobacter diazotrophicus. Plant Growth Regul 47(2–3):155–162CrossRefGoogle Scholar
  162. Syranidou E, Christofilopoulos S, Gkavrou G, Thijs S, Weyens N, Vangronsveld J, Kalogerakis N (2016) Exploitation of endophytic bacteria to enhance the phytoremediation potential of the wetland helophyte Juncus acutus. Front Microbiol 7:1016PubMedPubMedCentralCrossRefGoogle Scholar
  163. Teotia P, Kumar V, Kumar M, Shrivastava N, Varma A (2016) Rhizosphere microbes: potassium solubilization and crop productivity-present and future aspects. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 315–325.  https://doi.org/10.1007/978-81-322-2776-2_22 CrossRefGoogle Scholar
  164. Thomas P, Reddy KM (2013) Microscopic elucidation of abundant endophytic bacteria colonizing the cell wall–plasma membrane peri-space in the shoot-tip tissue of banana. AoB plants, 5, plt011PubMedCentralGoogle Scholar
  165. Tien TM, Gaskins MH, Hubbell DH (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.) Appl Environ Microbiol 37(5):1016–1024PubMedPubMedCentralGoogle Scholar
  166. Upadhyay SK, Singh JS, Saxena AK, Singh DP (2012) Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biol 14(4):605–611PubMedCrossRefGoogle Scholar
  167. Van VT, Berge O, Ke S, Balandreau J, Heulin T (2000) Repeated beneficial effects of rice inoculation with a strain of Burkholderia vietnamiensison early and late yield components in low fertility sulphate acid soils of Vietnam. Plant Soil 218(1–2):273–284CrossRefGoogle Scholar
  168. Velazquez E, Silva LR, Ramírez-Bahena MH, Peix A (2016) Diversity of potassium-solubilizing microorganisms and their interactions with plants. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 99–110.  https://doi.org/10.1007/978-81-322-2776-2_7 CrossRefGoogle Scholar
  169. Verma SC, Ladha JK, Tripathi AK (2001) Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J Biotechnol 91(2):127–141PubMedCrossRefGoogle Scholar
  170. Verma SC, Singh A, Chowdhury S, Tripathi AK (2004) Endophytic colonization ability of two deepwater rice endophytes, Pantoea sp and Ochrobacterium sp using green florescent protein reporter. Biotechnol Lett 26:425–429PubMedCrossRefGoogle Scholar
  171. Verma R, Maurya BR, Meena VS (2014) Integrated effect of bio-organics with chemical fertilizer on growth, yield and quality of cabbage (Brassica oleracea var capitata). Indian Journal of Agricultural Sciences 84(8):914–919Google Scholar
  172. Verma JP, Jaiswa DK, Meena VS, Meena RS (2015a) Current need of organic farming for enhancing sustainable agriculture. J Clean Prod 102:545–547CrossRefGoogle Scholar
  173. Verma JP, Jaiswal DK, Meena VS, Kumar A, Meena RS (2015b) Issues and challenges about sustainable agriculture production for management of natural resources to sustain soil fertility and health. J Clean Prod 107:793–794CrossRefGoogle Scholar
  174. Walker V, Couillerot O, Von Felten A, Bellvert F, Jansa J, Maurhofer M, Bally R, Moënne-Loccoz Y, Comte G (2012) Variation of secondary metabolite levels in maize seedling roots induced by inoculation with Azospirillum, Pseudomonas and Glomus consortium under field conditions. Plant Soil 356:151–163CrossRefGoogle Scholar
  175. Westhoff P (2009) The economics of biological nitrogen fixation in the global economy. In: Emerich DW, Krishnan HB (Eds) Nitrogen fixation in crop production. Agronomy monograph no. 52. Madison, WI: J Am Soc Agronl309–328Google Scholar
  176. Xu T, Zeng X, Yang X Shanshan Yuan S, Hu X, Zeng J, Wang Z, Liu O, Liu Y, Liao H, Tong C, Liu X, Zhu Y (2017) Isolation and evaluation of endophytic Streptomyces endus OsiSh-2 potential application for biocontrol of rice blast disease. J Sci Food Agric 97(4):1149–1157Google Scholar
  177. Yadav BK, Sidhu AS (2016) Dynamics of potassium and their bioavailability for plant nutrition. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 187–201.  https://doi.org/10.1007/978-81-322-2776-2_14 CrossRefGoogle Scholar
  178. Yanni YG, Rizk RY, Corich V, Squartini A, Ninke K, Philip-Hollingsworth S, Orgambide G, Bruijn F, Stoltzfus J, Buckley D, Schmidt TM, Mateos PF, Ladha JK, Dazzo FB (1997) Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil 194(1–2):99–114CrossRefGoogle Scholar
  179. Yanni YG, Rizk RY, El-Fattah FKA, Squartini A, Corich V, Giacomini A, Bruijn F, Rademaker J, Maya-Flores J, Ostrom P, Vega-Hernandez M, Hollingsworth RI, Martinez-Molina E, Mateos PF, Velazquez E, Wopereis J, Triplett E, Umali-Garcia M, Anarna JA, Rolfe BG, Ladha JK, Hill J, Mujoo R, Dazzo NPKFB (2001) The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Funct Plant Biol 28(9):845–870CrossRefGoogle Scholar
  180. Yanni YG, Dazzo FB, Squartini A, Zanardo M, Zidan MI, Elsadany AEY (2016) Assessment of the natural endophytic association between Rhizobium and wheat and its ability to increase wheat production in the Nile delta. Plant Soil:1–17Google Scholar
  181. Yasin M, Munir I, Faisal M (2016) Can bacillus spp. enhance K+ uptake in crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 163–170.  https://doi.org/10.1007/978-81-322-2776-2_12 CrossRefGoogle Scholar
  182. Zahedi H (2016) Growth-promoting effect of potassium-solubilizing microorganisms on some crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 31–42.  https://doi.org/10.1007/978-81-322-2776-2_3 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Lorena Celador-Lera
    • 1
    • 2
    Email author
  • Alejandro Jiménez-Gómez
    • 1
    • 2
  • Esther Menéndez
    • 3
    • 1
    • 2
  • Raul Rivas
    • 1
    • 2
    • 4
  1. 1.Departamento de Microbiología y GenéticaUniversidad de SalamancaSalamancaSpain
  2. 2.Instituto Hispano-Luso de Investigaciones Agrarias (CIALE)SalamancaSpain
  3. 3.ICAAM (Instituto de Ciências Agrárias e Ambientais Mediterrânicas)Universidadede ÉvoraÉvoraPortugal
  4. 4.Unidad Asociada Universidad de Salamanca-CSIC (IRNASA)SalamancaSpain

Personalised recommendations