Advertisement

Bioremediation of Metal Contaminated Soil for Sustainable Crop Production

  • M. L. Dotaniya
  • N. R. Panwar
  • V. D. Meena
  • C. K. Dotaniya
  • K. L. Regar
  • Manju Lata
  • J. K. Saha
Chapter

Abstract

Heavy metal pollution is emerging with time and reduces the chances of healthy food production from natural resources. Heavy metals are toxic in nature and caused various types of malfunction in plant, animal, and human bodies. Some heavy metals are essential for plant growth in lower level; but higher level shows toxic effects on plant growth. Heavy metals are also having carcinogenic, mutagenic, malfunctioning, and teratogenic and mostly affected the neurological, liver, and kidney function. Increasing population with higher pace needs food from the fixed-cultivated land. It is a great challenge for the researcher and policy-maker in one side mitigating the food crisis without contamination of natural resources. The waste generation per capita increased with tremendous rate and vice versa freshwater resources shrinking. The needs of management for wastewater (WW) or metal-contaminated soil for the sustainable crop production in most of the developing countries. Various heavy metal remediation techniques are used for the removal of metals from environment. Among the techniques, bioremediation techniques are eco-friendly in nature, in situ, low cost, and energy saving. Phytoremediation techniques are green techniques with a wider scope of contamination removal. The climatic changes are also affecting the crop and soil production capacity; it needs more research in abiotic stress.

Keywords

Geo-accumulation index Heavy metals Human health Phytoremediation Sustainable crop production 

Notes

Acknowledgment

Authors are highly thankful to Dr Kuldeep Kumar, Scientist, ICAR-Indian Institute of Soil and Water Conservation, Dehradun, India, for the needful help during the writing of the manuscript.

References

  1. Adesodun JK, Atayese MO, Agbaje TA, Osadiaye BA, Mafe OF, Soretire AA (2010) Phytoremediation potentials of sunflowers (Tithonia diversifolia and Helianthus annuus) for metals in soils contaminated with zinc and lead nitrates. Water Air Soil Pollut 207:195–201CrossRefGoogle Scholar
  2. Ahmad M, Nadeem SM, Naveed M, Zahir ZA (2016) Potassium-solubilizing bacteria and their application in agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 293–313CrossRefGoogle Scholar
  3. Ajay, Dotaniya ML, Meena VD (2012) Zinc-an important element for biofortification. Agrobios Newsl XI(7):30–31Google Scholar
  4. Alam MGM, Snow ET, Tanaka A (2003) Arsenic and heavy metal contamination of vegetables grown in Samta village, Bangladesh. Sci Total Environ 308:83–96PubMedCrossRefGoogle Scholar
  5. Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR (1999) A bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284:2148–2152PubMedCrossRefGoogle Scholar
  6. Assuncao AGL, Martins PD, De Folter S, Vooijs R, Schat H, Aarts MGM (2001) Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 24(2):217–226CrossRefGoogle Scholar
  7. Ball JW, Izbicki JA (2004) Occurrence of hexavalent chromium in groundwater in the Western Mojave Desert, California. Appl Geochem 19(7):1123CrossRefGoogle Scholar
  8. Bartlett RJ, Kimble JM (1976) Behaviour of chromium in soils. II. Hexavalent forms. J Environ Qual 5:383–386CrossRefGoogle Scholar
  9. Belouchi A, Kwan T, Gros P (1997) Cloning and characterization of the OsNramp family from Oryza sativa, a new family of membrane proteins possibly implicated in the transport of metal ions. Plant Mol Biol 33:1085–1092PubMedCrossRefGoogle Scholar
  10. Bhatia M, Babu RS, Sonawane SH, Gogate PR, Girdhar A, Reddy ER, Pola M (2016) Application of nanoadsorbents for removal of lead from water. Int J Environ Sci Technol 14:1135–1154CrossRefGoogle Scholar
  11. Bodek I, Lyman WJ, Reehl WF, Rosenblatt DH (1988) Environmental inorganic chemistry: properties, processes and estimation methods. Pergamon Press, ElmsfordGoogle Scholar
  12. Bolan NS, Adrino DC, Natesan R, Bon-jun K (2003) Reduction and phytoavailability of Cr (VI) as influenced by organic manure compost. J Environ Qual 32:120–128PubMedCrossRefGoogle Scholar
  13. Brim H, McFarlan SC, Fredrickson JK, Minton KW, Zhai M, Wackett LP, Daly MJ (2000) Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nat Biotechnol 18(1):85–90PubMedCrossRefGoogle Scholar
  14. Campbell PGC (2006) Cadmium-A priority pollutant. Environ Chem 3(6):387–388CrossRefGoogle Scholar
  15. Chabukdhara M, Nema AK (2012) Assessment of heavy metal contamination in Hindon River sediments: a chemometric and geo chemical approach. Chemotherapy 87:945–953Google Scholar
  16. Chaney RL (1983) Plant uptake of inorganic waste constituents. In: Parr JFEA (ed) Land treatment of hazardous wastes. Noyes Data Corp, Park Ridge, pp 50–76Google Scholar
  17. Chowdhury TR, Basu GK, Mandal BK, Biswas BK, Samanta G, Chowdhury UK (1999) Arsenic poisoning in the Ganges Delta. Nature 401:545–546PubMedCrossRefGoogle Scholar
  18. Coumar MV, Parihar RS, Dwivedi AK, Saha JK, Lakaria BL, Biswas AK, Rajendiran S, Dotaniya ML, Kundu S (2016a) Pigeon pea biochar as a soil amendment to repress copper mobility in soil and its uptake by spinach. BioResources 11(1):1585–1595Google Scholar
  19. Coumar MV, Parihar RS, Dwivedi AK, Saha JK, Rajendiran S, Dotaniya ML, Kundu S (2016b) Impact of pigeon pea biochar on cadmium mobility in soil and transfer rate to leafy vegetable spinach. Environ Monit Assess 188:31PubMedCrossRefGoogle Scholar
  20. Dominguez-Nunez JA, Benito B, Berrocal-Lobo M, Albanesi A (2016) Mycorrhizal fungi: role in the solubilization of potassium. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 77–98CrossRefGoogle Scholar
  21. Dotaniya ML (2012) Crop residue management in rice-wheat cropping system. Lap Lambert Academic Publisher, GermanyGoogle Scholar
  22. Dotaniya ML (2013) Impact of various crop residue management practices on nutrient uptake by rice-wheat cropping system. Curr Adv Agric Sci 5(2):269–271Google Scholar
  23. Dotaniya ML (2014) Role of bagasse and pressmud in phosphorus dynamics. Lap Lambert Academic Publisher, GermanyGoogle Scholar
  24. Dotaniya ML (2015) Impact of rising atmospheric CO2 concentration on plant and soil process. In: Mohanty M, Sinha NK, Hati KM, Chaudhary RS, Patra AK (eds) Crop growth simulation modelling and climate change. Scientific Publisher, New Delhi, pp 69–86Google Scholar
  25. Dotaniya ML, Datta SC (2014) Impact of bagasse and press mud on availability and fixation capacity of phosphorus in an inceptisol of north India. Sugar Tech 16(1):109–112CrossRefGoogle Scholar
  26. Dotaniya ML, Kushwah SK (2013) Nutrients uptake ability of various rainy season crops grown in a vertisol of central India. Afr J Agric Res 8(44):5592–5598Google Scholar
  27. Dotaniya ML, Lata M (2012) Cleaning soils with phytoremediation. Geo You 12(73):18–21Google Scholar
  28. Dotaniya ML, Meena VD (2013) Rhizosphere effect on nutrient availability in soil and its uptake by plants -a review. Proc Natl Acad Sci India Sec B Biol Sci 85(1):1–12Google Scholar
  29. Dotaniya ML, Saha JK (2017) Sewage farming: a potential threat to agriculture. Indian Farmers Dig 1:14–21Google Scholar
  30. Dotaniya ML, Ajay, Meena BP, Kundu S (2012a) Soil pollution: a necessary evil. Agrobios Newsl X(12):39–40Google Scholar
  31. Dotaniya ML, Ajay, Meena BP, Kundu S, Meena VD (2012b) Phytoremediation: a cost-effective technique. Agrobios Newsl XI(3):79–80Google Scholar
  32. Dotaniya ML, Meena HM, Rajendiran S, Coumar MV, Verma R (2012c) Biosorption of heavy metal with agro waste. Agrobios Newsl XI(7):37Google Scholar
  33. Dotaniya ML, Datta SC, Biswas DR, Meena BP (2013a) Effect of solution phosphorus concentration on the exudation of oxalate ions by wheat (Triticum aestivum L.) Proc Natl Acad Sci India Sec B Biol Sci 83(3):305–309CrossRefGoogle Scholar
  34. Dotaniya ML, Sharma MM, Kumar K, Singh PP (2013b) Impact of crop residue management on nutrient balance in rice-wheat cropping system in an Aquic hapludoll. J Rural Agric Res 13(1):122–123Google Scholar
  35. Dotaniya ML, Prasad D, Meena HM, Jajoria DK, Narolia GP, Pingoliya KK, Meena OP, Kumar K, Meena BP, Ram A, Das H, Chari MS, Pal S (2013c) Influence of phytosiderophore on iron and zinc uptake and rhizospheric microbial activity. Afr J Microbiol Res 7(51):5781–5788CrossRefGoogle Scholar
  36. Dotaniya ML, Meena HM, Lata M, Kumar K (2013d) Role of phytosiderophores in iron uptake by plants. Agric Sci Dig 33(1):73–76Google Scholar
  37. Dotaniya ML, Meena HM, Lata M (2013e) Heavy metal toxicity: pandora’s box for human disease. Read Shelf 9(6):5–6Google Scholar
  38. Dotaniya ML, Meena HM, Lata M, Jajoria DK, Meena MD (2013f) Use of biosolids in agriculture. Agrobios Newsl XI(8):21–22Google Scholar
  39. Dotaniya ML, Datta SC, Biswas DR, Meena HM, Kumar K (2014a) Production of oxalic acid as influenced by the application of organic residue and its effect on phosphorus uptake by wheat (Triticum aestivum L.) in an inceptisol of north India. Natl Acad Sci Lett 37(5):401–405CrossRefGoogle Scholar
  40. Dotaniya ML, Datta SC, Biswas DR, Kumar K (2014b) Effect of organic sources on phosphorus fractions and available phosphorus in Typic Haplustert. J Indian Soc Soil Sci 62(1):80–83Google Scholar
  41. Dotaniya ML, Saha JK, Meena VD, Rajendiran S, Coumar MV, Kundu S, Rao AS (2014c) Impact of tannery effluent irrigation on heavy metal build up in soil and ground water in Kanpur. Agrotechnology 2(4):77Google Scholar
  42. Dotaniya ML, Das H, Meena VD (2014d) Assessment of chromium efficacy on germination, root elongation, and coleoptile growth of wheat (Triticum aestivum L.) at different growth periods. Environ Monit Assess 186:2957–2963PubMedCrossRefGoogle Scholar
  43. Dotaniya ML, Kushwah SK, Rajendiran S, Coumar MV, Kundu S, Rao AS (2014e) Rhizosphere effect of kharif crops on phosphatases and dehydrogenase activities in a Typic Haplustert. Natl Acad Sci Lett 37(2):103–106CrossRefGoogle Scholar
  44. Dotaniya ML, Meena VD, Das H (2014f) Chromium toxicity on seed germination, root elongation and coleoptile growth of pigeon pea (Cajanus cajan). Legum Res 37(2):225–227Google Scholar
  45. Dotaniya ML, Pingoliya KK, Lata M, Verma R, Regar KL, Deewan P, Dotaniya CK (2014g) Role of phosphorus in chickpea (Cicer arietinum L.) production. Afr J Agric Res 9(51):3736–3743Google Scholar
  46. Dotaniya ML, Thakur JK, Meena VD, Jajoria DK, Rathor G (2014h) Chromium pollution: a threat to environment. Agric Rev 35(2):153–157CrossRefGoogle Scholar
  47. Dotaniya ML, Saha JK, Meena VD (2015a) Sewage water irrigation boon or bane for crop production. Indian Farm 65(12):24–27Google Scholar
  48. Dotaniya ML, Datta SC, Biswas DR, Meena HM, Rajendiran S, Meena AL (2015b) Phosphorus dynamics mediated by bagasse, press mud and rice straw in inceptisol of North India. Agrochimica 59(4):358–369Google Scholar
  49. Dotaniya ML, Meena VD, Basak BB, Meena RS (2016a) Potassium uptake by crops as well as microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 267–280CrossRefGoogle Scholar
  50. Dotaniya ML, Datta SC, Biswas DR, Dotaniya CK, Meena BL, Rajendiran S, Regar KL, Lata M (2016b) Use of sugarcane industrial byproducts for improving sugarcane productivity and soil health-a review. Intl J Rec Org Waste Agric 142:1583–1608Google Scholar
  51. Dotaniya ML, Kundu S, Saha JK (2016c) Role of biotechnology in environmental monitoring and pollution control. Kheti 6:26–28Google Scholar
  52. Dotaniya ML, Meena VD, Rajendiran S, Coumar MV, Saha JK, Kundu S, Patra AK (2016d) Geo-accumulation indices of heavy metals in soil and groundwater of Kanpur, India under long term irrigation of tannery effluent. Bull Environ Contam Toxicol 98:706–711PubMedCrossRefGoogle Scholar
  53. Dotaniya ML, Meena VD, Srivastava A (2016e) Plastic pollution: a threat to ecosystem. Indian Farm 66(3):12–14Google Scholar
  54. Dotaniya ML, Rajendiran S, Meena BP, Meena AL, Meena BL, Jat RL, Saha JK (2016f) Elevated carbon dioxide (CO2) and temperature vis- a-vis carbon sequestration potential of global terrestrial ecosystem. In: Bisht JK, Meena VS, Mishra PK, Pattanayak A (eds) Conservation agriculture: an approach to combat climate change in Indian Himalaya. Springer, Singapore, pp 225–256CrossRefGoogle Scholar
  55. Dotaniya ML, Rajendiran S, Meena VD, Saha JK, Coumar MV, Kundu S, Patra AK (2016g) Influence of chromium contamination on carbon mineralization and enzymatic activities in Vertisol. Agric Res 6:91–96CrossRefGoogle Scholar
  56. Dotaniya ML, Meena VD, Kumar K, Meena BP, Jat SL, Lata M, Ram A, Dotaniya CK, Chari MS (2016h) Impact of biosolids on agriculture and biodiversity. Today and Tomorrow’s Printer and Publisher, New Delhi, pp 11–20Google Scholar
  57. Dotaniya ML, Dotaniya CK, Sanwal RC, Meena HM (2018) CO sequestration and transformation potential of agricultural system. In: Martínez L, Kharissova O, Kharisov B (eds) Handbook of ecomaterials. Springer, Cham.  https://doi.org/10.1007/978-3-319-48281-1_87-1
  58. Guertin J (2005) Toxicity and health effects of chromium (all oxidation states). In: Guertin J, Jacobs JA, Avakian CP (eds) Chromium (VI) handbook. CRC Press, Boca Raton, pp 216–234Google Scholar
  59. Gunatilake SK (2015) Methods of removing heavy metals from industrial wastewater. J Multidiscip Eng Sci Stud 1(1):12–18Google Scholar
  60. Guo G, Zhou Q, Ma LQ (2006) Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: a review. Environ Monit Assess 116(1–3):513–528PubMedCrossRefGoogle Scholar
  61. GWRTAC (1997) Remediation of metals-contaminated soils and groundwater, Tech Rep TE-97-01. GWRTAC, PittsburghGoogle Scholar
  62. Halim M, Conte P, Piccolo A (2003) Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances. Chemosphere 52(1):265–275PubMedCrossRefGoogle Scholar
  63. Hassan N, Ahmed K (2000) Intra familiar distribution of food in rural Bangladesh. Institute of Nutrition and food Science, University of Dhaka, Bangladesh. Internet http://www.unu.edu/unpress/food/8F064e/
  64. He B, Yang XE, Ni WZ, Wei YZ, Ye HB (2003) Pb uptake, accumulation, subcellular distribution in a Pb-accumulating ecotype of Sedum alfredii (Hance). J Zhejiang Univ Sci 4(4):474–479PubMedCrossRefGoogle Scholar
  65. Hirayama T, Kieber JJ, Hirayama N (1999) Responsive-toantagonist1, a Menkes/Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis. Cell 97(3):383–393PubMedCrossRefGoogle Scholar
  66. Hughes MF (2002) Arsenic toxicity and potential mechanisms of action. Toxicol Lett 133:1–16PubMedCrossRefGoogle Scholar
  67. IRIS (2015) Integrated risk information system-database. US Environmental Protection Agency, Washington, DCGoogle Scholar
  68. James BR, Bartlett RJ (1983) Behaviour of chromium in soils. VIII. Adsorption and reduction of hexavalent forms. J Environ Qual 12:177–181CrossRefGoogle Scholar
  69. Knight B, Zhao FJ, McGrath SP, Shen ZG (1994) Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens in contaminated soils and its effects on the concentration and chemical speciation of metals in soil solution. Plant Soil 197:71–78CrossRefGoogle Scholar
  70. Kong SF, Lu B, Ji YQ, Zhao XY, Chen L, Li ZY, Han B, Bai ZP (2011) Levels, risk assessment and sources of PM10 fraction heavy metals in four types dust from a coal-based city. Microchem J 98:280–290CrossRefGoogle Scholar
  71. Kramer U, Smith RD, Wenzel WW, Raskin I, Salt DE (1997) The role of metal transport and tolerance in nickel hyperaccumulation by Thlaspi goesingense Halacsy. Physiol Plant 115:1641–1650CrossRefGoogle Scholar
  72. Kramer U, Pickering IJ, Prince RC, Raskin I, Salt DE (2000) Subcellular localization and speculation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol 122:1343–1353PubMedPubMedCentralCrossRefGoogle Scholar
  73. Kundu S, Dotaniya ML, Lenka S (2013) Carbon sequestration in Indian agriculture. In: Lenka S, Lenka NK, Kundu S, Rao AS (eds) Climate change and natural resources management. New India Publishing Agency, New Delhi, pp 269–289Google Scholar
  74. Kupper H, Zhao FJ, McGrath SP (1999) Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol 119:305–311PubMedCentralCrossRefGoogle Scholar
  75. Kushwah SK, Dotaniya ML, Upadhyay AK, Rajendiran S, Coumar MV, Kundu S, Rao AS (2014) Assessing carbon and nitrogen partition in kharif crops for their carbon sequestration potential. Natl Acad Sci Lett 37(3):213–217CrossRefGoogle Scholar
  76. Lata M, Dotaniya ML (2013a) Water pollution: a global problem. Read Shelf 9(12):9–10Google Scholar
  77. Lata M, Dotaniya ML (2013b) Environmental pollution: a big challenge to control. Ind Farmers’ Dig 46(8):9–11Google Scholar
  78. Lenka S, Rajendiran S, Coumar MV, Dotaniya ML, Saha JK (2016) Impacts of fertilizers use on environmental quality. In: National seminar on environmental concern for fertilizer use in future at Bidhan Chandra Krishi Viswavidyalaya, Kalyani on February 26, 2016Google Scholar
  79. Lokhande RS, Singare PU, Pimple DS (2011) Toxicity study of heavy metals pollutants in waste water effluent samples collected from Taloja industrial estate of Mumbai, India. Res Environ 1(1):13–19Google Scholar
  80. Lombi E, Tearall KL, Howarth JR, Zhao FJ, Hawkesford MJ, McGrath SP (2002) Influence of iron status on calcium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. Plant Physiol 128:1359–1367PubMedPubMedCentralCrossRefGoogle Scholar
  81. Losi ME, Amrhein C, Frankenberger WT (1994) Factor affecting chemical and biological reduction of Cr(VI) in soil. Environ Toxicol Chem 13:1727–1735CrossRefGoogle Scholar
  82. Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelly ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579PubMedCrossRefGoogle Scholar
  83. Manahan SE (2003) Toxicological chemistry and biochemistry, 3rd edn. Boca Raton CRC Press/Limited Liability Company (LLC)Google Scholar
  84. Mascagni P, Consonni D, Bregante G, Chiappino G, Toffoletto F (2003) Olfactory function in workers exposed to moderate airborne cadmium levels. Neurotoxicology 24:717–724PubMedCrossRefGoogle Scholar
  85. Maser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJM, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667PubMedPubMedCentralCrossRefGoogle Scholar
  86. Masood S, Bano A (2016) Mechanism of potassium solubilization in the agricultural soils by the help of soil microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 137–147.  https://doi.org/10.1007/978-81-322-2776-2_10 CrossRefGoogle Scholar
  87. Meena VD, Dotaniya ML, Meena BP, Das H (2013a) Organic food safer but not healthy: truth in myth. Ind Farmers Dig 46(8):43–44Google Scholar
  88. Meena VD, Dotaniya ML, Rajendiran S, Coumar MV, Kundu S, Rao AS (2013b) A case for silicon fertilization to improve crop yields in tropical soils. Proc Natl Acad Sci India Sec B Biol Sci 84(3):505–518CrossRefGoogle Scholar
  89. Meena VD, Dotaniya ML, Saha JK, Patra AK (2015a) Antibiotics and antibiotic resistant bacteria in wastewater: impact on environment, soil microbial activity and human health. Afr J Microbiol Res 9(14):965–978CrossRefGoogle Scholar
  90. Meena RS, Meena VS, Meena SK, Verma JP (2015b) The needs of healthy soils for a healthy world. J Clean Prod 102:560–561CrossRefGoogle Scholar
  91. Meena RS, Meena VS, Meena SK, Verma JP (2015c) Towards the plant stress mitigate the agricultural productivity: a book review. J Clean Prod 102:552–553CrossRefGoogle Scholar
  92. Meena BP, Shirale AO, Dotaniya ML, Jha P, Meena AL, Biswas AK, Patra AK (2016) Conservation agriculture: a new paradigm for improving input use efficiency and crop productivity. In: Bisht JK, Meena VS, Mishra PK, Pattanayak A (eds) Conservation agriculture: an approach to combat climate change in Indian Himalaya. Springer, Singapore, pp 39–69CrossRefGoogle Scholar
  93. Meena VS, Maurya BR, Meena SK, Meena RK, Kumar A, Verma JP, Singh NP (2017) Can Bacillus species enhance nutrient availability in agricultural soils? In: Islam MT, Rahman M, Pandey P, Jha CK, Aeron A (eds) Bacilli and agrobiotechnology. Springer International Publishing, Cham, pp 367–395Google Scholar
  94. Meers E, Hopgood M, Lesage E, Vervaeke P, Tack FMG, Verloo M (2004) Enhanced phytoextraction: in search for EDTA alternatives. Int J Phytoremed 6(2):95–109CrossRefGoogle Scholar
  95. Mesjasz-Przybylowicz J, Nakonieczny M, Migula P, Augustyniak M, Tarnawska M, Reimold WU, Koeberl C, Przybylowicz W, Glowacka E (2004) Uptake of cadmium, lead, nickel and zinc from soil and water solutions by the nickel hyperaccumulator Berkheya coddii. Acta Biol Cracov Ser Bot 46:75–85Google Scholar
  96. Muller G (1969) Index of geoaccumulation in sediments of the Rhine river. Geochem J 2:109–118Google Scholar
  97. Parewa HP, Yadav J, Rakshit A, Meena VS, Karthikeyan N (2014) Plant growth promoting rhizobacteria enhance growth and nutrient uptake of crops. Agric Sustain Dev 2(2):101–116Google Scholar
  98. Pence NS, Larsen PB, Ebbs SD, Letham DLD, Lasat MM, Garvin DF, Eide D, Kochian LV (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci U S A 97:4956–4960PubMedPubMedCentralCrossRefGoogle Scholar
  99. Pierzynski GM, Sims JT, Vance GF (2000) Soils and environmental quality. CRC Press, Boca Raton, pp 155–207Google Scholar
  100. Pingoliya KK, Dotaniya ML, Lata M (2014a) Effect of iron on yield, quality and nutrient uptake of chickpea (Cicer arietinum L.) Afr J Agric Res 9(37):2841–2845CrossRefGoogle Scholar
  101. Pingoliya KK, Mathur AK, Dotaniya ML, Jajoria DK, Narolia GP (2014b) Effect of phosphorus and iron levels on growth and yield attributes of chickpea (Cicer arietinum L.) under agroclimatic zone IV A of Rajasthan, India. Legum Res 37(5):537–541CrossRefGoogle Scholar
  102. Pingoliya KK, Mathur AK, Dotaniya ML, Dotaniya CK (2015) Impact of phosphorus and iron on protein and chlorophyll content in chickpea (Cicer arietinum L.) Legum Res 38(4):558–560CrossRefGoogle Scholar
  103. Rajendiran S, Dotaniya ML, Coumar MV, Panwar NR, Saha JK (2015) Heavy metal polluted soils in India: status and countermeasures. JNKVV Res J 49(3):320–337Google Scholar
  104. Rana L, Dhankhar R, Chhikara S (2010) Soil characteristics affected by long term application of sewage wastewater. Int J Environ Res 4(3):513–518Google Scholar
  105. Reed SC, Crites RW, Middlebrooks EJ (1995) Natural systems for waste management and treatment. McGraw-Hill, New YorkGoogle Scholar
  106. Roberts TL (2014) Cadmium and phosphorous fertilizers: the issues and the science. Procedia Engin 83:52–59CrossRefGoogle Scholar
  107. Rusan MJM, Hinnawi M, Rousan L (2007) Long term effect of wastewater irrigation of forage crops on soil and plant quality parameters. Desalination 215(1-3):143–152CrossRefGoogle Scholar
  108. Saha JK, Panwar N, Srivastava A, Biswas AK, Kundu S, Rao AS (2010) Chemical, biochemical, and biological impact of untreated domestic sewage water use on Vertisol and its consequences on wheat (Triticum aestivum) productivity. Environ Monit Assess 161(1-4):403–412PubMedCrossRefGoogle Scholar
  109. Saha JK, Rajendiran S, Coumar MV, Dotaniya ML, Kundu S, Patra AK (2017) Remediation and management of polluted sites. In: Saha JK, Rajendiran S, Coumar MV, Dotaniya ML, Kundu S, Patra AK (eds) Soil pollution - an emerging threat to agriculture. Springer, Singapore, pp 317–372Google Scholar
  110. Salt DE, Blaylock M, Kumar Nanda PBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474PubMedGoogle Scholar
  111. Sharma MM, Sharma YK, Dotaniya ML (2014a) Effect of press mud and FYM application with zinc sulphate on yield of hybrid rice. J Environ Agric Sci 1:1–4Google Scholar
  112. Sharma MM, Sharma YK, Dotaniya ML, Kumar P (2014b) Effect of different levels of FYM, press mud and zinc sulphate application on soil properties. J Plant Dev Sci 6(3):455–459Google Scholar
  113. Sims GK (2006) Nitrogen starvation promotes biodegradation of N-heterocyclic compounds in soil. Soil Biol Biochem 38:2478–2480CrossRefGoogle Scholar
  114. Singh B (2002) Soil pollution and its control. In: Sekhon GS, Chhonkar PK, Das DK, Goswami NN, Narayanaswamy G, Poonia SR, Rattan RK, Sehgal J (eds) Fundamental of soil science. Ind Soc Soil Sci, New Delhi, pp 499–514Google Scholar
  115. Singh R, Gautam N, Mishra A, Gupta R (2011) Heavy metals and living systems: an overview. Ind J Pharmacol 43(3):246–253CrossRefGoogle Scholar
  116. Singh M, Dotaniya ML, Mishra A, Dotaniya CK, Regar KL (2016) Role of biofertilizers in conservation agriculture. In: Bisht JK, Meena VS, Mishra PK, Pattanayak A (eds) Conservation agriculture: an approach to combat climate change in Indian Himalaya. Springer, Singapore, pp 113–134CrossRefGoogle Scholar
  117. Smith LA, Means JL, Chen A, Alleman B, Chapman CC, Tixier JS, Brauning SE, Gavaskar AR, Royer MD (1995) Remedial options for metals-contaminated sites. Lewis Publishers, Boca RatonGoogle Scholar
  118. Tabata K, Kashiwagi S, Mori H, Ueguchi C, Mizuno T (1997) Cloning of a cDNA encoding a putative metal-transporting P-type ATPase from Arabidopsis thaliana. Biochim Biophys Acta 1326:1–6PubMedCrossRefGoogle Scholar
  119. Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng.  https://doi.org/10.1155/2011/939161
  120. Tchounwou PB, Patlolla AK, Centeno JA (2003) Carcinogenic and systemic health effects associated with arsenic exposure-a critical review. Toxicol Pathol 31(6):575–588PubMedGoogle Scholar
  121. Tchounwou PB, Centeno JA, Patlolla AK (2004) Arsenic toxicity, mutagenesis and carcinogenesis – a health risk assessment and management approach. Mol Cell Biochem 255:47–55PubMedCrossRefGoogle Scholar
  122. Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci U S A 97:4991–4996PubMedPubMedCentralCrossRefGoogle Scholar
  123. USDHHS (1999) Toxicological profile for lead. United States Department of Health and Human Services, AtlantaGoogle Scholar
  124. USEPA (1991) US environmental protection agency. Annual reports FY 1990, USEPA report540/8-91/067. USEPA, Washington, DCGoogle Scholar
  125. Van der Zaal BJ, Neuteboom LW, Pina JE, Chardonnens AN, Schat H, Verkleij JAC, Hooykaas PJJ (1999) Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol 199:1047–1055CrossRefGoogle Scholar
  126. Vazquez MD, Poschenrieder C, Barcelo J, Baker AJM, Hatton P, Cope GH (1994) Compartmentation of zinc in roots and leaves of the zinc hyperaccumulator Thlaspi caerulescens J & C Presl. Bot Acta 107:243–250CrossRefGoogle Scholar
  127. Velazquez E, Silva LR, Ramírez-Bahena MH, Peix A (2016) Diversity of potassium-solubilizing microorganisms and their interactions with plants. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 99–110CrossRefGoogle Scholar
  128. Verret F, Gravot A, Auroy P, Leonhardt N, David P, Nussaume L, Vavasseur A, Richaud P (2004) Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Lett 576:306–312PubMedCrossRefGoogle Scholar
  129. Vishnoi SR, Srivastava PN (2008) Phytoremediation-green for environmental clean. In: The 12 world lake conference, pp 1016–1021Google Scholar
  130. Wei BG, Yang LS (2010) A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem J 94:99–107CrossRefGoogle Scholar
  131. WHO (1982) World Health Organization toxicological evaluation of certain food additives. Joint FAO/WHO expert committee on food additives, WHO Food additive Series no. 683. World Health Organization, GenevaGoogle Scholar
  132. Williams LE, Pittman JK, Hall JL (2000) Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta 1465:104–126PubMedCrossRefGoogle Scholar
  133. Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol.  https://doi.org/10.5402/2011/402647
  134. Xiong YH, Yang XE, Ye ZQ, He ZL (2004) Characteristics of cadmium uptake and accumulation by two contrasting ecotypes of Sedum alfredii Hance. J Environ Sci Health 39:2925–2940CrossRefGoogle Scholar
  135. Yang MJ (2002) Copper hyperaccumulation in Elsholtzia splendens and its mechanisms. PhD dissertation, Zhejiang UniversityGoogle Scholar
  136. Yang XE, Long XX, Ni WZ (2002) Physiological and molecular mechanisms of heavy metal uptake by hyperaccumulating plant species. J Plant Nutr Fert 8:8–15Google Scholar
  137. Yang X, Fenga Y, He Z, Stoffella PJ (2005) Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J Trace Elem Med Biol 18(4):339–353PubMedCrossRefGoogle Scholar
  138. Zhuang P, Yang QW, Wang HB, Shu WS (2007) Phytoextraction of heavy metals by eight plant species in the field. Water Air Soil Pollut 184:235–242CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • M. L. Dotaniya
    • 1
  • N. R. Panwar
    • 2
  • V. D. Meena
    • 1
  • C. K. Dotaniya
    • 3
  • K. L. Regar
    • 4
  • Manju Lata
    • 5
  • J. K. Saha
    • 1
  1. 1.ICAR-Indian Institute of Soil ScienceBhopalIndia
  2. 2.ICAR-Central Arid Zone Research InstituteJodhpurIndia
  3. 3.Department of Soil Science & Agricultural Chemistry, College of AgricultureSKRAUBikanerIndia
  4. 4.Department of Soil Science & Agricultural ChemistryIAS, BHUVaranasiIndia
  5. 5.Barkatullah UniversityBhopalIndia

Personalised recommendations