Advertisement

Current Perspectives on Rhizobacterial-EPS interactions in Alleviation of Stress Responses: Novel Strategies for Sustainable Agricultural Productivity

  • P. V. Bramhachari
  • Ganji Purnachandra Nagaraju
  • E. Kariali
Chapter

Abstract

Rhizobacterial exopolysaccharides (EPSs) are the active constituents of soil organic matter which possess numerous biological functions, viz., biofilm development and survival, host colonization, and bacterial autoaggregation, including host specificity, quorum sensing, participation in early stages of host plant infection, signaling molecule during plant development, and most importantly protection from environmental stresses. These adverse conditions lead to negative environmental impacts and socioeconomic consequences such as reduction of crop productivity and soil fertility. However, environmental concerns related to these stresses motivate the scientists to find out environment-friendly approaches for sustainable agriculture. Interestingly the plant growth-promoting rhizobacteria (PGPR) have evolved with several biochemical mechanisms to cope with the environmental biotic and abiotic stressors, viz., plant pathogen defenses, metal, salt, and drought. This review presents the recent advances and applications made hitherto in understanding the biochemical mechanisms of rhizobacterial-EPS interactions alleviate stress responses and their role in major processes involved in phytoremediation, such as heavy metal detoxification, biocomplexation, bioaggregation, biosorption, and biosequestration. Interestingly these EPSs have rapidly emerged as a new and industrially important source of polymeric materials, which are gradually becoming economically competitive for crop productivity. Nevertheless future progress in understanding of PGPR, mechanisms of plant-microbe-EPS interactions, could facilitate their development as the reliable components in management of sustainable agricultural systems.

Keywords

Exopolysaccharides (EPS) Plant growth-promoting rhizobacteria (PGPR) Crop productivity Sustainable agriculture and phytoremediation 

Notes

Acknowledgments

The authors acknowledge the kind support and encouragement extended by Krishna University, Machilipatnam, and Sambalpur University, Odisha. This research work is carried out as a part of Dr. P. V. Bramhachari’s Doctoral of Science (D.Sc.) study.

References

  1. Abd-Alla MH, Morsy FM, El-Enany AWE, Ohyama T (2012) Isolation and characterization of a heavy-metal-resistant isolate of Rhizobium leguminosarum bv. viciae potentially applicable for biosorption of Cd 2+ and Co 2+. Int Biodeterior Biodegrad 67:48–55CrossRefGoogle Scholar
  2. Ahmad M, Nadeem SM, Naveed M, Zahir ZA (2016) Potassium-solubilizing bacteria and their application in agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 293–313.  https://doi.org/10.1007/978-81-322-2776-2_21 CrossRefGoogle Scholar
  3. Alami Y, Achouak W, Marol C, Heulin T (2000) Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Appl Environ Microbiol 66:3393–3398PubMedPubMedCentralCrossRefGoogle Scholar
  4. Ali SZ, Sandhya V, Venkateswar Rao L (2014) Isolation and characterization of drought tolerant ACC deaminase and exopolysaccharide producing fluorescent Pseudomonas spp. Ann Microbiol 64:493–502CrossRefGoogle Scholar
  5. Armendariz AL, Talano MA, Wevar Oller AL, Medina MI, Agostini E (2015) Effect of arsenic on tolerance mechanisms of two plant growth-promoting bacteria used as biological inoculants. J Environ Sci 33:203–210CrossRefGoogle Scholar
  6. Arora NK, Tewari S, Singh R (2013) Multifaceted plant-associated microbes and their mechanisms diminish the concept of direct and indirect PGPRs. In: Arora NK (ed) Plant microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp 411–449CrossRefGoogle Scholar
  7. Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216CrossRefGoogle Scholar
  8. Ashraf MY, Wu L (1994) Breeding for salinity tolerance in plants. Crit Rev Plant Sci 13(1):17–42CrossRefGoogle Scholar
  9. Ashraf M, Berge SH, Mahmood OT (2004) Inoculating wheat seedling with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol Fertil Soils 40:157–162Google Scholar
  10. Ashraf M, Hasnain S, Hussain F (2005) Exo-polysaccharides (eps) producing biofilm bacteria in improving physicochemical characteristics of the salt-affected soils. In: Proceedings of the first international conference on environmentally sustainable development v. 1–3Google Scholar
  11. Avelar Ferreira PA, Bomfeti CA, Lima Soares B, de Souza Moreira FM (2012) Efficient nitrogen-fixing Rhizobium strains isolated from amazonian soils are highly tolerant to acidity and aluminium. World J Microbiol Biotechnol 28:1947–1959PubMedCrossRefGoogle Scholar
  12. Awad NM, Turky AS, Abdelhamid MT, Attia M (2012) Ameliorate of environmental salt stress on the growth of Zea mays L. plants by exopolysaccharides producing bacteria. J Appl Sci Res 8:2033–2044Google Scholar
  13. Bahadur I, Meena VS, Kumar S (2014) Importance and application of potassic biofertilizer in Indian agriculture. Int Res J Biol Sci 3:80–85Google Scholar
  14. Bahadur I, Maurya BR, Kumar A, Meena VS, Raghuwanshi R (2016a) Towards the soil sustainability and potassium-solubilizing microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 225–266.  https://doi.org/10.1007/978-81-322-2776-2_18 CrossRefGoogle Scholar
  15. Bahadur I, Maurya BR, Meena VS, Saha M, Kumar A, Aeron A (2016b) Mineral release dynamics of tricalcium phosphate and waste muscovite by mineral-solubilizing rhizobacteria isolated from Indo-Gangetic Plain of India. Geomicrobiology J.  https://doi.org/10.1080/01490451.2016.1219431
  16. Barea JM, Azcon R, Azcon Aguilar C (2004) Mycorrhizal fungi and plant growth promoting rhizobacteria. In: Varma A, Abbott L, Werner D, Hampp R (eds) Plant surface microbiology. Springer, Heidelberg, pp 351–371Google Scholar
  17. Bashan Y, Holguin G, De-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50(8):521–577PubMedCrossRefGoogle Scholar
  18. Bashan Y, de Bashan LE, Prabhu SR, Hernandez JP (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378(1–2):1–33CrossRefGoogle Scholar
  19. Beauregard PB, Chai Y, Vlamakis H, Losick R, Kolter R (2013) Bacillus subtilis biofilm induction by plant polysaccharides. PNAS Plus Microbiol 110:E1621–E1630CrossRefGoogle Scholar
  20. Bensalim S, Nowak J, Asiedu SK (1998) A plant growth promoting rhizobacterium and temperature effects on performance of 18 clones of potato. Am J Potato Res 75(3):145–152CrossRefGoogle Scholar
  21. Bonkowski M (2004) Protozoa and plant growth: the microbial loop in soil revisited. New Phytol 162(3):617–631CrossRefGoogle Scholar
  22. Bramhachari PV, Kavi Kishor PB, Ramadevi R, Kumar R, Rao BR, Dubey SK (2007) Isolation and characterization of mucous exopolysaccharide produced by Vibrio furnissii VB0S3. J Microbiol Biotechnol 17:44–51PubMedGoogle Scholar
  23. Borlee BR, Goldman AD, Murakami K, Samudrala R, Wozniak DJ, Parsek MR (2010) Pseudomonas aeruginosa uses a cyclic‐di‐GMP‐regulated adhesin to reinforce the biofilm extracellular matrix. Mol Microbiol 75(4):827–842PubMedPubMedCentralCrossRefGoogle Scholar
  24. Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46(3):237–245PubMedCrossRefGoogle Scholar
  25. Carrasco JA, Armario P, Pajuelo E, Burgos A, Caviedes MA, López R, Palomares AJ (2005) Isolation and characterization of symbiotically effective Rhizobium resistant to arsenic and heavy metals after the toxic spill at the Aznalcollar pyrite mine. Soil Biol Biochem 37(6):1131–1140CrossRefGoogle Scholar
  26. Chang WS, Van de Mortel M, Nielsen L, de Guzman GN, Li X, Halverson LJ (2007) Alginate production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions. J Bacteriol 189:8290–8299PubMedPubMedCentralCrossRefGoogle Scholar
  27. Chaudri AM, McGrath SP, Giller KE (1992) Metal tolerance of isolates of Rhizobium leguminosarum biovar trifolii from soil contaminated by past applications of sewage sludge. Soil Biol Biochem 24(2):83–88CrossRefGoogle Scholar
  28. Corzo J, León-Barrios M, Hernando-Rico V, Gutierrez-Navarro AM (1994) Precipitation of metallic cations by the acidic exopolysaccharides from Bradyrhizobium japonicum and Bradyrhizobium (Chamaecytisus) strain BGA-1. Appl Environ Microbiol 12:4531–4536Google Scholar
  29. D’Haeze W, Holsters M (2004) Surface polysaccharides enable bacteria to evade plant immunity. Trends Microbiol 12(12):555–561PubMedCrossRefGoogle Scholar
  30. Danhorn T, Fuqua C (2007) Biofilm formation by plant-associated bacteria. Annu Rev Microbiol 61:401–422PubMedCrossRefGoogle Scholar
  31. Das I, Pradhan M (2016) Potassium-solubilizing microorganisms and their role in enhancing soil fertility and health. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 281–291.  https://doi.org/10.1007/978-81-322-2776-2_20 CrossRefGoogle Scholar
  32. Davey ME, O’Toole GA (2000) Molecular biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867PubMedPubMedCentralCrossRefGoogle Scholar
  33. De Vuyst L, Degeest B (1999) Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol Rev 23:153–177PubMedCrossRefGoogle Scholar
  34. Deepika KV, Raghuram M, Kariali E, Bramhachari PV (2016) Biological responses of symbiotic Rhizobium radiobacter strain VBCK1062 to the arsenic contaminated rhizosphere soils of mung bean. Ecotoxicol Environ Saf 134:1–10CrossRefGoogle Scholar
  35. Dimitrova S, Pavlova K, Lukanov L, Korotkova E, Petrova E, Zagorchev P, Kuncheva M (2013) Production of metabolites with antioxidant and emulsifying properties by Antarctic strain Sporobolomyces salmonicolor AL(1). Appl Biochem Biotechnol 169:301–311PubMedCrossRefGoogle Scholar
  36. Dimkpa CO, Svatos A, Merten D, Büchel G, Kothe E (2008) Hydroxamate siderophores produced by S. acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Can J Microbiol 54:163–172PubMedCrossRefGoogle Scholar
  37. Dimkpa C, Weinand T, Asch F (2009) Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32(12):1682–1694CrossRefGoogle Scholar
  38. Dominguez-Nunez JA, Benito B, Berrocal-Lobo M, Albanesi A (2016) Mycorrhizal fungi: role in the solubilization of potassium. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 77–98.  https://doi.org/10.1007/978-81-322-2776-2_6 CrossRefGoogle Scholar
  39. Dotaniya ML, Meena VD, Basak BB, Meena RS (2016) Potassium uptake by crops as well as microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 267–280.  https://doi.org/10.1007/978-81-322-2776-2_19 CrossRefGoogle Scholar
  40. El-Iklil Y, Karrou M, Benichou M (2000) Salt stress effect on epinasty in relation to ethylene production and water relations in tomato. Agronomie 20(4):399–406CrossRefGoogle Scholar
  41. Flemming HC, Wingender J (2001) Relevance of microbial extracellular polymeric substances (EPSs) – part I: structural and ecological aspects. Water Sci Technol J Int Assoc Water Pollut Res 43(6):1–8CrossRefGoogle Scholar
  42. Foster LJR, Moy YP, Rogers PL (2000) Metal binding capabilities of rhizobium etli and its extracellular polymeric substances. Biotechnol Lett 22:1757–1760CrossRefGoogle Scholar
  43. Fraysse N, Couderc F, Poinsot V (2003) Surface polysaccharide involvement in establishing the rhizobium–legume symbiosis. Eur J Biochem 270(7):1365–1380PubMedCrossRefGoogle Scholar
  44. Fujishige NA, Kapadia NN, De Hoff PL, Hirsch AM (2006) Investigations of Rhizobium biofilm formation. FEMS Microbiol Ecol 56:195–206PubMedCrossRefGoogle Scholar
  45. Gauri AKS, Bhatt RP, Pant S (2012) Effects of zinc on cell viability and cell surface components of rhizobium sp isolated from root nodules of Trifolium alexandrinum. J Agric Technol 8(3):941–959Google Scholar
  46. Geddie JL, Sutherland IW (1993) Uptake of metals by bacterial polysaccharides. J Appl Bacteriol 74(4):467–472.  https://doi.org/10.1111/j.1365-2672.1993.tb05155.x CrossRefGoogle Scholar
  47. Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28(3):367–374PubMedCrossRefGoogle Scholar
  48. Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119(3):329–339CrossRefGoogle Scholar
  49. González-Teuber M, Pozo MJ, Muck A, Svatos A, Adame-Alvarez RM, Heil M (2010) Glucanases and chitinases as causal agents in the protection of Acacia extrafloral nectar from infestation by phytopathogens. Plant Physiol 152:1705–1715PubMedCrossRefGoogle Scholar
  50. Gouzou L, Burtin G, Philippy R, Bartoli F, Heulin T (1993) Effect of inoculation with Bacillus polymyxa on soil agregation in the wheat rhizosphere: preliminary examination. Geoderma 56:479–490CrossRefGoogle Scholar
  51. Gutnick DL, Bach H (2000) Engineering bacterial biopolymers for the biosorption of heavy metals; new products and novel formulations. Appl Microbiol Biotechnol 54:451–460PubMedCrossRefGoogle Scholar
  52. Ha J, Gélabert A, Spormann AM, Brown GE (2010) Role of extracellular polymeric substances in metal ion complexation on Shewanella oneidensis: batch uptake, thermodynamic modeling, ATR-FTIR, and EXAFS study. Geochim Cosmochim Acta 74:1–15CrossRefGoogle Scholar
  53. Harish S, Kavino M, Kumar N, Balasubramanian P, Samiyappan R (2009) Induction of defense-related proteins by mixtures of plant growth promoting endophytic bacteria against banana bunchy top virus. Biol Control 51:16–25CrossRefGoogle Scholar
  54. Hynes RK, Leung GC, Hirkala DL, Nelson LM (2008) Isolation, selection, and characterization of beneficial rhizobacteria from pea, lentil, and chickpea grown in western Canada. Can J Microbiol 54(4):248–258PubMedCrossRefGoogle Scholar
  55. Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60(4):579–598CrossRefGoogle Scholar
  56. Huang A, Teplitski M, Rathinasabapathi B, Ma L (2010) Characterization of arsenic-resistant bacteria from the rhizosphere of arsenic hyperaccumulator Pteris vittata. Can J Microbiol 56(3):236–246PubMedCrossRefGoogle Scholar
  57. Ivanov V, Chu J (2008) Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Rev Environ Sci Bio/Technol 7:139–153CrossRefGoogle Scholar
  58. Jaiswal DK, Verma JP, Prakash S, Meena VS, Meena RS (2016) Potassium as an important plant nutrient in sustainable agriculture: a state of the art. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 21–29.  https://doi.org/10.1007/978-81-322-2776-2_2 CrossRefGoogle Scholar
  59. Jaszek M, Janczarek M, Kuczyński K, Piersiak T, Grzywnowicz K (2014) The response of the Rhizobium leguminosarum bv. trifolii wild-type and exopolysaccharide-deficient mutants to oxidative stress. Plant Soil 376(1–2):75–94CrossRefGoogle Scholar
  60. Jat LK, Singh YV, Meena SK, Meena SK, Parihar M, Jatav HS, Meena RK, Meena VS (2015) Does integrated nutrient management enhance agricultural productivity? J Pure Appl Microbiol 9(2):1211–1221Google Scholar
  61. Jha Y, Subramanian RB (2016) Regulation of plant physiology and antioxidant enzymes for alleviating salinity stress by potassium-mobilizing bacteria. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 149–162.  https://doi.org/10.1007/978-81-322-2776-2_11 CrossRefGoogle Scholar
  62. Jiang HL, Tay JH, Tay STL (2004) Changes in structure, activity and metabolism of aerobic granules as a microbial response to high phenol loading. Appl Microbiol Biotechnol 63:602–608PubMedCrossRefGoogle Scholar
  63. Joshi PM, Juwarkar AA (2009) In vivo studies to elucidate the role of extracellular polymeric substances from Azotobacter in immobilization of heavy metals. Environ Sci Technol 43:5884–5889PubMedCrossRefGoogle Scholar
  64. Kaci Y, Heyraud A, Barakat M, Heulin T (2005) Isolation and identification of an EPS-producing rhizobium strain from arid soil (Algeria): characterization of its EPS and the effect of inoculation on wheat rhizosphere soil structure. Res Microbiol 156(4):522–531PubMedCrossRefGoogle Scholar
  65. Karthik C, Oves M, Sathya K, Sri Ramkumar V, Arulselvi PI (2017) Isolation and characterization of multi-potential Rhizobium strain ND2 and its plant growth promoting activities under Cr (VI) stress. Arch Agron Soil Sci 63(8):1058–1069CrossRefGoogle Scholar
  66. Kavino M, Harish S, Kumar N, Saravanakumar D, Samiyappan R (2010) Effect of chitinolytic PGPR on growth, yield and physiological attributes of banana (Musa spp.) under field conditions. Appl. Soil Ecol 45:71–77CrossRefGoogle Scholar
  67. Kawarai T, Furukawa S, Narisawa N, Hagiwara C, Ogihara H, Yamasaki M (2009) Biofilm formation by Escherichia coli in hypertonic sucrose media. J Bio Sci Bioeng 107(6):630CrossRefGoogle Scholar
  68. Kelly SJ, Muszynski A, Kawaharada Y, Hubber AM, Sullivan, JT, Sandal N, ..., Ronson CW (2013) Conditional requirement for exopolysaccharide in the Mesorhizobium-Lotus symbiosis. Mol Plant-Microbe Interact 26(3):319–329PubMedCrossRefGoogle Scholar
  69. Kennedy AC, Smith KL (1995) Soil microbial diversity and the sustainability of agricultural soils. Plant Soil 170:75–86CrossRefGoogle Scholar
  70. Kumar A, Bahadur I, Maurya BR, Raghuwanshi R, Meena VS, Singh DK, Dixit J (2015) Does a plant growth-promoting rhizobacteria enhance agricultural sustainability? J Pure Appl Microbiol 9:715–724Google Scholar
  71. Kumar A, Meena R, Meena VS, Bisht JK, Pattanayak A (2016a) Towards the stress management and environmental sustainability. J Clean Prod 137:821–822CrossRefGoogle Scholar
  72. Kumar A, Patel JS, Bahadur I, Meena VS (2016b) The molecular mechanisms of KSMs for enhancement of crop production under organic farming. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 61–75.  https://doi.org/10.1007/978-81-322-2776-2_5 CrossRefGoogle Scholar
  73. Kumar A, Maurya BR, Raghuwanshi R, Meena VS, Islam MT (2017) Co-inoculation with enterobacter and rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under indo-gangetic plain of India. J Plant Growth Regul.  https://doi.org/10.1007/s00344-016-9663-5
  74. Kumon H, Tomochika KI, Matunaga T, Ogawa M, Ohmori H (1994) A sandwich cup method for the penetration assay of antimicrobial agents through Pseudomonas exopolysaccharides. Microbiol Immunol 38(8):615–619PubMedCrossRefGoogle Scholar
  75. Kyungseok P, Kloepper JW, Ryu CM (2008) Rhizobacterial exopolysaccharides elicit induced resistance on cucumber. J Microbiol Biotechnol 18:1095–1100Google Scholar
  76. Ledin M (2000) Accumulation of metals by microorganisms-processes and importance for soil systems. Earth Sci Rev 51((1)):1–31CrossRefGoogle Scholar
  77. Liu D, Lian B, Dong H (2012) Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiol J 29(5):413–421CrossRefGoogle Scholar
  78. Lerner A, Castro-Sowinski S, Lerner H, Okon Y, Burdman S (2009) Glycogen phosphorylase is involved in stress endurance and biofilm formation in Azospirillum brasilense Sp7. FEMS Microbiol Lett 300(1):75–82PubMedCrossRefGoogle Scholar
  79. Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29(2):248–258PubMedCrossRefGoogle Scholar
  80. Mamaril JC, Paner ET, Alpante BM (1997) Biosorption and desorption studies of chromium (iii) by free and immobilized Rhizobium (BJVr 12) cell biomass. Biodegradation 8(4):275–285CrossRefGoogle Scholar
  81. Manca de Nadra MC, Strasser de Saad AM, Pesce de Ruiz Holgado AA, Oliver G (1985) Extracellular polysaccharide production by Lactobacillus bulgaricus CRL 420. Milchwissenschaft 40(7):409–411Google Scholar
  82. Mandal SM, Pati BR, Das AK, Ghosh AK (2008) Characterization of arsenic tolerant and nodulation effective Rhizobium isolate of V. mungo. J Gen Appl Microbiol 54:93–99PubMedCrossRefGoogle Scholar
  83. Maria SD, Rivelli AR, Kuffner M, Sessitsch A, Wenzel WW, Gorfer M et al (2011) Interactions between accumulation of trace elements and macronutrients in Salix caprea after inoculation with rhizosphere microorganisms. Chemosphere 84:1256–1261PubMedPubMedCentralCrossRefGoogle Scholar
  84. Martinez-Viveros O, Jorquera MA, Crowley DE, Gajardo GMLM, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10(3):293–319CrossRefGoogle Scholar
  85. Masood S, Bano A (2016) Mechanism of potassium solubilization in the agricultural soils by the help of soil microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 137–147.  https://doi.org/10.1007/978-81-322-2776-2_10 CrossRefGoogle Scholar
  86. Maurya BR, Meena VS, Meena OP (2014) Influence of inceptisol and alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. Vegetos 27:181–187Google Scholar
  87. Mayak S, Tirosh T, Glick BR (2004a) Plant growth-promoting bacteria that confer resistance to water stress in tomato and pepper. Plant Sci 166:525–530CrossRefGoogle Scholar
  88. Mayak S, Tirosh T, Glick BR (2004b) Plant growth-promoting bacteria that confer resistance in tomato and pepper to salt stress. Plant Physiol Biochem 42:565–572PubMedCrossRefGoogle Scholar
  89. Meena OP, Maurya BR, Meena VS (2013a) Influence of K-solubilizing bacteria on release of potassium from waste mica. Agric Sust Dev 1:53–56Google Scholar
  90. Meena VS, Maurya BR, Bohra JS, Verma R, Meena MD (2013b) Effect of concentrate manure and nutrient levels on enzymatic activities and microbial population under submerged rice in alluvium soil of Varanasi. Crop Res 45(1,2 & 3):6–12Google Scholar
  91. Meena VS, Maurya BR, Verma R, Meena RS, Jatav GK, Meena SK, Meena SK (2013c) Soil microbial population and selected enzyme activities as influenced by concentrate manure and inorganic fertilizer in alluvium soil of Varanasi. Bioscan 8(3):931–935Google Scholar
  92. Meena VS, Maurya BR, Bahadur I (2014a) Potassium solubilization by bacterial strain in waste mica. Bang J Bot 43:235–237Google Scholar
  93. Meena VS, Maurya BR, Verma JP (2014b) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347PubMedPubMedCentralCrossRefGoogle Scholar
  94. Meena RS, Meena VS, Meena SK, Verma JP (2015a) The needs of healthy soils for a healthy world. J Clean Prod 102:560–561CrossRefGoogle Scholar
  95. Meena RS, Meena VS, Meena SK, Verma JP (2015b) Towards the plant stress mitigate the agricultural productivity: a book review. J Clean Prod 102:552–553CrossRefGoogle Scholar
  96. Meena VS, Maurya BR, Meena RS (2015c) Residual impact of wellgrow formulation and NPK on growth and yield of wheat (Triticum aestivum L.) Bangladesh J Bot 44(1):143–146CrossRefGoogle Scholar
  97. Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015d) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347CrossRefGoogle Scholar
  98. Meena VS, Meena SK, Verma JP, Meena RS, Ghosh BN (2015e) The needs of nutrient use efficiency for sustainable agriculture. J Clean Prod 102:562–563.  https://doi.org/10.1016/j.jclepro.2015.04.044 CrossRefGoogle Scholar
  99. Meena VS, Verma JP, Meena SK (2015f) Towards the current scenario of nutrient use efficiency in crop species. J Clean Prod 102:556–557.  https://doi.org/10.1016/j.jclepro.2015.04.030 CrossRefGoogle Scholar
  100. Meena RK, Singh RK, Singh NP, Meena SK, Meena VS (2016a) Isolation of low temperature surviving plant growth-promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatal Agric Biotechnol 4:806–811Google Scholar
  101. Meena RS, Bohra JS, Singh SP, Meena VS, Verma JP, Verma SK, Sihag SK (2016b) Towards the prime response of manure to enhance nutrient use efficiency and soil sustainability a current need: a book review. J Clean Prod 112(1):1258–1260CrossRefGoogle Scholar
  102. Meena SK, Rakshit A, Meena VS (2016c) Effect of seed bio-priming and N doses under varied soil type on nitrogen use efficiency (NUE) of wheat (Triticum aestivum L.) under greenhouse conditions. Biocatal Agric Biotechnol 6:68–75Google Scholar
  103. Meena VS, Bahadur I, Maurya BR, Kumar A, Meena RK, Meena SK, Verma JP (2016d) Potassium-solubilizing microorganism in evergreen agriculture: an overview. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 1–20.  https://doi.org/10.1007/978-81-322-2776-2_1 CrossRefGoogle Scholar
  104. Meena VS, Meena SK, Bisht JK, Pattanayak A (2016e) Conservation agricultural practices in sustainable food production. J Clean Prod 137:690–691CrossRefGoogle Scholar
  105. Meena VS, Maurya BR, Meena SK, Meena RK, Kumar A, Verma JP, Singh NP (2017) Can Bacillus species enhance nutrient availability in agricultural soils? In: Islam MT, Rahman M, Pandey P, Jha CK, Aeron A (eds) Bacilli and agrobiotechnology. Springer, Cham, pp 367–395.  https://doi.org/10.1007/978-3-319-44409-3_16 CrossRefGoogle Scholar
  106. Mendrygal KE, González JE (2000) Environmental regulation of exopolysaccharide production in Sinorhizobium meliloti. J Bacteriol 182(3):599–606PubMedPubMedCentralCrossRefGoogle Scholar
  107. Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32(2):429–448PubMedCrossRefGoogle Scholar
  108. Nihorimbere V, Marc Ongena M, Smargiassi M, Thonart P (2011) Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnol Agron Soc Environ 15:327–337Google Scholar
  109. Nocelli N, Bogino PC, Banchio E, Giordano W (2016) Roles of extracellular polysaccharides and biofilm formation in heavy metal resistance of Rhizobia. Materials 9(6):418PubMedCentralCrossRefGoogle Scholar
  110. Ortmann I, Conrath U, Moerschbacher BM (2006) Exopolysaccharides of Pantoea agglomerans have different priming and eliciting activities in suspension-cultured cells of monocots and dicots. FEBS Lett 580(18):4491–4494PubMedCrossRefGoogle Scholar
  111. Ouzounidou G, Moustakas M, Symeonidis L, Karataglis S (2006) Response of wheat seedlings to Ni stress: effects of supplemental calcium. Arch Environ Contam Toxicol 50:346–352PubMedCrossRefGoogle Scholar
  112. Ozturk S, Kaya T, Aslim B, Tan S (2012) Removal and reduction of chromium by pseudomonas spp. and their correlation to rhamnolipid production. J Hazard Mater 231:64–69PubMedCrossRefGoogle Scholar
  113. Parada M, Vinardell JM, Ollero FJ, Hidalgo Á, Gutiérrez R, Buendía-Clavería AM, Rodríguez-Carvajal MA (2006) Sinorhizobium fredii HH103 mutants affected in capsular polysaccharide (KPS) are impaired for nodulation with soybean and Cajanus cajan. Mol Plant-Microbe Interact 19(1):43–52PubMedCrossRefGoogle Scholar
  114. Parewa HP, Yadav J, Rakshit A, Meena VS, Karthikeyan N (2014) Plant growth promoting rhizobacteria enhance growth and nutrient uptake of crops. Agric Sustain Dev 2(2):101–116Google Scholar
  115. Prakash S, Verma JP (2016) Global perspective of potash for fertilizer production. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 327–331.  https://doi.org/10.1007/978-81-322-2776-2_23 CrossRefGoogle Scholar
  116. Priyadharsini P, Muthukumar T (2016) Interactions between arbuscular mycorrhizal fungi and potassium-solubilizing microorganisms on agricultural productivity. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 111–125.  https://doi.org/10.1007/978-81-322-2776-2_8 CrossRefGoogle Scholar
  117. Priyanka P, Arun AB, Ashwini P, Rekha PD (2015) Versatile properties of an exopolysaccharide R-PS18 produced by Rhizobium sp. PRIM-18. Carbohydr Polym 126:215–221PubMedCrossRefGoogle Scholar
  118. Qurashi AW, Sabri AN (2012) Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Braz J Microbiol 43(3):1183–1191PubMedPubMedCentralCrossRefGoogle Scholar
  119. Raghavendra MP, Nayaka NC, Nuthan BR (2016) Role of rhizosphere microflora in potassium solubilization. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 43–59.  https://doi.org/10.1007/978-81-322-2776-2_4 CrossRefGoogle Scholar
  120. Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149PubMedCrossRefGoogle Scholar
  121. Rangel WM, Thijs S, Janssen J, Oliveira Longatti SM, Bonaldi DS, Ribeiro PR, Moreira FM (2017) Native rhizobium from Zn-mining soil promotes the growth of Leucaena leucocephala on contaminated soil. Int J Phytoremed 19(2):142–156Google Scholar
  122. Rawat J, Sanwal P, Saxena J (2016) Potassium and its role in sustainable agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 235–253.  https://doi.org/10.1007/978-81-322-2776-2_17 CrossRefGoogle Scholar
  123. Reichman SMA (2007) The potential use of the legume–Rhizobium symbiosis for the remediation of arsenic contaminated sites. Soil Biol 39:2587–2593CrossRefGoogle Scholar
  124. Roberson EB, Firestone MK (1992) Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp. Appl Environ Microbiol 58(4):1284–1291PubMedPubMedCentralGoogle Scholar
  125. Rodriguez R, Redman R (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59(5):1109–1114PubMedCrossRefGoogle Scholar
  126. Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F, Deangelis ML, Gandolfi C, Casati E et al (2014) Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environ Microbiol 17:316–331PubMedCrossRefGoogle Scholar
  127. Rossi F, Micheletti E, Bruno L, Adhikary SP, Albertano P, De Philippis R (2012) Characteristics and role of the exocellular polysaccharides produced by five cyanobacteria isolated from phototrophic biofilms growing on stone monuments. Biofouling 28(2):215–224PubMedCrossRefGoogle Scholar
  128. Saha M, Maurya BR, Bahadur I, Kumar A, Meena VS (2016a) Can potassium-solubilising bacteria mitigate the potassium problems in India? In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 127–136.  https://doi.org/10.1007/978-81-322-2776-2_9 CrossRefGoogle Scholar
  129. Saha M, Maurya BR, Meena VS, Bahadur I, Kumar A (2016b) Identification and characterization of potassium solubilizing bacteria (KSB) from Indo-Gangetic Plains of India. Biocatal Agric Biotechnol 7:202–209Google Scholar
  130. Sandhya V, Ali SZ, Minakshi G, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP P45. Biol Fertil Soils 46:17–26CrossRefGoogle Scholar
  131. Santaella C, Schue M, Berge O, Heulin T, Achouak W (2008) The exopolysaccharide of Rhizobium sp. YAS34 is not necessary for biofilm formation on Arabidopsis thaliana and Brassica napus roots but contributes to root colonization. Environ Microbiol 10(8):2150–2163PubMedPubMedCentralCrossRefGoogle Scholar
  132. Santamaria M, Díaz-Marrero A, Hernández J, Gutiérrez-Navarro AM, Corzo J (2003) Effect of thorium on the growth and capsule morphology of Bradyrhizobium. Environ Microbiol 5:916–924PubMedCrossRefGoogle Scholar
  133. Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102:1283–1292PubMedCrossRefGoogle Scholar
  134. Scheu S, Ruess L, Bonkowski M (2005) Interactions between microorganisms and soil micro- and mesofauna. In: Buscot F, Varma S (eds) Micro-organisms in soils: roles in genesis and functions. Springer, Heidelberg, pp 195–212Google Scholar
  135. Schue M, Fekete A, Ortet P, Brutesco C, Heulin T, Schmitt-Kopplin P, ..., Santaella C (2011) Modulation of metabolism and switching to biofilm prevail over exopolysaccharide production in the response of R. alamii to cadmium. PloS One 6(11):e26771PubMedPubMedCentralCrossRefGoogle Scholar
  136. Seneviratne G, Weerasekara MLMAW, Seneviratne KACN, Zavahir JS, Lecskes ML, Kennedy IR (2011) Importance of biofilm formation in plant growth promoting rhizobacterial action. Microbiol Monogr 18:81–95CrossRefGoogle Scholar
  137. Sgherri C, Quartacci MF, Navarri-Izzo F (2007) Early production of activated oxygen species in root apoplast of wheat following copper excess. J Plant Physiol 164:1152–1160PubMedCrossRefGoogle Scholar
  138. Sharma A, Shankhdhar D, Shankhdhar SC (2016) Potassium-solubilizing microorganisms: mechanism and their role in potassium solubilization and uptake. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 203–219.  https://doi.org/10.1007/978-81-322-2776-2_15 CrossRefGoogle Scholar
  139. Sheng GP, Yu HQ, Li XY (2010) Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnol Adv 28(6):882–894PubMedCrossRefGoogle Scholar
  140. Shrivastava M, Srivastava PC, D’Souza SF (2016) KSM soil diversity and mineral solubilization, in relation to crop production and molecular mechanism. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 221–234.  https://doi.org/10.1007/978-81-322-2776-2_16 CrossRefGoogle Scholar
  141. Sindhu SS, Parmar P, Phour M, Sehrawat A (2016) Potassium-solubilizing microorganisms (KSMs) and its effect on plant growth improvement. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 171–185.  https://doi.org/10.1007/978-81-322-2776-2_13 CrossRefGoogle Scholar
  142. Singh A, Van Hamme JD, Ward OP (2007) Surfactants in microbiology and biotechnology: part 2: application aspects. Biotechnol Adv 25:99–121PubMedCrossRefGoogle Scholar
  143. Singh NP, Singh RK, Meena VS, Meena RK (2015) Can we use maize (Zea mays) rhizobacteria as plant growth promoter? Vegetos 28(1):86–99.  https://doi.org/10.5958/2229-4473.2015.00012.9 CrossRefGoogle Scholar
  144. Singh M, Dotaniya ML, Mishra A, Dotaniya CK, Regar KL, Lata M (2016) Role of biofertilizers in conservation agriculture. In: Bisht JK, Meena VS, Mishra PK, Pattanayak A (eds) Conservation agriculture: an approach to combat climate change in Indian Himalaya. Springer, Singapore, pp 113–134.  https://doi.org/10.1007/978-981-10-2558-7_4 CrossRefGoogle Scholar
  145. Slaveykova VI, Parthasarathy N, Dedieu K, Toescher D (2010) Role of extracellular compounds in Cd-sequestration relative to Cd uptake by bacterium Sinorhizobium meliloti. Environ Pollut 158:2561–2565PubMedCrossRefGoogle Scholar
  146. Sutherland I (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9PubMedCrossRefGoogle Scholar
  147. Tank N, Saraf M (2010) Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. J Plant Interact 5(1):51–58CrossRefGoogle Scholar
  148. Teotia P, Kumar V, Kumar M, Shrivastava N, Varma A (2016) Rhizosphere microbes: potassium solubilization and crop productivity-present and future aspects. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 315–325.  https://doi.org/10.1007/978-81-322-2776-2_22 CrossRefGoogle Scholar
  149. Tewari S, Arora NK (2014) Multifunctional exopolysaccharides from Pseudomonas aeruginosa PF23 involved in plant growth stimulation, biocontrol and stress amelioration in sunflower under saline conditions. Curr Microbiol 69:484–494PubMedCrossRefGoogle Scholar
  150. Tsuneda S, Aikawa H, Hayashi H, Yuasa A, Hirata A (2003) Extracellular polymeric substances responsible for bacterial adhesion onto solid surface. FEMS Microbiol Lett 223(2):287–292PubMedCrossRefGoogle Scholar
  151. Upadhyay DN, Vyas RK, Sharma ML, Soni Y, Rajnee (2011) Comparison in serum profile of peroxidants (MDA) and nonenzymatic antioxidants (vitamins E and C) among patients suffering from plasmodium falciparum and vivax malaria. J Postgrad Med Inst 25:96–100Google Scholar
  152. Valls M, De Lorenzo V (2002) Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26(4):327–338PubMedCrossRefGoogle Scholar
  153. Vanbleu E, Choudhury BP, Carlson RW, Vanderleyden J (2005) The nodPQ genes in Azospirillum brasilense Sp7 are involved in sulfation of lipopolysaccharides. Environ Microbiol 7(11):1769–1774PubMedCrossRefGoogle Scholar
  154. Vanhaverbeke C, Heyraud A, Mazeau K (2003) Conformational analysis of the exopolysaccharide from Burkholderia caribensis strain MWAP71: impact on the interaction with soils. Biopolymers 69:480–497PubMedCrossRefGoogle Scholar
  155. Vanhooren P, Vandamme EJ (1998) Biosynthesis, physiological role, use and fermentation process characteristics of bacterial exopolysaccharides. Recent Res Dev Ferment Bioeng 1:253–300Google Scholar
  156. Vardharajula S, Zulfikar Ali S, Grover M, Reddy G, Bandi V (2011) Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J Plant Interact 6(1):1–14CrossRefGoogle Scholar
  157. Velazquez E, Silva LR, Ramírez-Bahena MH, Peix A (2016) Diversity of potassium-solubilizing microorganisms and their interactions with plants. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 99–110.  https://doi.org/10.1007/978-81-322-2776-2_7 CrossRefGoogle Scholar
  158. Verma R, Maurya BR, Meena VS (2014) Integrated effect of bio-organics with chemical fertilizer on growth, yield and quality of cabbage (Brassica oleracea var capitata). Indian J Agric Sci 84(8):914–919Google Scholar
  159. Verma JP, Jaiswa DK, Meena VS, Meena RS (2015a) Current need of organic farming for enhancing sustainable agriculture. J Clean Prod 102:545–547CrossRefGoogle Scholar
  160. Verma JP, Jaiswal DK, Meena VS, Kumar A, Meena RS (2015b) Issues and challenges about sustainable agriculture production for management of natural resources to sustain soil fertility and health. J Clean Prod 107:793–794CrossRefGoogle Scholar
  161. Vu B, Chen M, Crawford RJ, Ivanova EP (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14(7):2535–2554PubMedCrossRefGoogle Scholar
  162. Wang L, Ma F, Qu Y, Sun D, Li A, Guo J, Yu B (2011) Characterization of a compound bioflocculant produced by mixed culture of Rhizobium radiobacter and Bacillus sphaericus F6. World J Microbiol Biotechnol 27:2559–2565CrossRefGoogle Scholar
  163. Wang L, Yang J, Chen Z, Liu X, Fang M (2013) Biosorption of Pb(II) and Zn(II) by extracellular polymeric substance (EPS) of Rhizobium radiobacter: equilibrium, kinetics and reuse studies. Arch Environ Protec 39(2):129–140CrossRefGoogle Scholar
  164. Wani PA, Khan MS, Zaidi A (2007) Effect of metal tolerant plant growth promoting Bradyrhizobium sp.(vigna) on growth, symbiosis, seed yield and metal uptake by green gram plants. Chemosphere 70(1):36–45PubMedCrossRefGoogle Scholar
  165. Wani PA, Khan MS, Zaidi A (2008) Effect of heavy metal toxicity on growth, symbiosis, seed yield and metal uptake in pea grown in metal amended soil. Bull Environ Contam Toxicol 55:33–42CrossRefGoogle Scholar
  166. Wielbo J, Mazur A, Krol J, Marczak M, Kutkowska J, Skorupska A (2004) Complexity of phenotypes and symbiotic behaviour of Rhizobium leguminosarum biovar trifolii exopolysaccharide mutants. Arch Microbiol 182(4):331–336PubMedCrossRefGoogle Scholar
  167. Wilbert AT, Slagren SV, Brussel AAN, Kijne JW (1998) Role of exopolysaccharides of Rhizobium leguminosarum bv viciae as host plant-specific molecules required for infection thread formation during nodulation of Vicia sativa. J Am Phytopathol Soc 2:1233–1241Google Scholar
  168. Yadav BK, Sidhu AS (2016) Dynamics of potassium and their bioavailability for plant nutrition. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 187–201.  https://doi.org/10.1007/978-81-322-2776-2_14 CrossRefGoogle Scholar
  169. Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14(1):1–4PubMedCrossRefGoogle Scholar
  170. Yasin M, Munir I, Faisal M (2016) Can Bacillus spp. enhance K+ uptake in crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 163–170.  https://doi.org/10.1007/978-81-322-2776-2_12 CrossRefGoogle Scholar
  171. Zahedi H (2016) Growth-promoting effect of potassium-solubilizing microorganisms on some crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 31–42.  https://doi.org/10.1007/978-81-322-2776-2_3 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • P. V. Bramhachari
    • 1
  • Ganji Purnachandra Nagaraju
    • 2
  • E. Kariali
    • 3
  1. 1.Department of BiotechnologyKrishna UniversityMachilipatnamIndia
  2. 2.Department of Hematology and Medical Oncology, Winship Cancer InstituteEmory UniversityAtlantaUSA
  3. 3.School of Life SciencesSambalpur UniversitySambalpurIndia

Personalised recommendations