Advertisement

Biofertilizers and Biopesticides in Sustainable Agriculture

  • Vankayalapati Vijaya KumarEmail author
Chapter

Abstract

Green revolution has revolutionized the world agriculture by increasing the yields of food crops by the development of high-yielding varieties, chemical fertilizers, synthetic herbicides, and pesticides. The continuous and excess use of chemical fertilizers has changed the soil characteristics to acidic/alkaline leading to the reduction in the naturally occurring microorganisms in soil that resulted in the stagnation/reduction in crop yields. Use of microorganisms (biofertilizers and biopesticides) as an alternate to synthetic fertilizers and pesticides to increase the soil fertility and disease and pest control in agriculture is gaining prominence. Biofertilizers and biopesticides are environmental friendly products and can be used in integrated nutrient management (INM) and integrated pest management (IPM) techniques. This chapter reviews the microorganisms and their role in enhancing soil fertility and disease and pest control for sustainable agriculture.

Keywords

Green revolution Biofertilizers Biopesticides Soil fertility Sustainable agriculture 

Notes

Acknowledgments

The author is thankful to the Management of Core Green Sugar and Fuels Pvt. Ltd. for giving an opportunity and encouragement in preparation of this chapter.

References

  1. Adzmi F, Saud HM, Ismail MR, Othman R, Habib SH, Kausar H (2014) Effect of co-inoculation of nitrogen fixing and phosphate solubilizing microorganisms in combination with chemical fertilizers on growth and development of rice. Crop Res 47:1–6Google Scholar
  2. Ahmad M, Nadeem SM, Naveed M, Zahir ZA (2016) Potassium-solubilizing bacteria and their application in agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 293–313.  https://doi.org/10.1007/978-81-322-2776-2_21 CrossRefGoogle Scholar
  3. Amiri A, Rafiee M (2013) Effect of soil inoculation with Azospirillum and Azotobacter bacteria on nitrogen use efficiency and agronomic characteristics of corn. Ann Biol Res 4:77–79Google Scholar
  4. Bagyalakshmi B, Ponmurugan P, Marimuthu S (2012) Influence of potassium solubilizing bacteria on crop productivity and quality of tea (Camellia sinensis). Afr J Agric Res 7:4250–4259CrossRefGoogle Scholar
  5. Bahadur I, Meena VS, Kumar S (2014) Importance and application of potassic biofertilizer in Indian agriculture. Int Res J Biol Sci 3:80–85Google Scholar
  6. Bahadur I, Maurya BR, Kumar A, Meena VS, Raghuwanshi R (2016a) Towards the soil sustainability and potassium-solubilizing microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 225–266.  https://doi.org/10.1007/978-81-322-2776-2_18 CrossRefGoogle Scholar
  7. Bahadur I, Maurya BR, Meena VS, Saha M, Kumar A, Aeron A (2016b) Mineral release dynamics of tricalcium phosphate and waste muscovite by mineral-solubilizing rhizobacteria isolated from indo-gangetic plain of India. Geomicrobiol J 34:454–466.  https://doi.org/10.1080/01490451.2016.1219431 CrossRefGoogle Scholar
  8. Bahrani A, Pourreza J, Hagh Joo M (2010) Response of winter wheat to co-inoculation with Azotobacter and Arbuscular mycorrhizal fungi (AMF) under different sources of nitrogen fertilizer. Am-Euras J Agric Environ Sci 8:95–103Google Scholar
  9. Banerjee S, Palit R, Sengupta C, Standing D (2010) Stress induced phosphate solubilization by Arthrobacter sp. and Bacillus sp. isolated from tomato rhizosphere. Aust J Crop Sci 4:378–383Google Scholar
  10. Bapiri A, Asgharzadeh A, Mujallali H, Khavazi K, Pazira E (2012) Evaluation of zinc solubilization potential by different strains of fluorescent Pseudomonads. J Appl Sci Environ Manage 16:295–298Google Scholar
  11. Benítez T, Rincón AM, Limón MC, Codón AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260PubMedGoogle Scholar
  12. Bhattacharya S, Das A, Bharajwad S, Rajan SS (2015) Phosphate solubilizing potential of Aspergillus niger MPF-8 isolated from Muthupettai mangrove. J Sci Ind Res 74:499–503Google Scholar
  13. Bravo A, Gill SS, Soberón M (2007) Mode of action of Bacillus thuringiensis cry and Cyt toxins and their potential for insect control. Toxicon 49(4):423–435CrossRefPubMedGoogle Scholar
  14. Castagno LN, Estrella MJ, Sannazzaro AI, Grassano AE, Ruiz OA (2011) Phosphate-solubilization mechanism and in vitro plant growth promotion activity mediated by Pantoea eucalypti isolated from Lotus tenuis rhizosphere in the Salado river basin (Argentina). J Appl Microbiol 110:1151–1165CrossRefPubMedGoogle Scholar
  15. Chatli AS, Beri V, Sidhu BS (2008) Isolation and characterisation of phosphate solubilising microorganisms from the cold desert habitat of Salix alba Linn. in trans Himalayan region of Himachal Pradesh. Indian J Microbiol 48:267–273CrossRefPubMedPubMedCentralGoogle Scholar
  16. Costa RRGF, Quirino GSF, Naves DCF, Santos CB, Rocha AFS (2015) Efficiency of inoculant with Azospirillum brasilense on the growth and yield of second-harvest maize. Pesq Agropec Trop Goiânia 45:304–311CrossRefGoogle Scholar
  17. Das I, Pradhan M (2016) Potassium-solubilizing microorganisms and their role in enhancing soil fertility and health. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 281–291.  https://doi.org/10.1007/978-81-322-2776-2_20 CrossRefGoogle Scholar
  18. Dominguez-Nunez JA, Benito B, Berrocal-Lobo M, Albanesi A (2016) Mycorrhizal fungi: role in the solubilization of potassium. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 77–98.  https://doi.org/10.1007/978-81-322-2776-2_6 CrossRefGoogle Scholar
  19. Dotaniya ML, Meena VD, Basak BB, Meena RS (2016) Potassium uptake by crops as well as microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 267–280.  https://doi.org/10.1007/978-81-322-2776-2_19 CrossRefGoogle Scholar
  20. Farhat MB, Farhat A, Bejar W, Kammoun R, Bouchaala K, Fourati A, Antoun H, Bejar S, Chouayekh H (2009) Characterization of the mineral phosphate solubilizing activity of Serratia marcescens CTM 50650 isolated from the phosphate mine of Gafsa. Arch Microbiol 191:815–824CrossRefPubMedGoogle Scholar
  21. Fujita K (2010) The green revolution and its significance for economic development: the Indian experience and its implications for Sub-Saharan Africa. JICA–RI working paper. no.17, pp 1–27Google Scholar
  22. Garcia IV, Mendoza RE (2007) Arbuscular mycorrhizal fungi and plant symbiosis in a saline-sodic soil. Mycorrhiza 17:167–174CrossRefPubMedGoogle Scholar
  23. Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Lakshmipathi Gowda CL, Krishna ML (2015) Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech 5:355–377CrossRefPubMedGoogle Scholar
  24. Gupta N, Sabat J, Parida R, Kerkatta D (2007) Solubilization of tricalcium phosphate and rock phosphate by microbes isolated from chromite, iron and manganese mines. Acta Bot Croat 66:197–204Google Scholar
  25. Gyaneshwar P, Parekh LJ, Archana G, Poole PS, Collins MD, Hutson RA, Kumar GN (1999) Involvement of a phosphate starvation inducible glucose dehydrogenase in soil phosphate solubilization by Enterobacter asburiae. FEMS Microbiol Lett 171:223–229CrossRefGoogle Scholar
  26. Habte M (2000) Mycorrhizal fungi and plant nutrition. In: Silva JA, Uchida R (eds) Plant nutrient management in Hawaii’s soils, approaches for tropical and subtropical agriculture. College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, pp 127–131Google Scholar
  27. Han HS, Supanjani D, Lee KD (2006) Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environ 52:130–136CrossRefGoogle Scholar
  28. Handelsman J, Stabb EV (1996) Biocontrol of soil borne plant pathogens. Plant Cell 8:1855–1869CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root induced chemical changes: a review. Plant and Soil 237:173–195CrossRefGoogle Scholar
  30. Jadhav RN (2013) Isolation of rhizobia from soybean cultivated in latur area and study of its phosphate solubilization activity. Biosci Discov 4:100–103Google Scholar
  31. Jaiswal DK, Verma JP, Prakash S, Meena VS, Meena RS (2016) Potassium as an important plant nutrient in sustainable agriculture: a state of the art. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 21–29.  https://doi.org/10.1007/978-81-322-2776-2_2 CrossRefGoogle Scholar
  32. Jat LK, Singh YV, Meena SK, Meena SK, Parihar M, Jatav HS, Meena RK, Meena VS (2015) Does integrated nutrient management enhance agricultural productivity? J Pure Appl Microbiol 9(2):1211–1221Google Scholar
  33. Jha Y, Subramanian RB (2016) Regulation of plant physiology and antioxidant enzymes for alleviating salinity stress by potassium-mobilizing bacteria. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 149–162.  https://doi.org/10.1007/978-81-322-2776-2_11 CrossRefGoogle Scholar
  34. Khan AA, Jilani G, Akhtar MS, Saqlan Naqvi SM, Rasheed M (2009) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J Agric Biol Sci 1:48–58Google Scholar
  35. Kumar VV (2013a) Biopesticides: ecofriendly pesticides. Life Sci India 1(5):51–54Google Scholar
  36. Kumar VV (2012/2013b). Biofertilizers: poised for growth. Life Sci India 1(3): 44–45Google Scholar
  37. Kumar VV (2016) Plant growth-promoting microorganisms: interaction with plants and soil. Plant, soil and microbes. In: Hakeem KR et al (eds). Springer International Publishing, Cham, pp 1–16Google Scholar
  38. Kumar V, Behl RK, Narula N (2001) Establishment of phosphate-solubilizing strains of Azotobacter chroococcum in the rhizosphere and their effect on wheat cultivars under green house conditions. Microbiol Res 156:87–93CrossRefPubMedGoogle Scholar
  39. Kumar A, Bahadur I, Maurya BR, Raghuwanshi R, Meena VS, Singh DK, Dixit J (2015) Does a plant growth-promoting rhizobacteria enhance agricultural sustainability? J Pure Appl Microbiol 9:715–724Google Scholar
  40. Kumar A, Meena R, Meena VS, Bisht JK, Pattanayak A (2016a) Towards the stress management and environmental sustainability. J Clean Prod 137:821–822CrossRefGoogle Scholar
  41. Kumar A, Patel JS, Bahadur I, Meena VS (2016b) The molecular mechanisms of KSMs for enhancement of crop production under organic farming. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 61–75.  https://doi.org/10.1007/978-81-322-2776-2_5 CrossRefGoogle Scholar
  42. Kumar A, Maurya BR, Raghuwanshi R, Meena VS, Islam MT (2017) Co-inoculation with Enterobacter and Rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under indo-gangetic plain of India. J Plant Growth Regul 36:608–617.  https://doi.org/10.1007/s00344-016-9663-5 CrossRefGoogle Scholar
  43. Kumari SK, Devi SNP, Vasandha S, Anitha S (2014) Microbial inoculants-a boon to zinc deficient constraints in plants: a review. Int J Sci Res Publ 4:1–4Google Scholar
  44. Li JF, Zhang SQ, Huo HP, Shi SL, Miao YY (2013) Effect of phosphate solubilizing Rhizobium and nitrogen fixing bacteria on growth of alfalfa seedlings under P and N deficient conditions. Pak J Bot 45:1557–1562Google Scholar
  45. Lozano JMR (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13:309–317CrossRefGoogle Scholar
  46. Mahato P, Badoni A, Chauhan JS (2009) Effect of Azotobacter and nitrogen on seed germination and early seedling growth in tomato. Researcher 1:62–66Google Scholar
  47. Manila R, Nelson R (2013) Nutrient uptake and promotion of growth by arbuscular mycorrhizal fungi in tomato and their role in bio-protection against the tomato wilt pathogen. J Microbiol Biotech Res 3:42–46Google Scholar
  48. Masood S, Bano A (2016) Mechanism of potassium solubilization in the agricultural soils by the help of soil microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 137–147.  https://doi.org/10.1007/978-81-322-2776-2_10 CrossRefGoogle Scholar
  49. Mathew IL, Singh D, Singh RP, Tripathi CPM (2014) Bacillus thuringiensis: the biocontrol agent in a food web perspective. Biolife 2:348–362Google Scholar
  50. Maurya BR, Meena VS, Meena OP (2014) Influence of Inceptisol and Alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. Vegetos 27:181–187Google Scholar
  51. Meena OP, Maurya BR, Meena VS (2013a) Influence of K-solubilizing bacteria on release of potassium from waste mica. Agric Sust Dev 1:53–56Google Scholar
  52. Meena VS, Maurya BR, Bohra JS, Verma R, Meena MD (2013b) Effect of concentrate manure and nutrient levels on enzymatic activities and microbial population under submerged rice in alluvium soil of Varanasi. Crop Res 45(1,2 & 3):6–12Google Scholar
  53. Meena VS, Maurya BR, Verma R, Meena RS, Jatav GK, Meena SK, Meena R, Meena SK (2013c) Soil microbial population and selected enzyme activities as influenced by concentrate manure and inorganic fertilizer in alluvium soil of Varanasi. Bioscan 8(3):931–935Google Scholar
  54. Meena VS, Maurya BR, Bahadur I (2014a) Potassium solubilization by bacterial strain in waste mica. Bang J Bot 43:235–237Google Scholar
  55. Meena VS, Maurya BR, Verma JP (2014b) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347CrossRefPubMedGoogle Scholar
  56. Meena RS, Meena VS, Meena SK, Verma JP (2015a) The needs of healthy soils for a healthy world. J Clean Prod 102:560–561CrossRefGoogle Scholar
  57. Meena RS, Meena VS, Meena SK, Verma JP (2015b) Towards the plant stress mitigate the agricultural productivity: a book review. J Clean Prod 102:552–553CrossRefGoogle Scholar
  58. Meena VS, Maurya BR, Meena RS (2015c) Residual impact of wellgrow formulation and NPK on growth and yield of wheat (Triticum aestivum L.) Bangladesh. J Bot 44(1):143–146Google Scholar
  59. Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015d) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347CrossRefGoogle Scholar
  60. Meena VS, Meena SK, Verma JP, Meena RS, Ghosh BN (2015e) The needs of nutrient use efficiency for sustainable agriculture. J Clean Prod 102:562–563.  https://doi.org/10.1016/j.jclepro.2015.04.044 CrossRefGoogle Scholar
  61. Meena VS, Verma JP, Meena SK (2015f) Towards the current scenario of nutrient use efficiency in crop species. J Clean Prod 102:556–557.  https://doi.org/10.1016/j.jclepro.2015.04.030 CrossRefGoogle Scholar
  62. Meena RK, Singh RK, Singh NP, Meena SK, Meena VS (2016a) Isolation of low temperature surviving plant growth-promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatal Agric Biotechnol 4:806–811Google Scholar
  63. Meena RS, Bohra JS, Singh SP, Meena VS, Verma JP, Verma SK, Sihag SK (2016b) Towards the prime response of manure to enhance nutrient use efficiency and soil sustainability a current need: a book review. J Clean Prod 112(1):1258–1260CrossRefGoogle Scholar
  64. Meena SK, Rakshit A, Meena VS (2016c) Effect of seed bio-priming and N doses under varied soil type on nitrogen use efficiency (NUE) of wheat (Triticum aestivum L.) under greenhouse conditions. Biocatal Agric Biotechnol 6:68–75Google Scholar
  65. Meena VS, Bahadur I, Maurya BR, Kumar A, Meena RK, Meena SK, Verma JP (2016d) Potassium-solubilizing microorganism in evergreen agriculture: an overview. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 1–20.  https://doi.org/10.1007/978-81-322-2776-2_1 CrossRefGoogle Scholar
  66. Meena VS, Meena SK, Bisht JK, Pattanayak A (2016e) Conservation agricultural practices in sustainable food production. J Clean Prod 137:690–691CrossRefGoogle Scholar
  67. Meena VS, Maurya BR, Meena SK, Meena RK, Kumar A, Verma JP, Singh NP (2017) Can Bacillus species enhance nutrient availability in agricultural soils? In: Islam MT, Rahman M, Pandey P, Jha CK, Aeron A (eds) Bacilli and agrobiotechnology. Springer International Publishing, Cham, pp 367–395.  https://doi.org/10.1007/978-3-319-44409-3_16 CrossRefGoogle Scholar
  68. Mohammadi K (2012) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. Resour Environ 2:80–85Google Scholar
  69. Molina MFG, Winic BC, Pedraza RO (2012) More than rhizosphere colonization of strawberry plants by Azospirillum brasilense. Appl Soil Ecol 61:205–212CrossRefGoogle Scholar
  70. Moore FJ, Parai BJ (1996) The green revolution. Green:1–17. http://people.ucalgary.ca/~pfitzger/green.pdf
  71. Muthukumarasamy R, Revathi G, Seshadri S, Lakshminarasimhan C (2002) Gluconacetobacter diazotrophicus (syn. Acetobacter diazotrophicus), a promising diazotrophic endophyte in tropics. Curr Sci 83:137–145Google Scholar
  72. Muthukumarasamy R, Cleenwerck I, Revathi G, Vadivelu M, Janssens D, Hoste B, Gum KU, Park KD, Son CY, Sa T, Caballero-Melladoe J (2005) Natural association of Gluconacetobacter diazotrophicus and diazotrophic Acetobacter peroxydans with wetland rice. Syst Appl Microbiol 28:277–286CrossRefPubMedGoogle Scholar
  73. Nahas E (1996) Factors determining rock phosphate solubilization by microorganism isolated from soil. World J Microbiol Biotechnol 12:567–572CrossRefPubMedGoogle Scholar
  74. Naz I, Ahmad H, Khokhar NS, Khan K, Shah AH (2016) Impact of zinc solubilizing bacteria on zinc contents of wheat. Am-Euras J Agric Environ Sci 16:449–454Google Scholar
  75. Parewa HP, Yadav J, Rakshit A, Meena VS, Karthikeyan N (2014) Plant growth promoting rhizobacteria enhance growth and nutrient uptake of crops. Agric Sustain Dev 2(2):101–116Google Scholar
  76. Philips RL (2013) Norman E. Borlaug 1914–2009 biographical memoir. National Academy of Sciences, Washington, DC, pp 1–16. www.nasonline.org/memoirs Google Scholar
  77. Prajapathi K (2016) Impact of potassium solubilizing bacteria on growth and yield of mung bean Vigna radiata. Indian J Appl Res 6:390–392Google Scholar
  78. Prakash S, Verma JP (2016) Global perspective of potash for fertilizer production. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 327–331.  https://doi.org/10.1007/978-81-322-2776-2_23 CrossRefGoogle Scholar
  79. Priyadharsini P, Muthukumar T (2016) Interactions between arbuscular mycorrhizal fungi and potassium-solubilizing microorganisms on agricultural productivity. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 111–125.  https://doi.org/10.1007/978-81-322-2776-2_8 CrossRefGoogle Scholar
  80. Raghavendra MP, Nayaka NC, Nuthan BR (2016) Role of rhizosphere microflora in potassium solubilization. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 43–59.  https://doi.org/10.1007/978-81-322-2776-2_4 CrossRefGoogle Scholar
  81. Rani TU, Naidu NV, Ramalakshmi CS, Kumar VV, Sreelatha T (2011) Bioefficacy of mycorrhizae on yield and quality of sugarcane. J Soils crops 21:1–8Google Scholar
  82. Rawat J, Sanwal P, Saxena J (2016) Potassium and its role in sustainable agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 235–253.  https://doi.org/10.1007/978-81-322-2776-2_17. root-induced chemical changes: a review. Plant soil :173–195CrossRefGoogle Scholar
  83. Saha M, Maurya BR, Bahadur I, Kumar A, Meena VS (2016a) Can potassium-solubilising bacteria mitigate the potassium problems in India? In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 127–136.  https://doi.org/10.1007/978-81-322-2776-2_9 CrossRefGoogle Scholar
  84. Saha M, Maurya BR, Meena VS, Bahadur I, Kumar A (2016b) Identification and characterization of potassium solubilizing bacteria (KSB) from Indo-Gangetic Plains of India. Biocatal Agric Biotechnol 7:202–209Google Scholar
  85. Saikia SP, Goswami A, Mudoi KD, Gogoi A, Kotoky R, Lekhak H, Handique N (2014) Effect of 2,4-D treatment and Azospirillum inoculation on growth of Cymbopogon winterianus. Afr J Microbiol Res 8:955–960CrossRefGoogle Scholar
  86. Saravanan VS, Subramoniam SR, Raj SA (2003) Assessing in vitro solubilization potential of different zinc solubilizing bacterial (ZSB) isolates. Braz J Microbiol 34:121–125CrossRefGoogle Scholar
  87. Sayed E, Hameda EA, Althubiani AS (2015) Enhancement of plant growth by soil inoculation with Azospirillum brasilense HM1 isolated from soil of Saudi Arabia. Int J Curr Microbiol App Sci 4:238–248Google Scholar
  88. Shanware AS, Kalkar SA, Trivedi MM (2014) Potassium solubilisers: occurrence, mechanism and their role as competent biofertilizers. Int J Curr Microbiol App Sci 3:622–629Google Scholar
  89. Sharan A, Shikha, Darmwal NS, Gaur R (2008) Xanthomonas campestris, a novel stress tolerant, phosphate-solubilizing bacterial strain from saline–alkali soils. World J Microbiol Biotechnol 24:753–759CrossRefGoogle Scholar
  90. Sharma P, Kumawat KC, Kaur S, Kaur N (2014) Assessment of zinc solubilization by endophytic bacteria in legume rhizosphere. Indian J Appl Res 4(6):439–441CrossRefGoogle Scholar
  91. Sharma A, Shankhdhar D, Shankhdhar SC (2016) Potassium-solubilizing microorganisms: mechanism and their role in potassium solubilization and uptake. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 203–219.  https://doi.org/10.1007/978-81-322-2776-2_15 CrossRefGoogle Scholar
  92. Sheng XF (2005) Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol Biochem 37:1918–1922CrossRefGoogle Scholar
  93. Sheng XF, He LY (2006) Solubilization of potassium-bearing minerals by a wild-type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can J Microbiol 52:66–72CrossRefPubMedGoogle Scholar
  94. Shrivastava M, Srivastava PC, D’Souza SF (2016) KSM soil diversity and mineral solubilization, in relation to crop production and molecular mechanism. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 221–234.  https://doi.org/10.1007/978-81-322-2776-2_16 CrossRefGoogle Scholar
  95. Silva MF, Pescador R, Rebelo RA, Stürmer SL (2008) The effect of arbuscular mycorrhizal fungal isolates on the development and oleoresin production of micropropagated Zingiber officinale. Braz J Plant Physiol 20:119–130CrossRefGoogle Scholar
  96. Sindhu SS, Parmar P, Phour M, Sehrawat A (2016) Potassium-solubilizing microorganisms (KSMs) and its effect on plant growth improvement. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 171–185.  https://doi.org/10.1007/978-81-322-2776-2_13 CrossRefGoogle Scholar
  97. Singh Y, Ramteke PW, Shukla PK (2013) Characterization of Rhizobium isolates of pigeon pea rhizosphere from allahabad soils and their potential PGPR characteristics. Int J Res Pure Appl Microbiol 3:4–7Google Scholar
  98. Singh NP, Singh RK, Meena VS, Meena RK (2015) Can we use maize (Zea mays) rhizobacteria as plant growth promoter? Vegetos 28(1):86–99.  https://doi.org/10.5958/2229-4473.2015.00012.9 CrossRefGoogle Scholar
  99. Singh M, Dotaniya ML, Mishra A, Dotaniya CK, Regar KL, Lata M (2016) Role of biofertilizers in conservation agriculture. In: Bisht JK, Meena VS, Mishra PK, Pattanayak A (eds) Conservation agriculture: an approach to combat climate change in Indian Himalaya. Springer, Singapore, pp 113–134.  https://doi.org/10.1007/978-981-10-2558-7_4 CrossRefGoogle Scholar
  100. Swift CE (2004) Mycorrhiza and soil phosphorus levels. http://www.colostate.edu/Depts/CoopExt/TRA/PLANTS/mycorrhiza.html
  101. Teotia P, Kumar V, Kumar M, Shrivastava N, Varma A (2016) Rhizosphere microbes: potassium solubilization and crop productivity-present and future aspects. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 315–325.  https://doi.org/10.1007/978-81-322-2776-2_22 CrossRefGoogle Scholar
  102. Vaid SK, Kumar B, Sharma A, Shukla AK, Srivastava PC (2014) Effect of zinc solubilizing bacteria on growth promotion and zinc nutrition of rice. J Soil Sci Plant Nutr 14(4):889–910Google Scholar
  103. Velazquez E, Silva LR, Ramírez-Bahena MH, Peix A (2016) Diversity of potassium-solubilizing microorganisms and their interactions with plants. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 99–110.  https://doi.org/10.1007/978-81-322-2776-2_7 CrossRefGoogle Scholar
  104. Verma R, Maurya BR, Meena VS (2014) Integrated effect of bio-organics with chemical fertilizer on growth, yield and quality of cabbage (Brassica oleracea var capitata). Indian J Agric Sci 84(8):914–919Google Scholar
  105. Verma JP, Jaiswa DK, Meena VS, Meena RS (2015a) Current need of organic farming for enhancing sustainable agriculture. J Clean Prod 102:545–547CrossRefGoogle Scholar
  106. Verma JP, Jaiswal DK, Meena VS, Kumar A, Meena RS (2015b) Issues and challenges about sustainable agriculture production for management of natural resources to sustain soil fertility and health. J Clean Prod 107:793–794CrossRefGoogle Scholar
  107. Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97:250–256CrossRefPubMedGoogle Scholar
  108. Whitman M (2009) Mycorrhizae and plants. Wild ones March/April, pp 1–3Google Scholar
  109. World Ecology Report (2008) Famine: natural or man made? XX:1–5Google Scholar
  110. Xiao C, Chi R, He H, Qiu G, Wang D, Zhang W (2009) Isolation of phosphate-solubilizing fungi from phosphate mines and their effect on wheat seedling growth. Appl Biochem Biotechnol 159:330–342CrossRefPubMedGoogle Scholar
  111. Yadav BK, Sidhu AS (2016) Dynamics of potassium and their bioavailability for plant nutrition. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 187–201.  https://doi.org/10.1007/978-81-322-2776-2_14 CrossRefGoogle Scholar
  112. Yasin M, Munir I, Faisal M (2016) Can Bacillus spp. enhance K+ uptake in crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 163–170.  https://doi.org/10.1007/978-81-322-2776-2_12 CrossRefGoogle Scholar
  113. Zahedi H (2016) Growth-promoting effect of potassium-solubilizing microorganisms on some crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 31–42.  https://doi.org/10.1007/978-81-322-2776-2_3 CrossRefGoogle Scholar
  114. Zhang C, Kong F (2014) Isolation and identification of potassium solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Appl Soil Ecol 82:18–25CrossRefGoogle Scholar
  115. Zhang A, Zhao GY, Gao TG, Wang W, Li J, Zhang SF, Zhu BC (2013) Solubilization of insoluble potassium and phosphate by Paenibacillus kribensis CX-7: a soil microorganism with biological control potential. Afr J Microbiol Res 7:41–47CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Core Green Sugar and Fuels Private LimitedTumkurIndia

Personalised recommendations