MnO2 Nanoparticles Embedded Polypyrrole Nanotubes for Supercapacitor Electrodes

  • Taruna Singh
  • Raj Kishore Sharma
  • Gurmeet Singh
Conference paper


This research article refers to the synthesis and characterization of MnO2 nanoparticles embedded on polypyrrole nanotubes. The product was synthesised by chemical oxidative polymerization method. Combination of MnO2 nanoparticles and polypyrrole nanotubes enhance the capability of the nanocomposite. The microstructures and properties of Polypyrrole nanotubes (PPy) and MnO2 embedded Polypyrrole nanotubes (PPy:MnO2) were determined by TEM and SEM. FT-IR spectra was recorded to determine the chemical structure of the products. XRD was used to determine the crystalline structure of the products. The PPy:MnO2 nanocomposite electrode shows substantial improvement in the redox performance compared to individual component PPy. The specific capacitance value of electrode material PPy:MnO2 was found to be ~200 F g−1 at 5 mV s−1.


Nanoparticles Nanotubes Chemical oxidative polymerization Specific capacitance Supercapacitors 



Authors thank all the lab members and USIC staff of Delhi University. The financial support was provided by Department of Science and Technology (DST), Delhi, India through DST Women Scientist B, Project No. DST/Disha/SoRF-PM/029/2013/G, Dated: 8/07/15.


  1. 1.
    Conway BE (1999) Electrochemical capacitors: scientific fundamental and technological applications. Kluwer, Dordrecht, The NetherlandsGoogle Scholar
  2. 2.
    Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321:651–652CrossRefPubMedGoogle Scholar
  3. 3.
    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854CrossRefPubMedGoogle Scholar
  4. 4.
    Kotz R, Carlen M (2000) Principals and applications of electrochemical capacitors. Electorchim Acta 45:2483–2496CrossRefGoogle Scholar
  5. 5.
    An KH, Kim WS, Park YS, Choi YC, Lee SM, Chung DC, Bae DJ, Lim SC, Lee YH (2003) Supercapacitors using single-walled carbon nanotube electrodes. Adv Mater 13:497–500CrossRefGoogle Scholar
  6. 6.
    Wang Q, Wen Z, Li JA (2006) Hybrid supercapacitor fabricated with a carbon nanotube cathode and a TiO2-B nanowire anode. Adv Funct Mater 17:845–854Google Scholar
  7. 7.
    Sharma RK, Rastogi AC, Desu SB (2008) Pulse polymerized polypyrrole electrodes for high energy density electrochemical supercapacitors. Electrochem Commun 10:268–272CrossRefGoogle Scholar
  8. 8.
    Sharma RK, Oh HS, Shul YG, Kim HS (2007) Carbon supported MnO2 nanorods for electrochemical supercapacitor. J Power Sources Short Commun 173:1024–1028Google Scholar
  9. 9.
    Zordan TA, Hepler LG (1968) Thermochemistry and oxidation potentials of manganese and its compounds. Chem Rev 68:737–745CrossRefGoogle Scholar
  10. 10.
    Zhang H, Cao G, Wang Z, Yang Y, Shi Z, Gu Z (2008) Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett 8:2664–2668CrossRefPubMedGoogle Scholar
  11. 11.
    Cheng F, Zhao J, Song W, Li C, Ma H, Chen J, Shen P (2006) Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries. Inorg Chem 45:2038–2044CrossRefPubMedGoogle Scholar
  12. 12.
    Subramanian V, Zhu H, Wei B (2008) Alcohol-assisted room temperature synthesis of different nanostructured manganese oxides and their pseudocapacitance properties in neutral electrolyte. Chem Phys Lett 453:242–249CrossRefGoogle Scholar
  13. 13.
    Yang X, Tang W, Feng Q, Ooi K (2003) Single crystal growth of Birnessite and Hollandite-type manganese oxides by a flux method. Cryst Growth Des 3:409–415CrossRefGoogle Scholar
  14. 14.
    Zheng D, Yin Z, Zhang W, Tan X, Sun S (2006) Novel branched—MnOOH and MnO2 multipod nanostructures. Cryst Growth Des 6:1733–1735CrossRefGoogle Scholar
  15. 15.
    Xu M, Kong L, Zhou W, Li H (2007) Hydrothermal synthesis and pseudocapacitance properties of MnO2 hollow spheres and hollow Urchins. J Phys Chem C 111:19141–19147CrossRefGoogle Scholar
  16. 16.
    Devaraj S, Munichandraiah N (2008) Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J Phys Chem C 112:4406–4417CrossRefGoogle Scholar
  17. 17.
    Toupin M, Brousse T, Belanger D (2002) Influence of microstructure on the charge storage properties of chemically synthesised manganese dioxide. Chem Mater 14:3946–3952CrossRefGoogle Scholar
  18. 18.
    Sharma RK, Rastogi AC, Desu SB (2008) Manganese oxide embedded polypyrrole nanocomposite for electrochemical supercapacitor. Electrochim Acta 53:7690–7695CrossRefGoogle Scholar
  19. 19.
    Sharma RK, Zhai L (2009) Multiwall carbon nanotube supported poly(3,4-ethylenedioxythiophene)/manganese oxide nanocomposite electrode for supercapacitors. Electrochim Acta 54:7148–7155CrossRefGoogle Scholar
  20. 20.
    Grover S, Shekhar S, Sharma RK, Singh G (2014) Multiwalled carbon nanotube supported polypyrrole manganese oxide composite supercapacitor electrode: role of manganese oxide dispersion in performance evolution. Electrochim Acta 116:137–145CrossRefGoogle Scholar
  21. 21.
    Sahu V, Shekhar S, Sharma RK, Singh G (2015) Ultrahigh performance supercapacitor from lacey reduced graphene oxide nanoribbons. Appl Mater Interfaces 7:3110–3116CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Taruna Singh
    • 1
  • Raj Kishore Sharma
    • 1
  • Gurmeet Singh
    • 1
  1. 1.Department of ChemistryUniversity of DelhiNew DelhiIndia

Personalised recommendations