Advertisement

Recent Progress in the Chemistry of Tri-substituted Triazole via [3 + 2] Cycloaddition of Azide and Double Bond: An Overview

  • Rajesh Kumar
  • Manish Kumar
  • Vipin K. Maikhuri
  • Navneet Manav
  • Ashok K. Prasad
  • Divya Mathur
Conference paper

Abstract

Triazoles belong to a class of nitrogen containing compounds which are known for its highly valuable and versatile biological activities. More than 50 years ago, the first synthesis of tri-substituted triazoles was achieved by Huisgen via azide-alkyne cycloaddition. Over the years the remarkable achievement in triazole-based pharmacology promoted ample interest in the discovery of new synthetic methods and catalysts for the synthesis of this miraculous scaffold. Recent tri-substituted triazoles development based on various azides and double bonds have been summarized in this report.

Keywords

Catalyst Cycloaddition Regioselective Tri-substituted triazoles 

Notes

Acknowledgements

The authors thank University of Delhi for providing financial support under DU-DST purse grant.

References

  1. 1.
    Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40:2004–2021CrossRefGoogle Scholar
  2. 2.
    Agalave SG, Maujan SR, Pore VS (2011) Click chemistry: 1,2,3-triazoles as pharmacophores. Chem Asian J 6:2696–2718CrossRefGoogle Scholar
  3. 3.
    (a) Shu H, Izenwasser S, Wade D, Stevens ED, Trudell ML (2009) Synthesis and CB1 cannabinoid receptor affinity of 4-alkoxycarbonyl-1,5-diaryl-1,2,3-triazoles. Bioorg Med Chem Lett 19:891–893; (b) Cheng H, Wan J, Lin MI, Liu Y, Lu X, Liu J, Xu Y, Chen J, Tu Z, Cheng YSE, Ding K (2012) Design, synthesis, and in vitro biological evaluation of 1H-1,2,3-triazole-4-carboxamide derivatives as new anti-influenza. A agents targeting virus nucleoprotein. J Med Chem 55:2144–2153; (c) Taddei M, Ferrini S, Giannotti L, Corsi M, Manetti F, Giannini, G, Vesci L, Milazzo FM, Alloatti D, Guglielmi MB, Castorina M, Cervoni ML, Barbarino M, Fodera R, Carollo V, Pisano C, Armaroli S, Cabri W (2014) Synthesis and evaluation of new Hsp90 inhibitors based on a 1,4,5-trisubstituted 1,2,3-triazole scaffold. J Med Chem 57:2258–2274; (d) Demchuk DV, Samet AV, Chernysheva N B, Ushkarov VI, Stashina GA, Konyushkin LD, Raihstat MM, Firgang SI, Philchenkov AA, Zavelevich MP, Kuiava LM, Chekhun VF, Blokhin DY, Kiselyov AS, Semenova MN, Semenov VV (2014) Synthesis and antiproliferative activity of conformationally restricted 1,2,3-triazole analogues of combretastatins in the sea urchin embryo model and against human cancer cell lines. Bioorg Med Chem 22:738–755; (e) Gilchrist J, Dutton S, Bustamante MD, McPherson A, Olivares N, Kalia J, Escayg A, Bosmans F (2014) Nav1.1 modulation by a novel triazole compound attenuates epileptic seizures in rodents. ACS Chem Biol 9:1204–1212Google Scholar
  4. 4.
    (a) Alvarez R, Velazquez S et al (1994) 1,2,3-triazole-[2,5-bis-O-(tert-butyldimethylsilyl)-.beta.-D-ribofuranosyl]-3′-spiro-5″-(4″-amino-1″,2″-oxathiole2″,2″-dioxide) (TSAO) analogs: synthesis and anti-HIV-1 activity. J Med Chem 37:4185–4194; (b) Tam A, Arnold U, Soellner MB, Raines RT (2007) Protein prosthesis:  1,5-disubstituted[1,2,3]triazoles as cis-peptide bond surrogates. J Am Chem Soc 129:12670–12671; (c) Carta A, Palomba M, Paglietti G, Molicotti P, Paglietti B, Cannas S, Zanetti S (2007) [1,2,3] triazolo[4,5-h]quinolones a new class of potent antitubercular agents against multidrug resistant Mycobacterium tuberculosis strains. Bioorg Med Chem Lett 17:4791–4794Google Scholar
  5. 5.
    (a) Kolb HC, Sharpless KB (2003) The growing impact of click chemistry on drug discovery. Drug Discovery Today 8:1128–1137; (b) Thirumurugan P, Matosiuk D, Jozwiak K (2013) Click chemistry for drug development and diverse chemical–biology applications. Chem Rev 113:4905–4979Google Scholar
  6. 6.
    (a) Lutz J.-F (2007) 1,3-dipolar cycloadditions of azides and alkynes: a universal ligation tool in polymer and materials science. Angew Chem Int Ed 46:1018–1025; (b) Kempe K, Krieg A, Becer CR, Schubert US (2012) “Clicking” on/with polymers: a rapidly expanding field for the straightforward preparation of novel macromolecular architectures. Chem Soc Rev 41:176–191; (d) Beghdadi S, Miladi IA, Drockenmuller E et al (2012) Synthesis and polymerization of C-vinyl- and N-vinyl-1,2,3-triazoles. Polym Chem 3:1680–1692Google Scholar
  7. 7.
    (a) Xi W, Scott TF, Kloxin CJ, Bowman CN (2014) Click chemistry in materials science. Adv Funct Mater 24:2572–2590; (b) Binder WH, Sachsenhofer R (2008) Click’ chemistry in polymer and material science: an update. Macromol Rapid Commun 29:952–981Google Scholar
  8. 8.
    (a) Wacharasindhu S, Mansour TS et al (2009) Oxidative palladium catalysis in SNAr reactions leading to heteroaryl ethers from pyridotriazol-1-yloxy heterocycles with aryl boronic acids. J Am Chem Soc 131:4174–4175; (b) Chattopadhyay B, Gevorgyan V (2012) Transition-metal-catalyzed denitrogenative transannulation: converting triazoles into other heterocyclic systems. Angew Chem Int Ed 51:862–872; (c) Chattopadhyay B, Gevorgyan V (2012) Rhodium-catalyzed N–H insertion of pyridyl carbenes derived from pyridotriazoles: a general and efficient approach to 2-picolylamines and imidazo[1,2-a]pyridines. Angew Chem 124:886–896; (d) Seo B, Jeon WH, Kim J, Kim S, Lee PH (2015) Synthesis of fluorenes via tandem copper-catalyzed [3 + 2] cycloaddition and rhodium-catalyzed denitrogenative cyclization in a 5-exo mode from 2-ethynylbiaryls and N-sulfonyl azides in one pot. J Org Chem 80:722–732; (e) Kim C.-E, Park Y, Park S, Lee PH (2015) Diastereoselective synthesis of tetrahydrofurano- and tetrahydropyrano-dihydropyrroles containing N,O-acetal moieties via rhodium-catalyzed transannulation of N-sulfonyl-1,2,3-triazoles with Oxacycloalkenes. Adv Synth Catal 357:210–220Google Scholar
  9. 9.
    Fan W. In comprehensive heterocyclic chemistry II; Katritzky AR, Rees CW, Scriven EFV (eds) (1996) Pergamon, Oxford vol 4, pp 1–126Google Scholar
  10. 10.
    Umawatari T, Kondo S, Jpn Kokai, Tokkyo Koho (2002) Fluoro-contained 1H-1,2,3-triazaazole compounds, preparation method thereof and their use. JP 2002105672, Chem Abstr 136:298315Google Scholar
  11. 11.
    (a) Fahrenbach AC, Stoddart JF (2011) Reactions under the click chemistry philosophy employed in supramolecular and mechanostereochemical systems. Chem Asian J 6:2660–2669; (b) Schulze B, Schubert US (2014) Beyond click chemistry-supramolecular interactions of 1,2,3-triazoles. Chem Soc Rev 43: 2522–2571Google Scholar
  12. 12.
    (a) El-Sagheer AH, Brown T (2010) Click chemistry with DNA. Chem Soc Rev 39:1388–1405Google Scholar
  13. 13.
    Spiteri C, Moses JE (2010) Copper-catalyzed azide-alkyne cycloaddition: regioselective synthesis of 1, 4, 5-trisubstituted 1, 2, 3-triazoles. Angew Chem 122:31–33CrossRefGoogle Scholar
  14. 14.
    Willis RJ, Marlow ID (1990) (E)-2-(4-Arylbut-1-en-3-yn-1-yl)chromones as Synthons for the Synthesis of Xanthone-1,2,3-triazole Dyads. Eur Pat Appl 400842Google Scholar
  15. 15.
    (a) Huisgen R (1963) 1,3-dipolar cycloadditions. past and future. Angew Chem Int Ed Engl 2:565–598; (b) Huisgen R (1963) Kinetics and mechanism of 1,3-dipolar cycloadditions. Angew Chem Int Ed Engl 2:633–645Google Scholar
  16. 16.
    (a) Tornøe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase:  [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67:3057–3064; (b) Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise Huisgen cycloaddition process: copper(i)-catalyzed regioselective ligation of azides and terminal alkynes. Angew Chem Int Ed 41:2596–2599; (c) Zhang L, Chen X, Xue P, Sun HH, Williams ID, Sharpless KB, Fokin VV, Jia G (2005) Ruthenium-catalyzed cycloaddition of alkynes and organic azides. J Am Chem Soc 127:15998–15999; (d) Rasmussen LK, Boren BC, Fokin VV (2007) Ruthenium-catalyzed cycloaddition of aryl azides and alkynes. Org Lett 9:5337–5339Google Scholar
  17. 17.
    (a) Campos VR, Abreu PA, Castro HC, Rodrigues CR, Jordao AK, Ferreira VF, de Souza MC, Santos FDC, Moura LA, Domingos TS, Carvalho C, Sanchez EF, Fuly AL, Cunha AC (2009) Synthesis, biological, and theoretical evaluations of new 1,2,3-triazoles against the hemolytic profile of the Lachesis muta snake venom. Bioorg MedChem 17:7429–7434; (b) Zhou Y, Lecourt T, Micouin L (2010) Direct synthesis of 1,4-disubstituted-5-alumino-1,2,3-triazoles: copper-catalyzed cycloaddition of organic azides and mixed aluminum acetylides. Angew Chem 122: 2661–2664Google Scholar
  18. 18.
    (a) Ackermann L, Potukuchi HK, Landsberg D, Vicente R (2008) Copper-catalyzed “click” reaction/direct arylation sequence: modular syntheses of 1,2,3-triazoles. Org Lett 10:3081–3084; (b) Hein JE, Tripp JC, Krasnova LB, Sharpless KB, Fokin VV (2009) Copper(I)-catalyzed cycloaddition of organic azides and 1-iodoalkynes. Angew Chem 121:8162–8165Google Scholar
  19. 19.
    (a) Sletten EM, Bertozzi CR (2008) A hydrophilic azacyclooctyne for Cu-free click chemistry. Org Lett 10:3097–3099; (b) Jewett JC, Sletten EM, Bertozzi CR (2010) Rapid Cu-free click chemistry with readily synthesized biarylazacyclooctynones. J Am Chem Soc 132:3688–3690; (c) Arigela RK, Mandadapu AK, Sharma SK, Kumar B, Kundu B (2012) Cascade intermolecular Michael addition–intramolecular azide/internal alkyne 1,3-dipolar cycloaddition reaction in one pot. Org Lett 14:1804–1807; (d) Gold B, Dudley GB, Alabugin IV (2013) Moderating strain without sacrificing reactivity: design of fast and tunable noncatalyzed alkyne–azide cycloadditions via stereoelectronically controlled transition state stabilization. J Am Chem Soc 135:1558–1569Google Scholar
  20. 20.
    Tsai CW, Yang SC, Liu YM, Wu MJ (2009) Microwave-assisted cycloadditions of 2-alkynylbenzonitriles with sodium azide: selective synthesis of tetrazolo[5,1-a]pyridines and 4,5-disubstituted-2H-1,2,3-triazoles. Tetrahedron 65:8367–8372CrossRefGoogle Scholar
  21. 21.
    Majireck MM, Weinreb SM (2006) A study of the scope and regioselectivity of the ruthenium-catalyzed [3 + 2]-cycloaddition of azides with internal alkynes. J Org Chem 71:8680–8683CrossRefGoogle Scholar
  22. 22.
    (a) Huisgen R, Szeimies G, Mobius L (1966) Azide Chemistry—An Inorganic Perspective [3+2]‐Cycloaddition Reactions of Metal Azides and Related Systems. Chem Ber 99:475–490; (b) Broeckx W, Overbergh N, Samyn C, Smets G, L’abbe G (1971) Cycloaddition reactions of azides with electron-poor olefins: isomerization and thermolysis of the resulting Δ2-triazolines. Tetrahedron 27:3527–3553Google Scholar
  23. 23.
    (a) Husinec S, Porter AEA, Roberts JS, Strachan CH (1984) Some Approaches to the Synthesis of Kainic Acid. J Chem Soc Perkin Trans 1:2517–2522; (b) Anderson GT, Henry JR, Weinreb SM (1991) High-pressure induced 1,3-dipolar cycloadditions of azides with electron-deficient olefins. J Org Chem 56: 6946–6948Google Scholar
  24. 24.
    (a) Amantini D, Fringuelli F, Piermatti O, Pizzo F, Zunino E, Vaccaro L (2005) Synthesis of 4-aryl-1H-1,2,3-triazoles through TBAF-catalyzed [3 + 2] cycloaddition of 2-aryl-1-nitroethenes with TMSN3 under solvent-free conditions. J Org Chem 70:6526–6529; (b) Sengupta S, Duan H, Lu W, Petersen JL, Shi X (2008) One step cascade synthesis of 4,5-disubstituted-1,2,3-(NH)-triazoles. Org Lett 10:1493–1496; (c) WangY-C, Xie Yu-Y, Qu H.-En, Wang H.-S, Pan Y.-M, Huang Fu-P (2014) Ce(OTf)3-catalyzed [3 + 2] cycloaddition of azides with nitroolefins: regioselective synthesis of 1,5-disubstituted 1,2,3-triazoles. J Org Chem 79: 4463–4469Google Scholar
  25. 25.
    Hansen SG, Jensen HH (2009) Microwave irradiation as an effective means of synthesizing unsubstituted N-linked 1,2,3-triazoles from vinyl acetate and azides. Synlett 3275–3278Google Scholar
  26. 26.
    Peng W, Zhu S (2003) Efficient synthesis of 5-fluoroalkylated 1H-1,2,3-triazoles and application of the bromodifluoromethylated triazole to the synthesis of novel bicyclic gem-difluorinated 1H-pyrano[3,4-d][1,2,3]-triazol-4-one compounds. Tetrahedron 59:4395–4404CrossRefGoogle Scholar
  27. 27.
    (a) Kayet A, Pathak T (2013) 1,5-disubstituted 1,2,3-triazolylation at C1, C2, C3, C4, and C6 of pyranosides: a metal-free route to triazolylated monosaccharides and triazole-linked disaccharides. J Org Chem 78:9865–9875; (b) Sahu D, Dey S, Pathak T, Ganguly B (2014) Regioselectivity of vinyl sulfone based 1,3-dipolar cycloaddition reactions with sugar azides by computational and experimental studies. Org Lett 16:2100–2103Google Scholar
  28. 28.
    (a) Peng W, Zhu C (2003) Efficient synthesis of 5-fluoroalkylated 1H-1,2,3-triazoles and application of the bromodifluoromethylated triazole to the synthesis of novel bicyclic gem-difluorinated 1H-pyrano[3,4-d][1,2,3]-triazol-4-one compounds. Tetrahedron 59:4395–4404; (b) Roque DR, Neill JL, Antoon JW, Stevens EP (2005) Synthesis of 1,2,3-Triazoles by Cycloadditions of Azides with Enol Ethers. Synthesis 2497–2502Google Scholar
  29. 29.
    Quiclet-Sire B, Zard SZ (2005) The Synthesis of 1,2,3-Triazoles from Nitroalkenes—Revisited. Synthesis 19:3319–3326Google Scholar
  30. 30.
    Sengupta S, Duan H, Lu W, Petersen JL, Shi X (2008) One Step Cascade Synthesis of 4,5-Disubstituted-1,2,3-(NH)-Triazoles. Org Lett 10:1493–1494Google Scholar
  31. 31.
    Janreddy D, Kavala V, Kuo C-W, Chen W-C, Ramesh C, Kotipalli T, Kuo T-S, Chen M-L, He C-H, Yao C-F (2013) Copper(I)‐Catalyzed Aerobic Oxidative Azide–Alkene Cyclo‐addition: An Efficient Synthesis of Substituted 1,2,3‐Triazoles. Adv Synth Catal 355:2918–2927Google Scholar
  32. 32.
    Xie Y-Y, Wang Y-C, Qu H-E, Tan X-C, Wang H-S, Pan Y-M (2014) Regioselective Synthesis of β‐Aryl Enaminones and 1,4,5‐ Trisubstituted 1,2,3‐Triazoles from Chalcones and Benzyl Azides. Adv Synth Catal 356:3347–3355Google Scholar
  33. 33.
    Zhang Y, Li X, Li J, Chen J, Meng X, Zhao M, Chen B (2012) CuO-Promoted Construction of N-2-Aryl-Substituted-1,2,3-Triazoles via Azide-Chalcone Oxidative Cycloaddition and Post-Triazole Arylation. Org Lett 14:26–29Google Scholar
  34. 34.
    Chen Y, Nie G, Zhang Q, Ma S, Li H, Hu Q (2015) Copper-Catalyzed [3+2] Cycloaddition/Oxidation Reactions between Nitro-olefins and Organic Azides: Highly Regioselective Synthesis of NO2-Substituted 1,2,3-Triazoles. Org Lett 17:1118–1121Google Scholar
  35. 35.
    Rohilla S, Patel SS, Jain N (2016) Copper Acetate Catalyzed Regioselective Synthesis of Substituted 1,2,3‐Triazoles: A Versatile Azide–Alkene Cycloaddition/Oxidation Approach. Eur J Org Chem 847–854Google Scholar
  36. 36.
    Yang B, Zou MC, Chen F, Fan KJ (2015) CuBr-Catalyzed Synthesis of 1,4,5-Trisubstituted 1,2,3-Triazoles Through Cycloaddition of Azides to Alkenes. Synth Commun 45:386–391Google Scholar
  37. 37.
    (a) Gangaprasad D, Raj JP, Kiranmye T, SagubarSadik S, Elangovan J (2015) A new paradigm of copper oxide nanoparticles catalyzed reactions: synthesis of 1,2,3-triazoles through oxidative azide-olefin cycloaddition. RSC Adv 5:63473–63477; (b) Gangaprasad D, Raj JP, Kiranmye T, Sasikala R, Karthikeyan K, Rani SK, Elangovan J (2016) A tunable route to oxidative and eliminative [3+2] cycloadditions of organic azides with nitroolefins: CuO nanoparticles catalyzed synthesis of 1,2,3-triazoles under solvent-free condition. Tetrahedron Lett 57:3105–3108Google Scholar
  38. 38.
    Alonso F, Moglie Y, Radivoy G, Yus M (2013) Alkenes as Azido Precursors for the One-Pot Synthesis of 1,2,3-Triazoles Catalyzed by Copper Nanoparticles on Activated Carbon. J Org Chem 78:5031–5037Google Scholar
  39. 39.
    Kamal A, Swapna P (2013) An improved iron-mediated synthesis of N-2-aryl substituted 1,2,3-triazoles. RSC Adv 3:7419–7426Google Scholar
  40. 40.
    Zhang J, Chang CWT (2009) Divergent Synthesis of Three Classes of Aryl N-Glycosides by Solvent Control. Org Chem 74:685–695Google Scholar
  41. 41.
    Marminon C, Gentili J, Barret R, Nebois P (2007) Synthesis of N-benzylated indole-, indazole- and benzotriazole-4,7-diones. Tetrahedron 63:735–739Google Scholar
  42. 42.
    (a) Ramachary DB, Ramakumar K, Narayana VV (2008) Amino Acid‐Catalyzed Cascade [3+2]‐Cycloaddition/Hydrolysis Reactions Based on the Push–Pull Dienamine Platform: Synthesis of Highly Functionalized NH‐1,2,3‐Triazoles. Chem Eur J 14:9143–9147; (b) Belkheira M, Abed DE, Pons JM, Bressy C (2011) Organocatalytic Synthesis of 1,2,3‐Triazoles from Unactivated Ketones and Arylazides. Chem Eur J 17:12917–12921; (c) Danence LJT, Gao Y, Li M, Huang Y, Wang J (2011) Organocatalytic Enamide–Azide Cycloaddition Reactions: Regiospecific Synthesis of 1,4,5‐Trisubstituted‐1,2,3‐Triazoles. Chem Eur J 17:3584–3587; (d) Wang L, Peng S, Danence LJT, Gao Y, Wang J (2012) Amine‐Catalyzed [3+2] Huisgen Cycloaddition Strategy for the Efficient Assembly of Highly Substituted 1,2,3‐Triazoles Chem Eur J 18:6088–6093; (e) Ramachary DB, Shashank AB (2013) Organocatalytic Triazole Formation, Followed by Oxidative Aromatization: Regioselective Metal‐Free Synthesis of Benzotriazoles Chem Eur J 19:13175–13181; (f) Yeung DKJ, Gao T, Huang J, Sun S, Guo H, Wang J (2013) Organocatalytic 1,3-dipolar cycloaddition reactions of ketones and azides with water as a solvent. Green Chem 15:2384–2388; (g) Li W, Jia Q, Du Z, Wang J (2013) Direct access to triazole-olefins through catalytic cycloaddition of azides to unsaturated aldehydes Chem Commun 49:10187–10189; (h) Li W, Du Z, Huang J, Jia Q, Zhang K, Wang J (2014) Direct access to 1,2,3-triazoles through organocatalytic 1,3-dipolar cycloaddition reaction of allyl ketones with azides.Green Chem 16:3003–3006; (i) Saraiva MT, Costa GP, Seus N, Schumacher RF, Perin G, Paixão MW, Luque R, Alves D (2015) Room-Temperature Organocatalytic Cycloaddition of Azides with β-Keto Sulfones: Toward Sulfonyl-1,2,3-triazoles. Org Lett 17:6206–6209; (j) Li W, Du Z, Zhang K, Wang J (2015) Organocatalytic 1,3-dipolar cycloaddition reaction of α,β-unsaturated ketones with azides through iminium catalysis. Green Chem 17:781–784Google Scholar
  43. 43.
    Wang T, Guo Z (2006) Copper in medicine: homeostasis, chelation therapy and antitumor drug design. Curr Med Chem 13:525–538Google Scholar
  44. 44.
    Yang W, Miao T, Li P, Wang L (2015) Regioselective synthesis of triazoles via base-promoted oxidative cycloaddition of chalcones with azides in aqueous solution. RSC Adv 5:95833–95839Google Scholar
  45. 45.
    (a) Singh N, Pandey SK, Tripathi RP (2010) Regioselective [3+2] cycloaddition of chalcones with a sugar azide: easy access to 1-(5-deoxy-D-xylofuranos-5-yl)-4,5-disubstituted-1H-1,2,3-triazoles Carbohydr Res 345:1641–1648; (b) Ajay A, Sharma S, Gupt MP, Bajpai V, Hamidullah KB, Kaushik MP, Konwar R, Ampapathi RS, Tripathi RP (2012) Diversity Oriented Synthesis of Pyran Based Polyfunctional Stereogenic Macrocyles and Their Conformational Studies Org Lett 14:4306–4309; (c) Ajay A, Prasad M, Devender GN, Tripathi RP (2012) Accessing a small library of pluripotent 1,4,5-trisubstituted 1H-1,2,3-triazoles via diversity-oriented synthesis Molecular Diversity 16:335–350Google Scholar
  46. 46.
    (a) Ramachary DB, Ramakumar K, Narayana VV (2008) Amino Acid‐Catalyzed Cascade [3+2]‐Cycloaddition/Hydrolysis Reactions Based on the Push–Pull Dienamine Platform: Synthesis of Highly Functionalized NH‐1,2,3‐Triazoles Chem Eur J 14:9143–9147; (b) Belkheira M, Abed DE, Pons JM, Bressy C (2011) Organocatalytic Synthesis of 1,2,3‐Triazoles from Unactivated Ketones and Arylazides Chem Eur J 17:12917–12921Google Scholar
  47. 47.
    (a) Ramachary DB, Shashank AB, Karthik S (2014) An Organocatalytic Azide–Aldehyde [3+2] Cycloaddition: High‐Yielding Regioselective Synthesis of 1,4‐Disubstituted 1,2,3‐Triazoles. Angew Chem Int Ed 53:10420–10424; (b) Ramachary DB, Shashank AB, Karthik S (2014) An Organocatalytic Azide–Aldehyde [3+2] Cycloaddition: High‐Yielding Regioselective Synthesis of 1,4‐Disubstituted 1,2,3‐Triazoles. Angew Chem 126:10588–10592; (c) Shashank AB, Karthik S, Madhavachary R, Ramachary DB (2014) An Enolate‐Mediated Organocatalytic Azide–Ketone [3+2]‐Cycloaddition Reaction: Regioselective High‐Yielding Synthesis of Fully Decorated 1,2,3‐Triazoles. Chem Eur J 20:16877–16881; (d) Ramachary DB, Krishna PM, Gujral J, Reddy GS (2015) An Organocatalytic Regiospecific Synthesis of 1,5‐Disubstituted 4‐Thio‐1,2,3‐triazoles and 1,5‐Disubstituted 1,2,3‐Triazoles. Chem Eur J 21:16775–16780; (e) Zhou X, Xu X, Liu K, Gao H, Wang W, Li W (2016) Organocatalytic 1,3‐Dipolar Cycloaddition Reaction of β‐Keto Amides with Azides—Direct Access to 1,4,5‐Trisubstituted 1,2,3‐Triazole‐4‐carboxamides. Eur J Org Chem 1886–1890Google Scholar
  48. 48.
    Li W, Jia Q, Du Z, Wang J (2013) Direct access to triazole-olefins through catalytic cycloaddition of azides to unsaturated aldehydes. Chem Commun 49:10187–10189Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Rajesh Kumar
    • 1
  • Manish Kumar
    • 1
  • Vipin K. Maikhuri
    • 1
  • Navneet Manav
    • 2
  • Ashok K. Prasad
    • 1
  • Divya Mathur
    • 3
  1. 1.Bioorganic Laboratory, Department of ChemistryUniversity of DelhiNew DelhiIndia
  2. 2.Dyal Singh CollegeUniversity of DelhiNew DelhiIndia
  3. 3.Daulat Ram CollegeUniversity of DelhiDelhiIndia

Personalised recommendations