Rhodiola: An Overview of Phytochemistry and Pharmacological Applications

  • Pushpender Bhardwaj
  • Garima Bhardwaj
  • Rinky Raghuvanshi
  • Mohan Singh Thakur
  • Raj Kumar
  • O. P. Chaurasia


Rhodiola is one of the important plants studied for its medicinal properties in ancient time. Some of the well-known and mostly evaluated species of genus Rhodiola are Rhodiola rosea, Rhodiola imbricata, Rhodiola heterodonta, Rhodiola quadrifida, etc. These species are known to possess potent biological/pharmacological activities such as antioxidant, leprosy, anti-inflammatory, antistress, etc. These plants grow at a height of around 4000–5000 m above the sea level with a low temperature of around −10 °C, thus surviving in very harsh conditions. Their survival in such harsh conditions is due to their adaptation in that environment as well as the kind of compounds these plants produce in their biological mechanism. The present chapter deals with the phytochemical composition, bioactivity, and in vitro analysis of some important Rhodiola species.


Rhodiola Phytochemicals Anticancer Antioxidant 


  1. Abidov M, Crendal F, Grachev S, Seifulla R, Ziegenfuss T (2003) Effect of extracts from Rhodiola rosea and Rhodiola crenulata (Crassulaceae) roots on ATP content in mitochondria of skeletal muscles. Bull Exp Biol Med 136:585–597PubMedCrossRefGoogle Scholar
  2. Abidov M, Grachev S, Seifulla RD, Ziegenfuss TN (2004) Extract of Rhodiola rosea radix reduces the level of C-reactive protein and creatinine kinase in the blood. Bull Exp Biol Med 138:63–74PubMedGoogle Scholar
  3. Aksenova RA, Zotova MI, Nekhoda MF, Cherdintsev SG (1968) Comparative characteristics of the stimulating and adaptogenic effects of Rhodiola rosea preparations. In: Saratikov AS (ed) Stimulants of the Central Nervous System, vol 2. Tomsk University Press, Tomsk, pp 3–12Google Scholar
  4. Alm T (2004) Ethnobotany of Rhodiolarosea (Crassulaceae) in Norway. SIDA Contrib Bot 21:321–344Google Scholar
  5. Arora R, Chawla R, Sagar R, Prasad J, Singh S, Kumar R et al (2005) Evaluation of radioprotective activities of Rhodiola imbricata Edgew – a high altitude plant. Mol Cell Biochem 273:209–223PubMedCrossRefGoogle Scholar
  6. Azizov AP, Seifulla RD (1998) The effect of elton, leveton, fitoton and adapton on the work capacity of experimental animals. Eksp Klin Farmakol 61:61–63PubMedGoogle Scholar
  7. Bany J, Zdanowska D, Skopinskaroewska E, Sommer E, Siwicki AK, Wasiutynski A (2009) The effect of Rhodiola rosea extracts on the bacterial infection in mice. Centr Eur J Immunol 34:35–37Google Scholar
  8. Bassa LM, Jacobs C, Gregory K, Henchey E, Ser-Dolansky J, Schneider SS (2016) Rhodiola crenulata induces an early estrogenic response and reduces proliferation and tumorsphere formation over time in MCF7 breast cancer cells. Phytomed 23:87–94CrossRefGoogle Scholar
  9. Chaurasia OP, Ahmed Z, Ballabh B (2007) Ethnobotany and plants of trans-Himalaya. Satish Serial Publishing House. ISBN: 81-89304-33-XGoogle Scholar
  10. Chen S-P, Liu RH, Tsong-Ming L, Wei JC-C, Tzu-Chin W, Tsai W-Y, Yang C-C (2015) Complementary usage of Rhodiola crenulata (L.) in chronic obstructive pulmonary disease patients: the effects on Cytokines and T cells. Phytother Res 29:518–525PubMedCrossRefGoogle Scholar
  11. Chen M, Cai H, Yu C, Wu P, Fu Y, Xu X et al (2016) Salidroside exerts protective effects against chronic hypoxia-induced pulmonary arterial hypertension via AMPKα1-dependent pathways. Am J Transl Res 8:12–27PubMedPubMedCentralGoogle Scholar
  12. Choudhary A, Kumar R, Srivastava RB, Surapaneni SK, Tikoo K, Singh IP (2015) Isolation and characterization of phenolic compounds from Rhodiola imbricata, a Trans-Himalayan food crop having antioxidant and anticancer potential. J Funct Foods 16:183–193CrossRefGoogle Scholar
  13. Chu YH, Chen CJ, Wu SH, Hsieh JF (2014) Inhibition of xanthine oxidase by Rhodiola crenulata extracts and their phytochemicals. J Agric Food Chem 62:3742–3749PubMedCrossRefGoogle Scholar
  14. Debnath SC (2009) Zeatin and TDZ-induced Shoot proliferation and use of bioreactor in clonal propagation of medicinal herb, Roseroot (Rhodiola rosea L). J Plant Biochem Biotechnol 18:245–248CrossRefGoogle Scholar
  15. Diermen D, Marston A, Bravo J, Reist M, Carrupt PA, Hostettmann K (2009) Monoamine oxidase inhibition by Rhodiola rosea L. roots. J Ethnopharmacol 122:397–401PubMedCrossRefGoogle Scholar
  16. Dingqiang L, Xiangyu Z, Junxian W (2005) Studies on the Chemical Constituents from Rhodiola dumulosa. J Chin Med Mater. 2:98–99Google Scholar
  17. Fu JY, Zhang XL, Tian JY, Huang LW, Zhang PC, Ye F (2013) Investigation of compound, compatibility of Rhodiola crenulata, Cordyceps militaris, and Rhum palmatum, on metabolic syndrome treatment VI-improving hyperglycemia-mediated renal damage. Zhon Zhong Yao ZaZhi 38:3961–3966Google Scholar
  18. Grace MH, Yousef GG, Kurmukov AG, Raskin I, Lila MA (2009) Phytochemical characterization of an adaptogenic preparation from Rhodiola heterodonta. Nat Prod Commun 4:1053–1058PubMedPubMedCentralGoogle Scholar
  19. Grech-Baran M, Sykłowska-Baranek K, Pietrosiuk A (2015) Biotechnological approaches to enhance salidroside, rosin and its derivatives production in selected Rhodiola spp. in vitro cultures. Phytochem Rev 14:657–674PubMedCrossRefGoogle Scholar
  20. Guo N, Zhu M, Han X, Sui D, Wang Y, Yang Q (2014) The metabolism of salidroside to Its Aglycone p-Tyrosol in rats following the administration of Salidroside. Plos One 9:e103648PubMedPubMedCentralCrossRefGoogle Scholar
  21. Gupta V, Lahiri SS, Sultana S, Kumar R (2009) Mechanism of action of Rhodiola imbricata Edgew. during exposure to cold, hypoxia and restraint (C-H-R) stress induced hypothermia and post stress recovery in rats. Food Chem Toxicol 47:1239–1245PubMedCrossRefGoogle Scholar
  22. Gyorgy Z, Tolonen A, Pakonen M, Neubauer P, Hohtola A (2004) Enhancing the production of cinnamyl glycosides in compact callus aggregate cultures of Rhodiola rosea by biotransformation of cinnamyl alcohol. Plant Sci 166:229–236CrossRefGoogle Scholar
  23. Halldorsson B, Grasnytjar AF. Stein and Copenhagen, 1783 (reprinted in Akureyri 1983, pp 241–242)Google Scholar
  24. Han F, Li Y, Mao X, Xu R, Yin R (2016) Characterization of chemical constituents in Rhodiola Crenulate by high-performance liquid chromatography coupled with Fourier-transform ion cyclotron resonance mass spectrometer (HPLC-FT-ICR MS). J Mass Spectrom 51:363–368PubMedCrossRefGoogle Scholar
  25. Hooker F, Thomson T (1998) J Linn Soc Bot, Clarke in Hooker, “Flor Brit India” 2:418Google Scholar
  26. Hou Y, Lou A (2011) Population genetic diversity and structure of a naturally isolated plant species, Rhodiola dumulosa (Crassulaceae). Plos One 6:1–10Google Scholar
  27. Iaremii IN, Grigoreva NF (2002) Hepatoprotective properties of liquid extract of Rhodiola rosea. Eksp Klin Farmakol 65:57–59PubMedGoogle Scholar
  28. Jafari M, Felgner JS, Bussel II, Hutchili T, Khodayari B, Rose MR, Vince-Cruz C, Mueller LD (2007) Rhodiola: a promising anti-aging Chinese herb. Rejuvenat Res 10:587–602CrossRefGoogle Scholar
  29. Kang L, Li C, Wang Z (2010) Tissue culture and plant regeneration of Rhodiola henryi. Chin J Chin Mater Med 35:3250–3254Google Scholar
  30. Kanupriya DP, Sai Ram M, Kumar R, Sawhney RC, Sharma SK, IIavazhagan G, Kumar D, Banerjee PK (2005) Cytoprotective and antioxidant activity of Rhodiola imbricata against tert-butyl hydroperoxide induced oxidative injury in U-937 human macrophages. Mol Cell Biochem 275:1–6PubMedCrossRefGoogle Scholar
  31. Khanum F, Bawa AS, Singh B (2005) Rhodiola rosea: a versatile adaptogen. Compr Rev Food Sci Food Safety 4:55–62CrossRefGoogle Scholar
  32. Kumar R, Tayade A, Chaurasia OP, Hota S, Singh SB (2010a) Evaluation of anti-oxidant activities and total phenol and flavonoid content of the hydro-alcoholic extracts of Rhodiola sp. Pharmaco J 2:431–435CrossRefGoogle Scholar
  33. Kumar R, Kumar GP, Chaurasia OP (2010b) In vitro antioxidant activity of methanolic extract of Rhodiola imbricata Edgew. Pharmaco J 2:157–161CrossRefGoogle Scholar
  34. Kwon YI, Jang HD, Shetty K (2006) Evaluation of Rhodiola crenulata and Rhodiola rosea for management of type II diabetes and hypertension. Asia Pac J Clin Nutr 15:425–432PubMedGoogle Scholar
  35. Lai MC, Lin JG, Pai PY, Lai MH, Lin YM, Yeh YL, Cheng SM, Liu YF, Huang CY, Lee SD (2015) Effects of Rhodiola crenulata on mice hearts under severe sleep apnea. BMC Complement Altern Med 15:198PubMedPubMedCentralCrossRefGoogle Scholar
  36. Lee MW, Lee YA, Park HM, Toh SH, Lee EJ, Jang HD, Kim YH (2000) Antioxidant phenolic compounds from the roots of Rhodiola sachalinensis. Arch Pharm Res 23:455–458PubMedCrossRefGoogle Scholar
  37. Lee SY, Lai FY, Shi LS, Chou YC, Yen IC, Chang TC (2015) Rhodiola crenulata extract suppresses hepatic gluconeogenesis via activation of the AMPK pathway. Phytomed 22:477–486CrossRefGoogle Scholar
  38. Lei Y, Nan P, Tsering T, Bai Z, Tian C, Zhong Y (2003) Chemical composition of the essential oils of two Rhodiola species from Tibet. Naturforsch C. 58:161–164CrossRefGoogle Scholar
  39. Li HB, Chen F (2001) Preparative isolation and purification of salidroside from the Chinese medicinal plant Rhodiola sachalinensis by high-speed counter-current chromatography. J Chromatogr A 132:91–95CrossRefGoogle Scholar
  40. Li T, Xu G, Wu L, Sun C (2007) Pharmacological studies on the sedative and hypnotic effect of salidroside from the Chinese medicinal plant Rhodiola sachalinensis. Phytomed 14:601–604CrossRefGoogle Scholar
  41. Li HX, Sze SC, Tong Y, Ng TB (2009) Production of Th1- and Th2-dependent cytokines induced by the Chinese medicine herb, Rhodiola algida, on human peripheral blood monocytes. J Ethnopharmacol 123:257–266PubMedCrossRefGoogle Scholar
  42. Li X, Sipple J, Pang Q, Du W (2012) Salidroside stimulates DNA repair enzyme Parp-1 activity in mouse HSC maintenance. Blood 119:4162–4173PubMedPubMedCentralCrossRefGoogle Scholar
  43. Lin KT, Hsu SW, Lai FY, Chang TC, Shi LS, Lee SY (2016) Rhodiola crenulata extract regulates hepatic glycogen and lipid metabolism via activation of the AMPK pathway. BMC Complement Altern Med 16:127PubMedPubMedCentralCrossRefGoogle Scholar
  44. Lishmanov IB, Trifonova ZV, Tsibin AN, Maslova LV, Dementeva LA (1987) Plasma beta-endorphin and stress hormones in stress and adaptation. Biull Eksp Biol Med 103:422–424PubMedCrossRefGoogle Scholar
  45. Lishmanov YB, Krylatov AV, Maslov LN, Nariznayaand NV, Zamotrinskii AV (1996) Effect of Rhodiola rosea on the level of inducible Hsp-70 in miocard in stress. Bull Exp Biol Med 121:235–237CrossRefGoogle Scholar
  46. Liu Q, Liu ZL, Tian X (2008) Phenolic components from Rhodiola dumulosa. Zhongguo Zhong Yao ZaZhi 33:411–413Google Scholar
  47. Loo WT, Jin LJ, Chow LW, Cheung MN, Wang M (2010) Rhodiola algida improves chemotherapy-induced oral mucositis in breast cancer patients. Expert Opin Investig Drugs Suppl 19:91–100CrossRefGoogle Scholar
  48. Lu C, Chen Y, Jian L (2003) Role of mucilage cells and glycoprotein at mesophyll cell surface in the freeze tolerance of a alpine plant, Rhodiola algida via. Tangutica. Chin J Appl Environ Biol 9:16–20Google Scholar
  49. Lu DX, Zhang SN, Wang WP, Zhen J (2011) The study of cytostatic effect on MCF-7 cells of the alcohol extract of Rhodiola Algida Var. Tangutica. Proc Environ Sci 8:615–619CrossRefGoogle Scholar
  50. Ma CY, Tang J, Wang HX, Gu XH, Tao GJ (2008) Simultaneous determination of six active compounds in Rhodiola L. by RP-LC. Chromatographia 67:383–388CrossRefGoogle Scholar
  51. Maimeskulova LA, Maslov LN, Lishmanov IB, Krasnov EA (1997) The participation of the mu-, delta- and kappa-opioid receptors in the realization of the anti-arrhythmia effect of Rhodiola rosea. Eksp Klin Farmakol 60:38–39PubMedGoogle Scholar
  52. Maslov LN, Lishmanov IB, Naumova AV, Lasukova TV (1997) Do endogenous ligands of peripheral mu- and delta-opiate receptors mediate anti-arrhythmic and cardioprotective effects of Rhodiola rosea extract? Biull Eksp Biol Med 124:151–153PubMedCrossRefGoogle Scholar
  53. Mattioli L, Funariand C, Perfumi M (2008) Effects of Rhodiola rosea L. extract on behavioural and physiological alterations induced by chronic mild stress in female rats. J Psycopharmacol 23:130–142CrossRefGoogle Scholar
  54. Maximowicz M (2007) Eleutherococcus Maximowicz, Mém Acad Imp Sci St.-Pétersbourg Divers Savans 9 [Prim. Fl. Amur.]: 132. 1859, Flora of China 13:466–472Google Scholar
  55. Ming HQ, Zia GC, Jheng RZ (1988) Advanced research on Rhodiola. Chin Tradit Herb Drugs 19:229–234Google Scholar
  56. Mishra KP, Chauhan UK, Naik S (2006) Effect of lead exposure on serum immunoglobulins and reactive nitrogen and oxygen intermediate. Hum Exp Toxicol 25:661–665PubMedCrossRefGoogle Scholar
  57. Mishra KP, Padwad YS, Dutta A, Ganju L, Sairam M, Banerjee PK, Sahwney RC (2008) Aqueous extract of Rhodiola imbricata rhizome inhibits proliferation of an erythroleukemic cell line K-562 by inducing apoptosis and cell cycle arrest at G2/M phase. Immunobiol 213:125–131CrossRefGoogle Scholar
  58. Mishra KP, Chanda S, Shukla K, Ganju L (2010) Adjuvant effect of aqueous extract of Rhodiola imbricata rhizome on the immune responses to tetanus toxoid and ovalbumin in rats. Immunopharmacol Immunotoxicol 32:141–146PubMedCrossRefGoogle Scholar
  59. Mora MC, Bassa LM, Wong KE, Tirabassi MV, Arenas RB, Schneider SS (2015) Rhodiola crenulata inhibits Wnt/β-catenin signaling in glioblastoma. J Surg Res 197:247–255PubMedCrossRefGoogle Scholar
  60. Nakamura S, Li X, Matsuda H, Yoshikawa M (2008) Bioactive constituents from Chinese natural medicines. XXVIII. Chemical structures of acyclic alcohol glycosides from the roots of Rhodiola crenulata. Chem Pharm Bull 56:536–540PubMedCrossRefGoogle Scholar
  61. Ohwi J (1984) Flora of Japan. Smithsonian Institution, Washington, DC, p 495Google Scholar
  62. Olsson EMG, von Scheele B, Panossian AG (2009) A randomized double-blind placebo controlled parallell group study of SHR-5 extract of Rhodiola rosea roots as treatment for patients with stress related fatigue. Planta Med 75:105–112PubMedCrossRefGoogle Scholar
  63. Pangarova TT, Zapesochnaya GG (1975) The structure of the flavonoids from Rhodiola algida. II. Chem Nat Compd 11:744–750CrossRefGoogle Scholar
  64. Panossian A, Wagner H (2005) Stimulating effect of adaptogens: an overview with particular reference to their efficacy following single dose administration. Phytother Res 19:819–838PubMedCrossRefGoogle Scholar
  65. Panossian A, Hambartsumyan M, Hovanissian A, Wikman G (2007) The adaptogens rhodiola and schizandra modify the response to immobilization stress in rabbits by suppressing the increase of phosphorylated stress-activated protein kinase, nitric oxide and cortisol. Drug Targets Insights 2:39–54Google Scholar
  66. Panossian A, Nikoyan N, Chanyan N, Hovhannisyan A, Abrahamyan H, Gabnelyan E, Wikman G (2008) Comparative study of Rhodiola preparations on behavioral despair of rats. Phytomed 15:84–91CrossRefGoogle Scholar
  67. Panossian A, Wikman G, Kaur P, Asea A (2009) Adaptogens exert a stress protective effect by modulation of expression of molecular chaperons. Phytomed 16:617–622CrossRefGoogle Scholar
  68. Panossian A, Wikman G, Sarris J (2010) Rosenroot (Rhodiola rosea): Traditional use, chemical composition, pharmacology and clinical efficacy. Phytomed 17:481–493CrossRefGoogle Scholar
  69. Perfumi M, Mattioli L (2007) Adaptogenic and central nervous system effects of single doses of 3% rosavin and 1% salidroside Rhodiola rosea L. extract in mice. Phytother Res 21:37–43PubMedCrossRefGoogle Scholar
  70. Pooja, Bawa AS, Khanum F (2009) Anti-inflammatory activity of Rhodiola rosea-“a second-generation adaptogen”. Phytother Res 23:1099–1102CrossRefGoogle Scholar
  71. Prodius PA, Manukhina EB, Bulanov AE, Wikman G, Malyshev II (1997) Adaptogen ADAPT modulates synthesis of inducible stress protein HSP 70 and increases organism resistance to heat shock. Biull Eksp Biol Med 123:629–631PubMedCrossRefGoogle Scholar
  72. Qi YJ, Cui S, Lu DX, Yang YZ, Luo Y, Ma L, Ma Y, Wuren T, Chang R, Qi L, Ben BJ, Han J, Ge RL (2015) Effects of the aqueous extract of a Tibetan herb, Rhodiola algida var. tangutica on proliferation and HIF-1α, HIF-2α expression in MCF-7 cells under hypoxic condition in vitro. Cancer Cell Int 15:81. CrossRefPubMedPubMedCentralGoogle Scholar
  73. Qin YJ, Zeng YS, Zhou CC, Li Y, Zhong ZQ (2008) Effects of Rhodiola rosea on level of 5-hydroxytryptamine, cell proliferation and differentiation, and number of neuron in cerebral hippocampus of rats with depression induced by chronic mild stress. ZhongguoZhong Yao ZaZhi 33:2842–2846Google Scholar
  74. Qu ZQ, Zhou Y, Zeng YS, Lin YK, Li Y, Zhong ZQ, Chan WY (2012) Protective effects of a Rhodiola crenulata extract and salidroside on hippocampal neurogenesis against streptozotocin-induced neural injury in the rat. Plos One 7:e29641PubMedPubMedCentralCrossRefGoogle Scholar
  75. Recio MC, Giner RM, Manez S (2016) Immunmodulatory and antiproliferative properties of Rhodiola species. Planta Med 82:952–960PubMedCrossRefGoogle Scholar
  76. Rohloff J (2008) Volatiles from rhizomes of Rhodiola rosea L. Phytochem 59:655–661CrossRefGoogle Scholar
  77. Rozewska ES, Wojcik R, Siwicki AK, Somer E, Wasiutynski A, Furmanowa M, Malinowski M, Mazurkiewcz M (2008a) The effect of Rhodiola quadrifida extracts on cellular immunity in mice and rats. Pol J Vet Sci 11:105–111Google Scholar
  78. Rozewska ES, Wasiutynski A, Sommer E, Mielcarek S, Scisz AM, Patan AK, Mazurkiewicz M, Pastewka K (2008b) The influence of Rhodiola rosea, Rhodiola kirilowii, and Rhodiola quadrifida extracts on cutaneous angiogenesis induced in mice after grafting of human kidney cancer tissue. Centr Eur J Immunol 33:185–189Google Scholar
  79. Saratikov AS (1976) Adaptogenic action of Eleutherococcus and golden root preparations. In: Brekhman II (ed) Adaptation processes and biologically active compounds, pp 54–62Google Scholar
  80. Saratikov AS, Krasnov EA (2004) Rhodiolarosea (Golden root): a valuable medicinal plant. Tomsk University Press, Tomsk, pp 1–205Google Scholar
  81. Saratikov AS, Krasnov EA, Khnikina LA, Duvidson LM (1967) Isolation and chemical analysis of individual biologically active constituents of Rhodiola rosea. Proc Siberian Acad Sci Biol 1:54–60Google Scholar
  82. Saratikov AS, Krasnov EA, Chnikina LA, Duvidson LM, Sotova MI, Marina TF, Nechoda MF, Axenova RA, Tscherdinzeff SG (1968) Rhodiolosid, a new glycoside from Rhodiola rosea and its pharmacological properties. Pharmazie 23:392–395Google Scholar
  83. Saratikov A, Marina TF, Fisanova LL (1978) Effect of golden root extract on processes of serotonin synthesis in CNS. J Biol Sci 6:142Google Scholar
  84. Schriner SE, Avanesian A, Liu Y, Luesch H, Jafari M (2009) Protection of human cultured cells against oxidative stress by Rhodiola rosea without activation of antioxidant defenses. Free Radic Biol Med 47:577–584PubMedCrossRefGoogle Scholar
  85. Seifulla SD (1999) Sport pharmacology. Sport-Farma Press, Moscow, p 120Google Scholar
  86. Senthilkumar R, Chandranand R, Parimelazhagan T (2014) Hepatoprotective effect of Rhodiola imbricata rhizome against paracetamol-induced liver toxicity in rats. Saudi J Biol Sci 21:409–416PubMedPubMedCentralCrossRefGoogle Scholar
  87. Seo WG, Pae HO, Oh GS, Kim NY, Kwon TO, Shin MK et al (2001) The aqueous extract of Rhodiola sachalinensis root enhances the expression of inducible nitric oxide synthase gene in RAW264.7 macrophages. J Ethnopharmacol 76:119–123PubMedCrossRefGoogle Scholar
  88. Sikkink L (2009) Med Anthropol Appl Perspect. ISBN-13: 978-0-495-10017-1. ISBN-10: 0-495-10017-XGoogle Scholar
  89. Siwicki AK, Skopinska-Różewska E, Hartwich M (2007) The influence of Rhodiola rosea extracts on non-specific and specific cellular immunity in pigs, rats and mice. Centr Eur J Immunol 32:84–91Google Scholar
  90. Song EK, Kim JH, Kim JS, JI-Xing Nan HC, Sohn DH, Ko G, Oh H, Kim YC (2003) Hepatoprotective phenolic constituents of Rhodiola sachalinensis on tacrine-induced cytotoxicity in Hep G2 cells. Phytother Res 17:563–565PubMedCrossRefGoogle Scholar
  91. Sundriyal M, Sundriyal RC, Sharma E (2004) Dietary use of wild plant resources in the Sikkim Himalaya, India. Econ Bot 58:626–638CrossRefGoogle Scholar
  92. Tasheva K, Kosturkowa G (2010) Rhodiola rosea L. in vitro cultures peculiarities scientific. Proceedings of the 3rd International Symposium. New Researches in Biotechnology, Bucharest, Romania, 2010Google Scholar
  93. Tayade AB, Dhar P, Kumar J, Sharma M, Chauhan RS, Chaurasia OP, Srivastava RB (2013) Chemometric profile of root extracts of Rhodiola imbricata Edgew with hyphenated gas chromatography mass spectrometric technique. Plos One 13:1–15Google Scholar
  94. Troshchenko AT, Kutikova GA (1967) Rhodioloside from Rhodiola rosea and Rh. quadrifida. I. Chem Nat Compd 3:204–207CrossRefGoogle Scholar
  95. Tu Y, Roberts L, Shetty K, Schneider SS (2008) Rhodiola crenulata induces death and inhibits growth of breast cancer cell lines. J Med Food 11:413–423PubMedCrossRefGoogle Scholar
  96. Udintsev SN, Shakhov VP (1991) The role of humoral factors of regenerating liver in the development of experimental tumors and the effect of Rhodiola rosea extract on this process. Neoplasma 38:323–331PubMedGoogle Scholar
  97. Wang H, Ding Y, Zhou J, Sun X, Wang S (2009) The in vitro and in vivo antiviral effects of salidroside from Rhodiola rosea L. against coxsackievirus B3. Phytomed 16:146–155CrossRefGoogle Scholar
  98. Wang J, Rong X, Li W, Yang Y, Yamahara J, Li Y (2012) Rhodiola crenulata root ameliorates derangements of glucose and lipid metabolism in a rat model of the metabolic syndrome and type 2 diabetes. J Ethnopharmacol 142:782–788PubMedCrossRefGoogle Scholar
  99. Wang H, Dong L, Ge JQ, Deng LN, Lan XZ, Liao ZH, Chen M (2016) A new cyanoside from Rhodiola bupleuroides. J Asian Nat Prod Res 1:1–7CrossRefGoogle Scholar
  100. Wiedenfeld H, Zych M, Buchwald H, Furmanowa M (2007) New compounds from Rhodiola kirilowii Scientia. Pharm Sci Pharm 75:29–34Google Scholar
  101. Wiegant FAC, Limandjaja G, de Poot SAH, Bayda LA, Vorontsova ON, Zenina TA et al (2008) Plant adaptogens activate cellular adaptive mechanisms by causing mild damage. In: Lukyanova L, Takeda N, Singal PK (eds) Adaptation biology and medicine: health potentials, vol 5. Narosa Publishers, New Delhi, pp 319–332Google Scholar
  102. Wiegant FA, Surinova S, Ytsma E, Makkinje M, Wikman G, Post JA (2009) Plant adaptogens increase lifespan and stress resistance in C. elegans. Biogerontology 10:27–42PubMedCrossRefGoogle Scholar
  103. Wojcik R, Siwicki AK, Roewska ES, Mrozikiewicz PM (2008) Experimental immunology: The in vitro influence of Rhodiola quadrifida extracts on non-specific cellular immunity in pigs. Centr Eur J Immunol 33:193–196Google Scholar
  104. Wojcik R, Siwicki AK, Skopińska-Różewska E, Wasiutyński A, Sommer E, Furmanowa M (2009) The effect of Chinese medicinal herb Rhodiola kirilowii extracts on cellular immunity in mice and rats. Pol J Vet Sci 12:399–405PubMedGoogle Scholar
  105. Wong YC, Zhao M, Zong YY, Chan CY, Che CT (2008) Chemical constituents and anti-tuberculosis activity of root of Rhodiola kirilowii. Zhongguo Zhong Yao ZaZhi 33:1561–1565Google Scholar
  106. Xu JF, Su ZG, Feng PS (1998) Activity of tyrosol glucosyltransferase and improved salidroside production through biotransformation of tyrosol in Rhodiola sachalinensis cell cultures. J Biotechnol 61:69–73CrossRefGoogle Scholar
  107. Yoshikawa M, Shimada H, Shimoda H, Matsuda H, Yamahar J, Murakami N (1995) Rhodiocyanoside-A and Rhodiocyanoside-B, new antiallergic cyanoglycosides from Chinese natural medicine Si-LiHong-Jing-Tian, the underground part of Rhodiola quadrifida (Pall). Fisch Et Mey. Chem Pharm Bull 43:1245–1247PubMedCrossRefGoogle Scholar
  108. Yoshikawa M, Shimada H, Shimoda H, Murakami N, Yamahara J, Matsuda H (1996) Bioactive constituents of Chinese natural medicines. II. Rhodiolae radix. (1). Chemical structures and Antiallergic activity of Rhodiocyanosides A and B from the underground Part of Rhodiola guadrifida (PALL.) FISCH. et MEY. (Crassulaceae). Chem Pharm Bull 44:2086–2091PubMedCrossRefGoogle Scholar
  109. Yoshikawa M, Shimada H, Horikawa S, Murakami T, Shimoda H, Yamahara J et al (1997) Bioactive constituents of Chinese natural medicines. 4. Rhodiolae radix. 2. On the histamine release inhibitors from the underground part of Rhodiola sacra (Prain ex Hamet) S.H. Fu (Crassulaceae): chemical structures of rhodiocyanoside D and sacranosides A and B. Chem Pharm Bull 45:1498–1503PubMedCrossRefGoogle Scholar
  110. Yousef GG, Grace MH, Cheng DM, Belolipov IV, Raskin I, Lila MA (2006) Comparative phytochemical characterization of three Rhodiola species. Phytochem 67:2380–2391CrossRefGoogle Scholar
  111. Yu HS, Mab LQ, Zhang JX, Shib GL, Hua YH, Wang YN (2011) Characterization of glycosyltransferases responsible for salidroside biosynthesis in Rhodiola sachalinensis. Phytochem 72:862–870CrossRefGoogle Scholar
  112. Yunuskhodjaev AN, Iskandarova SF, Kurmukov A, Saidov SA (2014) Study of adaptogenic properties and chronic toxicity of extract of Rhodiola heterodonta. Eur J Nat History 2:35–38Google Scholar
  113. Zhang ZH, Feng SH, Hu GD, Cao ZK, Wang LY (1989) Effect of Rhodiola kirilowii (Regel.) Maxim on preventing high altitude reactions. A comparison of cardiopulmonary function in villagers at various altitudes. Zhon Zhong Yao ZaZhi 14:687–690Google Scholar
  114. Zhang SQ, Bi HM, Liu CJ (2007) Extraction of bio-active components from Rhodiola sachalinensis under ultrahigh hydrostatic pressure. Sep Purif Technol 57:277–282CrossRefGoogle Scholar
  115. Zhang K, Si SP, Huang J, Han J, Liang X, Xu XB, Wang YT, Li GY, Wang HY, Wang JH (2016) Preventive effects of Rhodiola rosea L. on Bleomycin-induced pulmonary fibrosis in rats. Int J Mol Sci 17:1–20Google Scholar
  116. Zhao Y, Qi LW, Wang WM, Saxena PK, Liu CJ (2011) Melatonin improves the survival of cryopreserved callus of Rhodiola crenulata. J Pineal Res 50:83–88PubMedCrossRefGoogle Scholar
  117. Zhou JT, Li CY, Wang CH, Wang YF, Wang XD, Wang HT, Jiang MM, Gao XM (2015) Phenolic compounds from the roots of Rhodiola crenulata and their antioxidant and inducing IFN-γ production activities. Molecules 20:13725–13739PubMedCrossRefGoogle Scholar
  118. Zhu C, Guan F, Wang C, Jin LH (2014) The protective effects of Rhodiola crenulata extracts on Drosophila melanogaster gut immunity induced by bacteria and SDS toxicity. Phytother Res 28:1861–1866PubMedCrossRefGoogle Scholar
  119. Zuo G, Li Z, Chen L, Xu X (2007) Activity of compounds from Chinese herbal medicine RodiolaKirilowii (Regal) Maxim against HCV NS3 serine protease. Anim Res 76:86–92Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Pushpender Bhardwaj
    • 1
  • Garima Bhardwaj
    • 1
  • Rinky Raghuvanshi
    • 1
  • Mohan Singh Thakur
    • 1
  • Raj Kumar
    • 1
  • O. P. Chaurasia
    • 1
  1. 1.Defence Institute of High Altitude Research (DIHAR), Defence Research & Development Organisation (DRDO), Ministry of Defence, c/o 56APOLeh-LadakhIndia

Personalised recommendations