Algal Blooms: Potential Drivers, Occurrences and Impact

  • Santosh Kumar Sarkar


The growth of marine phytoplankton (both non-toxic and toxic) is generally limited by the availability of nitrates and phosphates, which can be abundant in coastal upwelling zones as well as in agricultural runoff. The type of nitrates and phosphates available in the system is also a factor, since phytoplankton can grow at different rates depending on the relative abundance of these substances (e.g. ammonia, urea, nitrate ion). A variety of other nutrient sources can also play an important role in affecting algal bloom formation, including iron, silica or carbon. This chapter has given importance to gain insight into the characteristics of algal blooms along with their potential drivers in relation to the marine environment. The chapter has also highlighted the current understanding on the mechanisms of algal bloom and addresses the regional differences in the persistence and causative agents of algal bloom in eutrophic tropical aquatic systems.


Algal bloom Dimethyl sulphide Upwelling and downwelling Allelopathy Remote sensors Water quality Arabian Sea Bay of Bengal 


  1. Adhavan, D., Kamboj, R. D., Chavdaand, D. V., & Bhalodi, M. M. (2014a). Status of intertidal biodiversity of Narara Reef Marine National Park, Gulf of Kachchh, Gujarat. Journal of Marine Biology and Oceanography, 3(3), 2.Google Scholar
  2. Adhavan, D., Kamboj, R. D., Marimuthu, N., et al. (2014b). Seasonal variation and climate change influence coral bleaching in Pirotan Island, Gulf of Kachchh Marine National Park, Gujarat. Currrent Science, 107(11), 1780–1781.Google Scholar
  3. Adhikary, S. P., & Sahu, J. (1992). Studies on the Trichodesmium bloom of Chilka Lake, East Coast of India. Phykos, 30, 101–107.Google Scholar
  4. Ahmed, S., Arakawa, O., & Onoue, Y. (1995). Toxicity of cultured Chattonella marina. In P. Lassus, G. Arzul, E. Erad, P. Geniten, & C. Marciallou (Eds.), Harmful algal blooms (pp. 499–504). Paris: Techinique at documentation-Lavoiser Intercept Ltd.Google Scholar
  5. Alagaraja, K., Kurup, K. N., Srinath, M., & Balakrishnan, G. (1992). Analysis of marine landings in India- a new approach (CMFRI Special Publication, Vol. 10, p. 42). Cochin: Central Marine Fisheries Research Institute.Google Scholar
  6. Al-Azri, A., Al-Hashmi, K., Goes, J., Gomes, H., Rushdi, A. I., Al-Habsi, H., et al. (2007). Seasonality of the bloom-forming heterotrophic dinoflagellate Noctiluca scintillans in the Gulf of Oman in relation to environmental conditions. International Journal of Oceans and Oceanography, 2(1), 51–60.Google Scholar
  7. Allen, J. I., Anderson, D., Burford, M., Dyhrman, S., Flynn, K., Glibert, P. M., Granéli, E., Heil, C., Sellner, K., Smayda, T., & Zhou, M. (2006). Global ecology and oceanography of harmful algal blooms, harmful algal blooms in eutrophic systems (P. Glibert, Ed., GEOHAB report 4, p. 74). Paris/Baltimore: IOC and SCOR.Google Scholar
  8. Anas, A., Sheeba, V. A., Jasmin, C., Gireeshkumar, T. R., Mathew, D., Krishna, K., Nair, S., Muraleedharan, K. R., & Jayalakshmy, K. V. (2018). Upwelling induced changes in the abundance and community structure of archaea and bacteria in a recurring mud bank along the southwest coast of India. Regional Studies in Marine Science, 18, 113–121.CrossRefGoogle Scholar
  9. Andreae, M. O., & Crutzen, P. J. (1997). Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry. Science, 276(5315), 1052–1058.CrossRefGoogle Scholar
  10. Archer, S. D., Widdicombe, C. E., Tarran, G. A., Rees, A. P., & Burkill, P. H. (2001). Production and turnover of particulate dimethylsulphoniopropionate during a coccolithophore bloom in the northern North Sea. Aquatic Microbial Ecology, 24(3), 225–241.CrossRefGoogle Scholar
  11. Arhonditsis, G., Tsirtsis, G., & Karydis, M. (2002). The effects of episodic rainfall events to the dynamics of coastal marine ecosystems: Applications to a semi-enclosed gulf in the Mediterranean Sea. Journal of Marine Systems, 35, 183–205.CrossRefGoogle Scholar
  12. Arun Kumar, M., Karthik, R., Sai Elangovan, S., & Padmavati, G. (2012). Occurrence of Trichodesmium erythraeum bloom in the coastal waters of south Andaman. International Journal of Current Research, 11, 281–284.Google Scholar
  13. Arun Kumar, M., Padmavati, G., & Pradeep, H. D. (2015). Occurrence of Trichodesmium erythraeum (Cyanophyte) bloom and its effects on the fish catch during April 2013, in the Andaman Sea. Applied Environmental Research, 37, 49–57.Google Scholar
  14. Barría de Cao, M. S., Beight, M., & Piccolo, C. (2005). Temporal variability of diversity and biomass of tintinnids (Ciliophora) in Southeastern Atlantic temperate estuary. Journal of Plankton Research, 27(11), 1103–1111.CrossRefGoogle Scholar
  15. Begum, M., Sahu, B. K., Das, A. K., Vinithkumar, N. V., & Kirubagaran, R. (2015). Extensive Chaetocero scurvisetus bloom in relation to water quality in Port Blair Bay, Andaman Islands. Environmental Monitoring and Assessment, 187, 1–14.CrossRefGoogle Scholar
  16. Bhat, S. R., & Verlencar, X. N. (2006). Some enigmatic aspects of marine cyanobacterial genus, Trichodesmium. Current Science, 91, 18–19.Google Scholar
  17. Bhimachar, B. S., & George, P. C. (1950). Abrupt setback in the fisheries of the Malabar and Kanara coasts and red water phenomenon and their probable cause. Proceedings of the Indian Academy of Sciences, 31, 339–350.Google Scholar
  18. Biswas, S. N., Godhantaraman, N., Sarangi, R. K., Bhattacharya, B. D., Sarkar, S. K., & Satpathy, K. K. (2013). Bloom of Hemidiscus hardmannianus (Bacillariophyceae) and its impact on water quality and plankton community structure in a mangrove wetland. Clean – Soil, Air, Water, 41(4), 333–339.CrossRefGoogle Scholar
  19. Biswas, S. N., Rakshit, D., Sarkar, S. K., Sarangi, R. K., & Satpathy, K. K. (2014). Impact of multispecies diatom bloom on plankton community structure in Sundarban mangrove wetland, India. Marine Pollution Bulletin, 85, 306–311.CrossRefGoogle Scholar
  20. Blackburn, S. I., McCausland, M. A., Bolch, C. J. S., Newman, S. J., & Jones, G. J. (1996). Effect of salinity on growth and toxin production in cultures of the bloom-forming cyanobacterium Nodularia spumigera from Australian waters. Phycologia, 36(6), 511–522.CrossRefGoogle Scholar
  21. Blanchard, J. L., Jennings, S., Holmes, R., Harle, J., Merino, G., Allen, J. I., et al. (2012). Potential consequences of climate change for primary production and fish production in large marine ecosystems. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 367, 2979–2989.CrossRefGoogle Scholar
  22. Bopp, L., Aumont, O., Belviso, S., & Monfray, P. (2003). Potential impact of climate change on marine dimethyl sulfide emissions. Tellus, 55B, 11–22.CrossRefGoogle Scholar
  23. Cameron-Smith, P., Elliott, S., Maltrud, M., Erickson, D., & Wingenter, O. (2011). Changes in dimethyl sulfide oceanic distribution due to climate change. Geophysical Research Letters, 38, L07704.CrossRefGoogle Scholar
  24. Capone, D. G., Zehr, J. P., Paerl, H. W., Bergman, B., & Carpenter, E. J. (1997). Trichodesmium, a globally significant marine bacteria. Science, 276, 1221–1229.CrossRefGoogle Scholar
  25. Carmichael, W. W. (1992). Cyanobacterial secondary metabolites – The cyanotoxins. The Journal of Applied Bacteriology, 724, 45–459.Google Scholar
  26. Carslaw, K. S., Boucher, O., Spracklen, D. V., Mann, G. W., Rae, J. G. L., Woodward, S., & Kulmala, M. (2010). A review of natural aerosol interactions and feedbacks within the Earth system. Atmospheric Chemistry and Physics, 10(4), 1701–1737.CrossRefGoogle Scholar
  27. Chacko, P. I. (1942). An unusual incidence of mortality of marine fauna. Current Science, 11, 404.Google Scholar
  28. Chang, J., Chiang, K. P., & Gong, G. C. (2000). Seasonal variation and cross-shelf distribution of the nitrogen-fixing cyanobacterium, Trichodesmium, in the southern East China Sea. Continental Shelf Research, 20, 479–492.CrossRefGoogle Scholar
  29. Charlson, R. J., Lovelock, J. E., Andreaei, M. O., & Warren, S. G. (1987). Oceanic phytoplankton, atmospheric sulphur, cloud. Nature, 326(6114), 655–661.CrossRefGoogle Scholar
  30. Chellappa, S. I., Marinho, I. R., & Chellappa, N. T. (2004). Freshwater phytoplankton assemblages and the bloom of toxic Cyanophyceae of Campo Grande reservoir of Rio Grande do Norte State of Brazil. Indian Hydrobiology, 7, 151–171.Google Scholar
  31. Chidambaram, K., & Menon, K. (1945). Correlation of the west coast (Malabar and South Kanara) fisheries with plankton and certain oceanographical features. Proceedings of the Indian Academy of Sciences, 31, 252–286.Google Scholar
  32. Chorus, I., & Bartram, J. (1999). Toxic cyanobacteria in monitoring and management. E and FN Spon (416 pp). London: An Imprint of Routledge.Google Scholar
  33. Clarke, K. R., & Warwick, R. M. (1998). Quantifying structural redundancy in ecological communities. Oecologia, 113(2), 278–289.CrossRefGoogle Scholar
  34. Clarke, K. R., & Warwick, R. M. (2001). Change in marine communities: An approach to statistical analysis and interpretation (2nd ed.p. 171). Plymouth: PRIMER-E.Google Scholar
  35. D’Silva, M. S., Anil, A. C., Naik, R. K., & D’Costa, P. M. (2012). Algal blooms: A perspective from the coasts of India. Natural Hazards, 63, 1225–1253.CrossRefGoogle Scholar
  36. Davidson, K., Miller, P., Wilding, T. A., Shutler, J., Bresnan, E., Kennington, K., & Swan, S. (2009). A large and prolonged bloom of Karenia mikimotoi in Scottish waters in 2006. Harmful Algae, 8, 349–361.CrossRefGoogle Scholar
  37. Devassy, V. P. (1987). Trichodesmium red tides in the Arabian Sea. In T. S. S. Rao (Ed.), Contributions in marine sciences: A special volume to felicitate Dr. S. Z. Qasim Sastyabdapurtl on his sixtieth birthday (pp. 61–66). Dona Paula: National Institute of Oceanography.Google Scholar
  38. Devassy, V. P., & Nair, S. R. S. (1987). Discolouration of waters and its effect on fisheries along the Goa coast. Mahasagar, 20, 121.Google Scholar
  39. Devassy, V. P., Bhatrarhiri, P. M. A., & Qasim, S. Z. (1978). Trichodesmium phenomenon. Indian Journal of Marine Science, 73, 168–186.Google Scholar
  40. Dharani, G., Abdul Nazar, A., Kanagu, L., Venkateshwaran, P., Kumar, T., Ratnam, K., Venkatesan, R., & Ravindran, M. (2004). On the recurrence of Noctiluca scintillans  bloom in Minnie Bay, Port Blair: Impact on water quality and bioactivity of extracts. Current Science, 87, 990–994.Google Scholar
  41. Dippner, J. W., Nguyen-Ngoc, L., Doan-Nhu, H., & Subramaniam, A. (2011). A model for the prediction of harmful algae blooms in the Vietnamese upwelling area. Harmful Algae, 10(6), 606–611.Google Scholar
  42. Doney, S. C., Fabry, V. J., Feely, R. A., & Kleypas, J. A. (2009). Ocean acidification: The other CO2 problem. Annual Review of Marine Science, 1, 169–192.CrossRefGoogle Scholar
  43. Duguay, L. E., Monteleone, D. M., & Monteleone, C. E. (1989). Abundance and distribution of zooplankton and Ichthyoplankton in Great South Bay, New York: During the brown tide outbreaks of 1985 and 1986. In E. M. Cosper, V. M. Bricelj, & E. J. Carpenter (Eds.), Novel phytoplankton blooms (pp. 600–623). Berlin: Springer.Google Scholar
  44. Dwivedi, R. M., Chauhan, R., Solanki, H. U., Raman, M., Matondkar, S. G. P., Madhu, V., & Meenakumari, B. (2012). Study of ecological consequence of the bloom (Noctiluca miliaris) in off shore waters of the Northern Arabian Sea. Indian Journal of Geo Marine Sciences, 41(4), 304–313.Google Scholar
  45. Eashwar, M., Nallathambi, T., Kuberaraj, K., & Govindarajan, G. (2001). Noctiluca blooms in Port Blair Bay, Andamans. Arya, 1105, 1–10.Google Scholar
  46. Elangovan, S. S., Arun Kumar, M., Karthik, R., Siva Sankar, R., Jayabarathi, R., & Padmavati, G. (2012). Abundance, species composition of microzooplankton from the coastal waters of Port Blair, South Andaman Island. Aquatic Biosystems, 8, 20.CrossRefGoogle Scholar
  47. Elbrächter, M. & Qi, Y. Z. (1998). Aspects of Noctiluca (Dinophyceae) population dynamics. In D. M. Anderson et al.(Eds.), Physiological ecology of harmful algal blooms (NATO ASI Series, Vol. G41, pp. 315–335). Berlin: Springer.Google Scholar
  48. Endo, M., Onoue, Y., & Kuroki, A. (1992). Neurotoxin induced disorder and its role in the death of fish exposed to Chattonella marina. Marine Biology, 112, 371–376.CrossRefGoogle Scholar
  49. Falconer, I. R., Burch, M. D., Steffensen, D. A., Choice, M., & Coverdale, O. R. (1994). Toxicity of the blue-green alga (cyanobacterium) Microcystis aeruginosa in drinking water to growing pigs, as an animal model for human injury and risk assessment. Environmental Toxicology, 9(2), 131–139.Google Scholar
  50. Fay, P. (1983). The blue greens (Studies in biology N°160). London: Edward Arnold.Google Scholar
  51. Federico, A., Sarma, S. S. S., & Nandini, S. (2007). Effect of mixed diets (cyanobacteria and green algae) on the population growth of the cladocerans Ceriodaphnia dubia and Moina macrocopa. Aquatic Ecology, 41, 579–585.CrossRefGoogle Scholar
  52. Fei, H. (1952). The cause of red tides. Science and Art 22, 1–3 (in Chinese).Google Scholar
  53. Fernandes, L. F., Zehnder-Alves, L., & Bassfeld, J. C. (2001). The recently established diatom Coscinodiscus wailesii (Coscinodiscales, Bacillariophyta) in Brazilian waters. I: Remarks on morphology and distribution. Phycological Research, 49, 89–96.CrossRefGoogle Scholar
  54. Fistarol, G. O., Legrand, C., & Granéli, E. (2005). Allelopathic effect on a nutrient-limited phytoplankton species. Aquatic Microbial Ecology, 41(2), 153–161.CrossRefGoogle Scholar
  55. Fitzgerald, S. A., & Steuer, J. J. (2005). Association of PCBs with live algae and total lipids in rivers. The Science of the Total Environment, 354, 60–74.CrossRefGoogle Scholar
  56. Gabric, A. J., Simó, R., Cropp, R. A., Hirst, A. C., & Dachs, J. (2004). Modeling estimates of the global emission of dimethylsulfide under enhanced greenhouse conditions. Global Biogeochemical Cycles, 18, GB2014.Google Scholar
  57. Gayoso, A. M. (1999). Seasonal succession patterns of phytoplankton in the Bahía Blanca Estuary (Argentina). Botanica Marina, 42, 367–375.CrossRefGoogle Scholar
  58. Ghadouani, A., Pinel-Alloul, B. B., & Prepas, E. E. (2006). Could increase cyanobacterial biomass following forest harvesting cause a reduction in zooplankton body size structure? Canadian Journal of Fisheries and Aquatic Sciences, 63, 2308–2317.CrossRefGoogle Scholar
  59. Glibert, P. M., Anderson, D. M., Gentien, P., Granéli, E., & Sellner, K. G. (2005). The global, complex phenomena of harmful algal blooms. Oceanography, 18(2), 130–141.Google Scholar
  60. Gopal, B., & Chauhan, M. (2006). Biodiversity and its conservation in the Sundarban mangrove ecosystem. Aquatic Sciences, 69, 338–354.CrossRefGoogle Scholar
  61. Gosselin, S., Fortier, L., & Gagne, J. A. (1989). Vulnerability of marine fish larvae to the toxic dinoflagellate Protogonyaulax tamerensis. Marine Ecology Progress Series, 57, 1–10.CrossRefGoogle Scholar
  62. Granéli, E., & Hansen, P. J. (2006). Allelopathy in harmful algae: A mechanism to compete for resources? In E. Granéli & J. T. Turner (Eds.), Ecology of harmful algae (pp. 189–201). Berlin: Springer.CrossRefGoogle Scholar
  63. Granéli, E., Weberg, M., & Salomon, P. S. (2008). Harmful algal blooms of allelopathic microalgal species: The role of eutrophication. Harmful Algae, 8, 94–102.CrossRefGoogle Scholar
  64. Gypens, N., & Borges, A. V. (2014). Increase in dimethylsulfide (DMS) emissions due to eutrophication of coastal waters offsets their reduction due to ocean acidification. Frontiers in Marine Science, 1, 4.CrossRefGoogle Scholar
  65. Halegraeff, D. M., Anderson, A., Cembella, D., & Envlodsen, H. O.. (1995). Manual on harmful marine microalgae (IOC manuals and guides, Vol. 33, pp. 550). Rome: UNESCO.Google Scholar
  66. Hall, S. J., & Greenstreet, S. P. (1998). Taxonomic distinctness and diversity measures: Responses in fish communities. Marine Ecology Progress Series, 166, 227–229.CrossRefGoogle Scholar
  67. Hallegraeff, G., & Gollasch, S. (2006). Anthropogenic introductions of microalgae. In Ecology of harmful algae (pp. 379–390). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  68. Hobson, P., Burch, M., & Fallowfield, H. J. (1999). Effect of total dissolved solids and irradiance on growth and toxin production by Nodularia spumigera. Journal of Applied Phycology, 11, 551–558.CrossRefGoogle Scholar
  69. Hornell, J. (1917). A new protozoan cause of widespread mortality among marine fishes. Madras Fisheries Investment Bulletin, 1, 53–56.Google Scholar
  70. Hubbart, B., Pitcher, G. C., Krock, B., & Cembella, A. D. (2012). Toxigenic phytoplankton and concomitant toxicity in the mussel Choromytilus meridionalis off the west coast of South Africa. Harmful Algae, 20, 30–41.CrossRefGoogle Scholar
  71. Ishimatsu, A., Maruta, H., Tsuchiyama, T., & Ozaki, M. (1990). Respiratory, ionoregulatory and cardiovascular responses of the yellow tail Seriola quinqeradiata on exposure to the red tide plankton Chattonella. Nippon Suisan Gakkaishi, 56, 189–199.CrossRefGoogle Scholar
  72. Jacob, P. K., & Menon, M. D. (1948). Incidence of fish mortality on the west coast. Journal of the Bombay Natural History Society, 47, 455.Google Scholar
  73. Jafari, N. G., & Gunale, V. R. (2005). Hydrobiological study of algae of an urban freshwater river. Journal of Applied Science and Environment Management, 10, 153–158.Google Scholar
  74. John, D. M., Whitton, B. A., & Brook, A. J. (2002). The freshwater algal Flora of the British Isles. An Identification guide to freshwater and terrestrial algae (p. 702). Cambridge: Cambridge University Press/Natural History Museum.Google Scholar
  75. Jugnu, R., & Kripa, V. (2009). Effect of Chattonella marina [(Subrahmanyan) Hara etChihara 1982] bloom on the coastal fishery resources along Kerala coast, India. Indian Journal of Geo-marine Sciences, 38(1), 77–78.Google Scholar
  76. Jyothibabu, R., Madhu, N. V., Murukesh, N., Haridas, P. C., Nair, K. K. C., & Venugopal, P. (2003). Intense blooms of Trichodesmium erythraeum (Cyanophyta) in the open waters along east coast of India. Indian Journal of Marine Sciences, 32(2), 165–167.Google Scholar
  77. Karthik, R., & Padmavati, G. (2017). Temperature and salinity are the probable causative agent for the Trichodesmium erythraeum (Cyanophyceae) algal bloom on the Burmanallah coastal waters of South Andaman Island. World Applied Sciences Journal, 35(8), 1271–1281.Google Scholar
  78. Karthik, R., Arun Kumar, M., Sai Elangovan, S., Sivasankar, R., & Padmavati, G. (2012). Phytoplankton abundance and diversity in the coastal waters of Port Blair, South Andaman Island in relation to environmental variables. Journal of Marine Biological Oceanography, 1, 1–6.Google Scholar
  79. Karthik, R., Arun Kumar, M., & Padmavati, G. (2014). Silicate as the probable causative agent for the periodic blooms in the coastal waters of south Andaman Sea. Applied Environmental Research, 36, 37–45.Google Scholar
  80. Karunasagar, I., & Karunasagar, I. (1992). Gymnodinium nagasakiense red tide off Someshwar, West coast of India and mussel toxicity. Journal of Shellfish Research, 11, 477.Google Scholar
  81. Keller, M. D. (1989). Dimethyl sulfide production and marine phytoplankton: The importance of species composition and cell size. Biological Oceanography, 6(5–6), 375–382.Google Scholar
  82. Kim, J. H., Kim, J. H., Wang, P., Park, B. S., & Han, M. S. (2016). An improved quantitative real-time PCR assay for the enumeration of Heterosigmaakashiwo (Raphidophyceae) cysts using a DNA debris removal method and a cyst-based standard curve. PloS one, 11(1), e0145712.CrossRefGoogle Scholar
  83. Kloster, S., Six, K. D., Feichter, J., Maier-Reimer, E., Roeckner, E., Wetzel, P., et al. (2007). Response of dimethylsulfide (DMS) in the ocean and atmosphere to global warming. Journal of Geophysical Research, 112, G03005.CrossRefGoogle Scholar
  84. Kofoid, C. A., & Sweazy, M. (1921). The free living unarmoured Dionoflagellata. Memoirs of the University of California, 5, 1–562.Google Scholar
  85. Kononen, K., & Leppänen, J. M. (1997). Patchiness, scales and controlling mechanisms of cyanobacterial blooms in the Baltic Sea: application of a multi-scale research strategy. In M. Kahru & C. W. Brown (Eds.), Monitoring algal blooms: New techniques for detecting large-scale environmental change (pp. 63–84). Austin: Landes Bioscience.Google Scholar
  86. Koya, K. P. S., & Kaladharan, P. (1997). Trichodesmium bloom and mortality of Canthigaster margaritatus in the Lakshadweep Sea. Marine Fisheries Information Service Technical and Extension Series, 147, 14.Google Scholar
  87. Krishnan, A. A., Krishnakumar, P. K., & Rajagopalan, M. (2007). Trichodesmium erythraeum (EHR) bloom along the Southwest coast of India (Arabian Sea) and its impact on trace metal concentrations in seawater. Estuarine, Coastal and Shelf Science, 71, 641–646.CrossRefGoogle Scholar
  88. Kubanek, J., Hicks, M. K., Naar, J., & Villareal, T. A. (2005). Does the red tide dinoflagellate Karenia brevis use allelopathy to outcompete other phytoplankton? Limnology and Oceanography, 50, 883–895.CrossRefGoogle Scholar
  89. Lana, A., Bell, T. G., Simó, R., Vallina, S. M., Ballabrera-Poy, J., Kettle, A. J., et al. (2011). An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean. Global Biogeochemical Cycles, 25, 1–17.CrossRefGoogle Scholar
  90. Leegaard, C. (1915). UntersuchungenübereinigePlanktonciliaten des Meeres. Nytt Mag Naturvid, 53, 1–37.Google Scholar
  91. Legrand, C., Rengefors, K., Fistarol, G. O., & Granéli, E. (2003). Allelopathy in phytoplankton – Biochemical, ecological and evolutionary aspects. Phycologia, 42(4), 406–419.CrossRefGoogle Scholar
  92. Lewis, W. M. J. (1986). Evolutionary interpretations of allelochemical interactions in phytoplankton algae. American Naturalist, 127, 184–194.CrossRefGoogle Scholar
  93. Long, R. A., & Azam, F. (2001). Antagonistic interactions among marine pelagic bacteria. Applied and Environmental Microbiology, 67, 4975–4983.CrossRefGoogle Scholar
  94. Lu, D., & Goebel, J. (2001). Five red tide species in genus Prorocentrum including the description of Prorocentrum donghaiense Lu sp. nov. from the East China Sea. Chinese Journal of Oceanology and Limnology, 19, 337–344.CrossRefGoogle Scholar
  95. Lu, S., & Hodgkiss, I. J. (2004). Harmful algal bloom causative collected from Hong Kong waters. Hydrobiologia, 512, 231–238.CrossRefGoogle Scholar
  96. Luqman, M., Javed, M. M., Yousafzai, A., Saeed, M., Ahmad, J., & Chaghtai, F. (2015). Blooms of pollution indicator micro-alga (Synedra acus) in northern Arabian Sea along Karachi, Pakistan. Indian Journal of Geo-marine Sciences, 44(9), 1377–1381.Google Scholar
  97. Mackenzie, F. T., De Carlo, E. H., & Lerman, A. (2011). Coupled C, N, P, and O biogeochemical cycling at the Land–Ocean interface. In E. Wolanski & D. S. McLusky (Eds.), Treatise on estuarine and coastal science (Vol. 5, pp. 317–342). Waltham: Academic.CrossRefGoogle Scholar
  98. Madhu, N. V., Jyothibabu, R., Maheswaran, P. A., Gerson, V. J., Gopalakrishnan, T. C., & Nair, K. K. C. (2006). Lack of seasonality in phytoplankton standing stock (chlorophyll-a) and production in western Bay of Bengal. Continental Shelf Research, 26, 1868–1883.CrossRefGoogle Scholar
  99. Madhu, N. V., Reny, P. D., Paul, M., Ullas, N., & Resmi, P. (2011). Occurrence of red tide caused by Karenia mikimotoi (toxic dinoflagellate) in the Southwest coast of India. Indian Journal of Geo-marine Sciences, 40(6), 821–825.Google Scholar
  100. Margolis, L. (1993). A multi-species plankton bloom in Departure Bay. Aquaculture Update, 62, 1–3.Google Scholar
  101. Mashiatullah, A., Qureshi, R. M., Ahmad, N., Khalid, F., & Javed, T. (2009). Physico-chemical and biological water quality of Karachi coastal water. The Nucleus, 46(9), 53–59.Google Scholar
  102. Matrai, P. A., & Keller, M. D. (1994). Total organic sulfur and dimethylsulfoniopropionate in marine phytoplankton: Intracellular variations. Marine Biology, 119(1), 61–68.CrossRefGoogle Scholar
  103. Matsusato, T., & Kobayashi, H. (1974). Studies on the death of fish caused by red tide. Bulletin of the Nansei Regional Fisheries Research Laboratory, 7, 43–67.Google Scholar
  104. Meng, P. J., Lee, H. J., Tew, K. S., & Chen, C. C. (2015). Effect of a rainfall pulse on phytoplankton bloom succession in a hyper-eutrophic subtropical lagoon. Marine and Freshwater Research, 66, 60–69.CrossRefGoogle Scholar
  105. Meng, P. J., Tew, K. S., Hsieh, H. Y., & Chen, C. C. (2016). Relationship between magnitude of phytoplankton blooms and rainfall in a hyper-eutrophic lagoon: A continuous monitoring approach. Marine Pollution Bulletin.
  106. Meng, P., Tew, K. S., Hsieh, H., & Chen, C. (2017). Relationship between magnitude of phytoplankton blooms and rainfall in a hyper-eutrophic lagoon: A continuous monitoring approach. Marine Pollution Bulletin, 124, 897–902.CrossRefGoogle Scholar
  107. Milly, P. C. D., Wetherald, R. T., Dunne, K. A., & Delworth, T. L. (2002). Increasing risk of great floods in a changing climate. Nature, 415, 514–517.CrossRefGoogle Scholar
  108. Mishra, S., & Panigraphy, R. C. (1995). Occurrence of diatom blooms in Bahuda estuary, East Coast of India. Indian Journal of Marine Science, 24, 99–101.Google Scholar
  109. Mishra, S., Sahu, G., Mohanty, A. K., Singh, S. K., & Panigrahy, R. C. (2006). Impact of the diatom Asterionella glacialis (Castracane) bloom on the water quality and phytoplankton community structure in coastal waters of Gopalpur Sea, Bay of Bengal. Asian Journal of Water, Environment and Pollution, 3(2), 71–77.Google Scholar
  110. Mohanty, A. K., Satpathy, K. K., Sahu, G., Hussain, K. J., Prasad, M. K. V., & Sarkar, S. K. (2010). Bloom of Trichodesmium erythraeum (Ehr.) and its impact on water quality and plankton community structure in the coastal waters of southeast coast of India. Indian Journal of Marine Science, 39(3), 323–333.Google Scholar
  111. Munshi, A. B., Hina, A. S., & Usmani, T. H. (2005). Determination of levels of PCBs in small fishes from three different coastal areas of Karachi, Pakistan. Pakistan Journal of Science Industrial Research, 48, 247–251.Google Scholar
  112. Murrell, M. C., & Lores, E. M. (2004). Phytoplankton and zooplankton seasonal dynamics in a subtropical estuary: Importance of cyanobacteria. Journal of Plankton Research, 26, 71–382.Google Scholar
  113. Mutshinda, C. M., Finkel, Z. V., & Irwin, A. J. (2013). Which environmental factors control phytoplankton populations? A Bayesian variable selection approach. Ecological Modelling, 269, 1–8.CrossRefGoogle Scholar
  114. Nagabhushanam, A. K. (1967). On an unusually dense phytoplankton bloom around Minicoy Island (Arabian Sea) and its effect on tuna fisheries. Current Science, 36, 611.Google Scholar
  115. Nair, V. R. (2013). Status of flora and fauna of Gulf of Kachchh (Vol. 87, p. 157). Goa: National Institute of Oceanography.Google Scholar
  116. Nair, V. R., Devasssy, V. P., & Qasim, S. Z. (1981). Zooplankton and Trichodesmium phenomenon. Indian Journal of Marine Science, 9, 1–6.Google Scholar
  117. Naqvi, S. W. A., George, M. D., Narvekar, P. V., Jayakumar, D. A., Shailaja, M. S., Sardesai, S., et al. (1998). Severe fish mortality associated with ‘red tide’ observed in the sea off Cochin. Current Science, 75, 543–544.Google Scholar
  118. Narayana, S., Chitra, J., Tapase, S. R., Thamke, V., Karthick, P., Ramesh, C., et al. (2014). Toxicity studies of Trichodesmium erythraeum (Ehrenberg, 1830) bloom extracts, from Phoenix Bay, Port Blair, Andamans. Harmful Algae, 40, 34–39.CrossRefGoogle Scholar
  119. Naz, T., Burhan, Z., Munir, S., & Siddiqui, P. J. A. (2012). Taxonomy and seasonal distribution of Pseudonitzschia species (Bacillariophyceae) from the coastal water of Pakistan. Pakistan Journal of Botany, 44(4), 1467–1473.Google Scholar
  120. Nergis, Y., Sharif, M., Farooq, M. A., Hussain, A., & Butt, J. A. (2012). Impact of industrial and sewage effluents on Karachi coastal water and sediment quality. Middle East Journal of Scientific Research, 11, 1443–1454.Google Scholar
  121. Nishikawa, T., Hori, Y., Nagai, S., Miyahara, K., Nakamura, Y., Harada, K., et al. (2011). Long time-series observations in population dynamics of the harmful diatom Eucampia zodiacus and environmental factors in Harima-Nada, eastern Seto Inland Sea, Japan during 1974–2008. Plankton and Benthos Research, 6(1), 26–34.CrossRefGoogle Scholar
  122. Nishikawa, T., Hori, Y., Nagai, S., Miyahara, K., Nakamura, Y., Harada, K., et al. (2014). Long-term (36-year) observations on the dynamics of the fish-killing raphidophyte Chattonella in Harima-Nada, eastern Seto Inland Sea, Japan. Journal of Oceanography, 70(2), 153–164.CrossRefGoogle Scholar
  123. Onoue, Y., & Nozawa, K. (1989). Separation of toxin from harmful red tides occurring along the coast of Kogoshima prefecture. In T. Okaichi, D. M. Anderson, & T. Nemoto (Eds.), Red tides: Biology, environmental science, and technology (pp. 371–374). New York: Elsevier Science.Google Scholar
  124. Padmakumar, K. B., Menon, N. R., & Sanjeevan, V. N. (2012). Is occurrence of harmful algal blooms in the exclusive economic zone of India on the rise? International Journal of Oceanography, 2012, 1–7.CrossRefGoogle Scholar
  125. Palmer, T. N., & Ralsanen, J. (2002). Quantifying the risk of extreme seasonal precipitation events in a changing climate. Nature, 415, 512–514.CrossRefGoogle Scholar
  126. Pant, A., & Devassy, V. P. (1976). Release of extracellular matter during photosynthesis by a Trichodesmium bloom. Current Science, 45, 487–489.Google Scholar
  127. Piepenburg, D., Voss, J., & Gutt, J. (1997). Assemblages of sea stars (Echinodermata: Asteroidea) and brittle stars (Echinodermata: Ophiuroidea) in the Weddell Sea Antarctica and off Northeast Greenland(artic): A comparison of diversity and abundance. Polar Biology, 17, 305–322.CrossRefGoogle Scholar
  128. Power, S., Delage, F., Chung, C., Kociuba, G., & Keay, K. (2013). Robust twenty-first-century projections of El Nino and related precipitation variability. Nature, 502, 541–545.CrossRefGoogle Scholar
  129. Prabhu, M. S., Ramamurthy, S., Kuthalingam, M. D. K., & Dhulkheid, M. H. (1965). On an unusual swarming of the planktonic blue green algae Trichodesmium Spp. off Mangalore. Current Science, 34, 95.Google Scholar
  130. Prabhu, M. S., Ramamurthy, S., Dhulkhed, M. H., & Radhakrishnan, N. S. (1971). Trichodesmium bloom and failure of oil sardine fishery. Mahasagar, 4, 62.Google Scholar
  131. Prasath, B., Nandakumar, R., Jayalakshmi, T., & Santhanam, P. (2014). First report on the intense cyanobacteria Microcystis aeruginosa Kützing, 1846 bloom at Muttukadu Backwater, southeast coast of India. Indian Journal of Geo-marine Sciences, 43(2), 258–262.Google Scholar
  132. Price, A. R. G., Keeling, M. J., & O’Calllaghan, C. J. (1999). Ocean-scale patterns of biodiversity of Atlantic asteroids determined from taxonomic distinctness and other measures. Biological Journal of the Linnean Society, 66, 187–203.Google Scholar
  133. Qadri, M., Nergis, Y., Mughal, N. A., Sharif, M., & Farooq, M. A. (2011). Impact of marine pollution at Karachi coast in perspective of Lyari river. American-Eurasian Journal of Agricultural & Environmental Sciences, 10, 737–743.Google Scholar
  134. Qasim, S. Z. (1970). Some characteristic of a Trichodesmium bloom in the Laccadives. Deep Sea Research, 17, 655–660.Google Scholar
  135. Quinn, P. K., & Bates, T. S. (2011). The case against climate regulation via oceanic phytoplankton sulphur emissions. Nature, 480(7375), 51–56.CrossRefGoogle Scholar
  136. Qureshi, S. M., Mashiatullah, A., Rizvi, S. H. N., Khan, S. H., Javed, T., & Tasneem, M. A. (2001). Marine pollution studies in Pakistan by nuclear technology. The Nucleus, 38, 41–51.Google Scholar
  137. Rabbani, M. M., Rehman, A. U., & Harms, C. E. (1990). Mass mortality of fishes caused by dinoflagellate bloom in Gwadar Bay, southwestern Pakistan. In: E. Graneli, B. Sundstroem, L. Edler & D. M. Anderson (Eds.), Toxic marine phytoplankton (pp. 209–214). Karachi: National Institute of Oceanography.Google Scholar
  138. Raghuprasad, R., & Jayaraman, R. (1954). Preliminary studies on certain changes in the plankton and hydrological conditions associated with the swarming of Noctiluca. Proceedings of the Indian Academy of Sciences, 40, 49–57.Google Scholar
  139. Rajagopalan, M. (2007). Trichodesmium (Ehr.) bloom along the southwest coast of India (Arabian Sea) and its impact on trace metal concentrations in seawater. Estuarine, Coastal and Shelf Science, 71, 641–646.CrossRefGoogle Scholar
  140. Ramamurthy, V. D., Selva Kumar, R. A., & Bhargava, R. M. S. (1972). Studies on the blooms of Trichodesmium erythraeum (EHR) in the waters of the Central west coast of India. Current Science, 41, 803–805.Google Scholar
  141. Raymont, J. E. G. (1980). Plankton and productivity in the oceans. Part. I. Phytoplankton (p. 489). Oxford: Pergamon Press.Google Scholar
  142. Reed, R. H., & Stewart, W. D. P. (1988). The responses of cyanobacteria to salt stress. In L. J. Rogers & J. R. Gallon (Eds.), Biochemistry of the algae and cyanobacteria (Vol. 12, pp. 217–231). Oxford: Clarendon Press.Google Scholar
  143. Reginald, M. (2007). Studies on the importance of micro algae in solar salt production. Seaweed Research Utilization, 29, 151–184.Google Scholar
  144. Reynolds, C. S. (2006). The ecology of phytoplankton (p. 402). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  145. Reynolds, C. S., Jaworski, G. H. M., Cmiech, H. A., & Leedale, G. F. (1981). On the annual cycle of the blue – Green algae Microcystis aeruginosa Kutz. Emend. Elenkin. Philosophical Transactions of The Royal Society B Biological Sciences, 293, 419–477.CrossRefGoogle Scholar
  146. Rogers, K., Clarke, K. R., & Reynolds, J. D. (1999). The taxonomic distinctness of coastal bottom-dwelling fish communities of the North-East Atlantic. The Journal of Animal Ecology, 68, 769–782.CrossRefGoogle Scholar
  147. Sachithanandam, V., Mohan, P. M., Karthik, R., Elangovan, S. S., & Padmavathi, G. (2013). Climate change influence the phytoplankton bloom (prymnesiophyceae: Phaeocystis spp.) in North Andaman coastal region. Indian Journal of Geo-marine Sciences, 42, 58–66.Google Scholar
  148. Sahayak, S., Jyothibabu, R., Jayalakshmi, K. J., Habeebrehman, H., Sabu, P., Prabhakaran, M. P., Jasmine, P., Shaiju, P., George, R. M., Thresiamma, J., & Nair, K. K. C. (2005). Red tide of Noctiluca miliaris off south of Thiruvananthapuram subsequent to the ‘stench event’ at the southern Kerala coast. Current Science, 89, 1472–1473.Google Scholar
  149. Sahu, B. K., Begum, M., Khadanga, M., Jha, D. K., Vinithkumar, N., & Kirubagaran, R. (2013). Evaluation of significant sources influencing the variation of physico-chemical parameters in Port Blair Bay, South Andaman, India by using multivariate statistics. Marine Pollution Bulletin, 66, 246–251.CrossRefGoogle Scholar
  150. Sahu, B. K., Begum, M., Kumarasamy, P., Vinithkumar, N. V., & Kirubagaran, R. (2014a). Dominance of Trichodesmium and associated biological and physico-chemical parameters in coastal water of Port Blair, South Andaman Island. Indian Journal of Geo-Marine Sciences, 43, 1739–1745.Google Scholar
  151. Sahu, B. K., Begum, M., Kumarasamy, P., Vinithkumar, N., & Kirubagaran, R. (2014b). Dominance of Trichodesmium and associated biological and physico-chemical parameters in coastal waters of Port Blair, South Andaman Island. Indian Journal of Geo-marine Sciences, 43, 1–7.Google Scholar
  152. Sahu, G., Mohanty, A. K., Acharya, M. S., Sarkar, S. K., & Satpathy, K. K. (2015). Changes in mesozooplankton community structure during Trichodesmium erythraeum bloom in the coastal waters of southwestern Bay of Bengal. Indian Journal of Geo-marine Sciences, 44(9), 1282–1293.Google Scholar
  153. Saifullah, S. M., Khan, S. H., & Iftikhar, S. (2000). Distribution of a trace metal Iron in mangrove habitat of Karachi. Symposium on Arabian Sea as a Resource of Biological diversity, Pakistan.Google Scholar
  154. Saifullah, S. M., Ismail, S., & Khan, S. H. (2002a). Copper contamination in Indus delta mangrove of Karachi. In Prospectus for saline agriculture (p. 447). Cham: Springer.Google Scholar
  155. Saifullah, S. M., Khan, S. H., & Ismail, S. (2002b). Distribution of nickel in a polluted mangrove habitat of the Indus Delta. Marine Pollution Bulletin, 44, 570–576.CrossRefGoogle Scholar
  156. Santhanam, R. (1976). PhD thesis. Annamalai university, Chidambaram, India, p. 101.Google Scholar
  157. Santhanam, R., Srinivasan, A., Ramadhas, V. M., & Devraj, P. (1994a). Impact of Trichodesmium bloom on the plankton and productivity in the tuticorin bay, southeast coast of India. Indian Journal of Marine Science, 23, 27–30.Google Scholar
  158. Santhanam, R., Srinivasan, A., Ramadhas, V., & Devaraj, M. (1994b). Impact of Trichodesmium bloom on the plankton and productivity in the Tuticorin Bay, southeast coast of India, Indian. Journal of Marine Science, 23, 27–30.Google Scholar
  159. Santhanam, P., Balaji Prasath, B., Nandakumar, R., Jothiraj, K., Dinesh Kumar, S., Ananth, S., Prem Kumar, C., Shenbaga Devi, A., & Jayalakshmi, T. (2013). Bloom in the Muthupettai mangrove lagoon, Southeast coast of India. Seaweed Research Utilization, 35, 178–186.Google Scholar
  160. Sarangi, R. K., Prakash, C., & Nayak, S. R. (2004). Detection and monitoring of Trichodesmium bloom in the coastal waters of Sourashtra coast, India using IRS P4 OCM data. Current Science, 86, 1636–1841.Google Scholar
  161. Sarangi, R. K., Chauhan, P., & Nayak, S. R. (2005). Inter-annual variability of phytoplankton blooms in the northern Arabian Sea during winter monsoon period (February–March) using IRS-P4 OCM data. Indian Journal of Marine Sciences, 34(2), 163–173.Google Scholar
  162. Sargunam, C. A., Rao, V. N. R., & Nair, K. V. K. (1989). Occurrence of Noctiluca bloom in Kalpakkam coastal waters, east coast of India. Indian Journal of Marine Science, 18, 289–290.Google Scholar
  163. Sarkar, S. K., Saha, M., Takada, H., Bhattacharya, A., Mishra, P., & Bhattacharya, B. (2007). Water quality management in the lower stretch of the river Ganges, east coast of India: An approach through environmental education. Journal of Cleaner Production, 15(16), 1559–1567.CrossRefGoogle Scholar
  164. Sasmal, S. K., Panigrahy, R. C., & Mishra, S. (2005). Asterionella blooms in the northwestern Bay of Bengal during, 2004. International Journal of Remote Sensing, 26(10), 3853.CrossRefGoogle Scholar
  165. Satpathy, K. K., & Nair, K. V. K. (1996). Occurrence of phytoplankton bloom and its effect on coastal water quality. Indian Journal of Marine Science, 25, 145–147.Google Scholar
  166. Satpathy, K. K., Mohanty, A. K., Sahu, G., Prasad, M. V. R., Venkatesan, R., Natesan, U., & Rajan, M. (2007). On the occurrence of Trichodesmium erythraeum (Ehr.) bloom in the coastal waters of Kalpakkam, east coast of India. Indian Journal of Science and Technology, 1(2), 1–9.Google Scholar
  167. Saunders, R. D., & Glenn, D. A. (1969). Diatoms. Memoirs of the Hourglass Cruises, 1(3), 1–119.Google Scholar
  168. Savage, R. E., & Wimpenny, R. S. (1936). Phytoplankton and the Herring, Part II 1933–1934. Ministry of Agriculture and Fisheries Investments, Series II 1936, 15(1), 1–88.Google Scholar
  169. Selvakumar, K., & Sundararaman, M. (2007). Diversity of cyanobacterial flora in the backwaters of Palk bay region. Seaweed Research Utilization, 29, 139–144.Google Scholar
  170. Shetty, H. P. C., & Saha, S. B. (1971). On the significance of the occurrence of blooms of the diatom Hemidiscus hardmannianus (Greville) Mann in relation to Hilsa fishery in Bengal. Current Science, 40(15), 410–411.Google Scholar
  171. Shetty, H. P. C., Gupta. T. R. C., & Kattai, R. J. (1988). Green water phenomena in the Arabian Sea off Mangalore. In Proceedings of the first India fisheries forum, pp. 339–346.Google Scholar
  172. Shumway, E. S. (1990). A review of the effects of algal blooms on shellfish and aquaculture. Journal of the World Aquaculture Society, 21, 65–105.CrossRefGoogle Scholar
  173. Sivonen, K. (1996). Cyanobacterial toxins and toxin production. Phycologia, 35, 12–24.CrossRefGoogle Scholar
  174. Six, K. D., Kloster, S., Ilyina, T., Archer, S. D., Zhang, K., & Maier-Reimer, E. (2013). Global warming amplified by reduced sulphur fluxes as a result of ocean acidification. Nature Climate Change, 3, 975–978.CrossRefGoogle Scholar
  175. Smayda, T. J. (1997). Bloom dynamics: Physiology, behavior, trophic effects. Limnology and Oceanography, 42(5 part 2), 1132–1136.CrossRefGoogle Scholar
  176. Smayda, T. J. (2007). Reflections on the ballast water dispersal- harmful algal bloom paradigm. Harmful Algae, 6, 601–622.CrossRefGoogle Scholar
  177. Staehr, P. A., Testa, J. M., Kemp, W. M., Cole, J. J., Sand-Jensen, K., & Smith, S. V. (2012). The metabolism of aquatic ecosystems: History, applications, and future challenges. Aquatic Sciences, 74, 15–29.CrossRefGoogle Scholar
  178. Stefels, J., Steinke, M., Turner, S., Malin, G., & Belviso, S. (2007). Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling. Biogeochemistry, 83(1–3), 245–275.CrossRefGoogle Scholar
  179. Strickland, J. R. D., & Parsons, T. R. (1972). A practical handbook of seawater analysis (Bulletin 167, pp. 310). Ottawa: Fisheries Research Board of Canada.Google Scholar
  180. Subba Rao, S. D. V. (1969). Asterionella japonica bloom and discolouration off Waltair, Bay of Bengal. Limnology and Oceanography, 14, 632–634.CrossRefGoogle Scholar
  181. Subba Rao, D. V., Pan, Y., & Smith, S. J. (1995). Allelopathy between Rhizosolenia alata (Brightwell) and the toxigenic PseudoNitzschia pungens f. multiseries (Hasle). In P. Lassus, G. Arzul, E. Erard, P. Gentien, & C. Marcaillou (Eds.), Harmful marine algal blooms (pp. 681–686). Paris: Lavoisier Intercept.Google Scholar
  182. Subrahmanyan, R. (1954). On the life history and ecology of Hornellia marina Gen. Ersp. Nov, (Chloromonodinaeae), causing green discolouration of the sea and mortality among marine organisms off the Malabar coast. Proceedings of the Indiana Academy of Sciences, 39, 182–203.Google Scholar
  183. Subrahmanyan, R. (1968). The Dinophyceae of the Indian seas. Part 1. Genus Ceratium (p. 129). Cochin: The City Press.Google Scholar
  184. Subrahmanyan, R. (1971). The Dinophyceae of the Indian seas. Part 2. Genus Peridinium (p. 334). Cochin: The City Press.Google Scholar
  185. Subrahmnayan, R. (1959). Studies on the phytoplankton of the west coast of India. Part I. Quantitative and qualitative fluctuation of total phytoplankton crop, the zooplankton crop and their interrelationship with remarks on the magnitude of the standing crop and production of matter and their relationship to fish landings. Proceedings of the Indiana Academy of Sciences, 50, 113–187.Google Scholar
  186. Subramanian, A., & Purushothaman, A. (1985). Mass mortality of fish and invertebrates associated with a bloom of Hemidiscus hardmannianus (Bacillariophyceae) in Parangipettai (Southern India). Limnology and Oceanography, 30(4), 910–911.CrossRefGoogle Scholar
  187. Suikkanen, S., Fistarol, G. O., & Granéli, E. (2005). Effects of cyanobacterial allelochemicals on a natural plankton community. Marine Ecology Progress Series, 287, 1–9.CrossRefGoogle Scholar
  188. Sweeney, B. M. (1976). Pedinomonas noctilucae (Prasinophyceae) the flagellate symbiotic in Noctiluca (Dinophyceae) in Southeast Asia. Journal of Phycology, 12, 460–464.Google Scholar
  189. Takahashi, M., Seibert, D. L., & Thomas, W. H. (1977). Occasional blooms of phytoplankton during summer in Saanich Inlet, BC, Canada. Deep Sea Research, 24(8), 775–780.CrossRefGoogle Scholar
  190. Takayama, H., & Adachi, R. (1984). Gymnodinium nagasakiense sp nov., a red-tide forming dinophyte in the adjacent waters of the Sea of Japan. Bulletin of the Plankton Society of Japan, 31, 7–14.Google Scholar
  191. Tan, J., Jakob, C., Rossow, W. B., & Tselioudis, G. (2015). Increases in tropical rainfall driven by changes in frequency of organized deep convection. Nature, 519, 451–454.CrossRefGoogle Scholar
  192. Tanaka, K., Muto, Y., & Shimada, M. (1994). Generation of superoxide anion radicals by the marine phytoplankton organism Chattonella antique. Journal of Plankton Research, 16, 161–169.CrossRefGoogle Scholar
  193. Tang, D. L., Di, B. P., Wei, G., Ni, I., Oh, I. S., & Wang, S. (2006). Spatial, seasonal and species variations of harmful algal blooms in the South Yellow Sea and East China Sea. Hydrobiologia, 568, 245–253.CrossRefGoogle Scholar
  194. Tangen, K. (1977). Blooms of Gyrodinium aureolum (Dinophyceae) in North European waters accompanied by mortality of marine organisms. Sarsia, 63, 123–133.CrossRefGoogle Scholar
  195. Thajuddin, N., Nagasathya, A., Chelladevi, R., & Saravanan, I. (2002). Biodiversity of cyanobacteria in different salt pans of Pudukkottai District, Tamilnadu. Seaweed Research and Utilization, 24, 1–11.Google Scholar
  196. Tillmann, U., & John, U. (2002). Toxic effects of Alexandrium spp. on heterotrophic dinoflagellates: An allelochemical defence mechanism independent of PSP-toxin content. Marine Ecology Progress Series, 230, 47–58.CrossRefGoogle Scholar
  197. Tomas, C. R. (1996). Identifying marine diatoms and dinoflagellates (p. 598). New York: Academic.Google Scholar
  198. Tomas, C. R. (1997). Identifying marine phytoplankton. Academic Press, USA. UNESCO. Protocols for the joint global ocean flux study (JGOFS). Manual and guides (Vol. 29, p. 170).Google Scholar
  199. Uher, G. (2006). Distribution and air-sea exchange of reduced sulphur gases in European coastal waters. Estuarine Coastal and Shelf Science, 70, 338–360.CrossRefGoogle Scholar
  200. Ulrich, R. M., Casper, E. T., Campbell, L., Richardson, B., Heil, C. A., & Paul, J. H. (2010). Detection and quantification of Karenia mikimotoi using real-time nucleic acid sequence-based amplification with internal control RNA (IC-NASBA). Harmful Algae, 9, 116–122.CrossRefGoogle Scholar
  201. Vallina, S. M., Simó, R., & Manizza, M. (2007). Weak response of oceanic dimethylsulfide to upper mixing shoaling induced by global warming. Proceedings of the National Academy of Sciences of the United States of America, 104, 16004–16009.CrossRefGoogle Scholar
  202. Velankar, A. D., & Chaugule, B. B. (2007). Algae of the salt pans of Nalasopara, Mumbai. Seaweed Research Utilization, 29, 273–278.Google Scholar
  203. Verity, P. G., & Villareal, T. A. (1986). The relative food value of diatoms, dinoflagellates, flagellates and cyanobacteria for tintinnid ciliates. Archiv für Protistenkunde, 31, 71–84.CrossRefGoogle Scholar
  204. Wang, S., Tang, D. L., He, F. L., & Aza, Y. F. (2008). Occurrences of harmful algal blooms (HABs) associated with ocean environments in the South China Sea. Hydrobiologia, 596, 79–93.CrossRefGoogle Scholar
  205. Westberry, T. K., & Siegel, D. A. (2006). Spatial and temporal distribution of Trichodesmium in the world’s oceans. Global Biogeochemical Cycles, 20, GB4016.CrossRefGoogle Scholar
  206. White, W. A. (1981). Marine zooplankton can accumulate and retain dinoflagellate toxins and cause fish kills. Limnology and Oceanography, 28, 103–109.CrossRefGoogle Scholar
  207. Wolfe, J. M., & Rice, E. L. (1979). Allelopathic interactions among algae. Journal of Chemical Ecology, 5(4), 533–542.CrossRefGoogle Scholar
  208. Yamamoto, T. (2003). The Seto Inland Sea – Eutrophic or oligotrophic? Marine Pollution Bulletin, 47(1), 37–42.CrossRefGoogle Scholar
  209. Yoshinaga, I., Hitomi, T., Miura, A., Shiratani, E., & Miyazaki, T. (2006). Cyanobacterium Microcystis bloom in a eutrophicated regulating reservoir. Japan Agricultural Research Quarterly, 40(3), 283–289.CrossRefGoogle Scholar
  210. Zhang, F., Ma, L., Xu, Z., Zheng, J., Shi, Y., Lu, Y., & Miao, Y. (2009). Sensitive and rapid detection of Karenia mikimotoi (Dinophyceae) by loop-mediated isothermal amplification. Harmful Algae, 8, 839–842.CrossRefGoogle Scholar
  211. Zhou, Z. X., Yu, R., & Zhou, M. J. (2017). Seasonal succession of microalgal blooms from diatoms to dinoflagellates in the East China Sea: A numerical simulation study. Ecological Modelling, 360(2017), 150–162.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Santosh Kumar Sarkar
    • 1
  1. 1.Department of Marine ScienceUniversity of CalcuttaCalcuttaIndia

Personalised recommendations