Advertisement

Algal Blooms: Basic Concepts

  • Santosh Kumar Sarkar
Chapter

Abstract

An algal bloom is a rapid and prolific increase in phytoplankton biomass in freshwater, brackish water or marine water systems and is recognized by the discolouration in the water based on the phytopigments in the algal cells (either innocuous or toxic). Algae can be considered to be blooming at widely varied concentrations, reaching millions of cells per millilitre, or tens of thousands of cells per litre. Occurrence of bloom and its persistence are a complex environmental process involving multiple factors such as anthropogenic nutrient (eutrophication), solar radiation, temperature, current patterns and other associated factors. This natural but stochastic event leads to severe ecological health hazards, degradation of water quality and productivity and pelagic community structure. Proliferations of toxic microalgae in aquatic systems can cause massive fish kills, contaminate seafood with toxins and alter ecosystems in ways that humans perceive as harmful. The chapter addresses a comprehensive account regarding basic features related to algal bloom, such as Redfield ratios, eutrophication and hypoxia (deoxygenation). This is followed by detailed account of the major bloom causative agents (diatoms, dinoflagellates and cyanobacteria) and the remote sensors usually in practice for water quality monitoring. Finally a comprehensive account of the analytical instruments has been discussed generally used for microalgal studies for taxonomic and chemical component analyses.

Keywords

Algal bloom Eutrophication Hypoxia Remote sensors Water quality Diatom Dinoflagellate Cyanobacteria 

References

  1. Anantharaman, P., Thirumaran, G., Arumugam, R., Ragupathi Raja Kannan, R., Hemalatha, A., Kannathasan, A., Sampathkumar, P., & Balasubramanian, T. (2010). Monitoring of Noctilucabloom in Mandapam and Keelakarai coastal waters; South-East coast of India. Recent Research in Science and Technology, 2(10), 51–58.Google Scholar
  2. Anderson, D. M., Glibert, P. M., & Burkholder, J. M. (2002). Harmful algal blooms and eutrophication: Nutrient sources, composition and consequences. Estuaries, 25(4B), 704–726.CrossRefGoogle Scholar
  3. Anoop, A. K., Krishnakumar, P. K., & Rajagopalan, M. (2007). Trichodesmium erythraeum (Ehrenberg) bloom along the southwest coast of India (Arabian Sea) and its impact on trace metal concentrations in seawater. Estuarine, Coast and Shelf Science, 71, 641–646.CrossRefGoogle Scholar
  4. Aspila, K. I., Agemian, T. I., & Chan, A. S. (1976). Semi-automatic method for the determination of inorganic, organic and total phosphorous in sediments. Analyst, 101, 187–197.CrossRefGoogle Scholar
  5. Bastviken, D., & Tranvik, L. (2001). The leucine incorporation method estimates bacterial growth equally well in both oxic and anoxic lake waters. Applied and Environmental Microbiology, 67, 2916–2921.CrossRefGoogle Scholar
  6. Blay, P. K. S., Brombacher, S., & Volmer, D. A. (2003). Studies on azaspiracidbiotoxins. III. Instrumental validation for rapid quantification of AZA 1 in complex biological matrices. Rapid Communications in Mass Spectrometry, 17, 2153–2159.CrossRefGoogle Scholar
  7. Botana, L. M., Rodriguez-Vieytes, M., Alfonso, A., & Louzao, M. C. (1996). Phycotoxins: Paralytic shellfish poisoning and diarrheic shellfish poisoning. In L. M. L. Nollet (Ed.), Handbook of food analysis – Residues and other food component analysis (Vol. 2, pp. 1147–1169). New York: Marcel Dekker Inc.Google Scholar
  8. Carder, K. L., Chen, F. R., Lee, Z. P., Hawes, S. K., & Kamykowski, D. (1999). Semianalytic moderate-resolution imaging spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures. Journal of Geophysical Research, 104, 5403–5421.CrossRefGoogle Scholar
  9. Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., & Smith, V. H. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 8(3), 559–568.CrossRefGoogle Scholar
  10. Casabianca, S., Cornetti, L., Capellacci, S., Vernesi, C., & Penna, A. (2017). Genome complexity of harmful microalgae. Harmful Algae, 63, 7–12.CrossRefGoogle Scholar
  11. Choi, J. K., Min, J. E., Noh, J. H., Han, T. H., Yoon, S., Park, Y. J., & Park, J. H. (2014). Harmful algal bloom (HAB) in the East Sea identified by the Geostationary Ocean Color Imager (GOCI). Harmful Algae, 39, 295–302.CrossRefGoogle Scholar
  12. Cloern, J. E. (2001). Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series, 210, 223–253.CrossRefGoogle Scholar
  13. Conley, D. J. (1999). Biogeochemical nutrient cycles and nutrient management strategies. In Man and river systems (pp. 87–96). Dordrecht: Springer.CrossRefGoogle Scholar
  14. Dale, B. (1976). Cyst formation, sedimentation, and preservation: Factors affecting dinoflagellate assemblages in recent sediments from Trondheims fjord, Norway. Review of Palaeobotany and Palynology, 22, 39–60.CrossRefGoogle Scholar
  15. Dale, B. (1983). Dinoflagellate resting cysts: ‘Benthic plankton’. In G. A. Fryxell (Ed.), Survival strategies of the algae (pp. 69–137). Cambridge: Cambridge University Press.Google Scholar
  16. Dale, B. (1996). Dinoflagellate cyst ecology: Modeling and geological applications. In J. Jansonius & D. C. McGregor (Eds.), Palynology principles and applications (pp. 1249–1275). Dallas: American Association of Stratigraphic Palynologists Foundation.Google Scholar
  17. Dale, B. (2009). Eutrophication signals in the sedimentary record of dinoflagellate cysts in coastal waters. Journal of Sea Research, 61, 103–113.CrossRefGoogle Scholar
  18. De Vernal, A., Rochon, A., Turon, J. L., & Matthiessen, J. (1998). Organic-walled dinoflagellate cysts: Palynological tracers of sea-surface conditions in middle to high latitude marine environments. Geobios, 30, 905–920.CrossRefGoogle Scholar
  19. Devassy, V. P. (1974). Observation on the bloom of a diatom FragilariaoceanicaCleve. Mahasagar, 7, 101–105.Google Scholar
  20. Devassy, V. P., & Bhattathiri, P. M. A. (1974). Phytoplankton ecology of the Cochin backwaters. Indian Journal of Marine Science, 3, 46–50.Google Scholar
  21. Devassy, V. P., & Sreekumaran Nair, S. R. (1987). Discolouration of water and its effect on fisheries along the Goa coast. Mahasagar-Bulletin of the National Institute of Oceanography, 20(2), 121–128.Google Scholar
  22. Diaz, R. J., & Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science, 321(5891), 926–929.CrossRefGoogle Scholar
  23. Domingues, R. B., Barbosa, A., & Galvão, H. (2008). Constraints on the use of phytoplankton as a biological quality element within the Water Framework Directive in Portuguese waters. Marine Pollution Bulletin, 56, 1389–1395.CrossRefGoogle Scholar
  24. Dortch, Q., & Whitledge, T. E. (1992). Does nitrogen or silicon limit phytoplankton production in the Mississippi River plume and nearby regions? Continental Shelf Research, 12, 1293−1309.CrossRefGoogle Scholar
  25. Draisci, R., Palleschi, L., Ferretti, E., Furey, A., James, K. J., Satake, M., & Yasumoto, T. (2000). Development of a liquid chromatography– Tandem mass spectrometry method for the identification of azaspir acid in shellfish. Journal of Chromatography, 871, 13–21.CrossRefGoogle Scholar
  26. Earnshaw, A. (2003). Marine toxins, Pilot Study August 2003 (Report food analysis performance assessment scheme). Sand Hutton: Central Science Laboratory.Google Scholar
  27. Engström-Öst, J., Brutemark, A., Vehmaa, A., Motwani, N. H., & Katajisto, T. (2015). Consequences of a cyanobacteria bloom for copepod reproduction, mortality and sex ratio. Journal of Plankton Research, 37(2), 388–398.CrossRefGoogle Scholar
  28. EL Wakeel, S. K., & Riley, J. P. (1957). Determination of organic carbon in marine mud. Journal du Conseil International pour Exploration de la Mer, 22, 180–183.CrossRefGoogle Scholar
  29. Fenchel, T., Kristensen, L. D., & Rasmussen, L. (1990). Water column anoxia – Vertical zonation of planktonic protozoa. Marine Ecology Progress Series, 62, 1–10.CrossRefGoogle Scholar
  30. Fensome, R.A., Taylor, F.J.R., Norris, G., Sarjeant, W.A.S., Wharton, D.I., Williams, G.L., 1993. A classification of living and fossil dinoflagellates (Special Publication Number 7, pp. 351). New York: Micropaleontology Press, American Museum of Natural History.Google Scholar
  31. Folk, R. L., & Ward, W. C. (1957). Brazon river bars, a study in significance of grain-size parameters. Journal of Sedimentary Petrology, 27, 3–27.CrossRefGoogle Scholar
  32. Furey, A., Braña-Magdalena, A., Lehane, M., Moroney, C., James, K. J., Satake, M., & Yasumoto, T. (2002). Determination of azaspiracids in shellfish using liquid chromatography/tandem electrospray mass spectrometry. Rapid Communications in Mass Spectrometry, 16(3), 238–242.CrossRefGoogle Scholar
  33. Fux, E., McMillan, D., Bire, R., & Hess, P. (2007). Development of an ultra- performance liquid chromatography–mass spectrometry method for the detection of lipophilic marine toxins. Journal of Chromatography A, 1157, 273–280.CrossRefGoogle Scholar
  34. Gohin, F., Saulquin, B., Oger-Jeanneret, H., Lozac'h, L., Lampert, L., Lefebvre, A., & Bruchon, F. (2008). Towards a better assessment of the ecological status of coastal waters using satellite-derived chlorophyll-a concentrations. Remote Sensing of Environment, 112(8), 3329–3340.CrossRefGoogle Scholar
  35. Gopakumar, G., Sulochanan, B., & Venkatesan, V. (2009). Bloom of Noctilucascintillans (Maccartney) in Gulf of Mannar, southeast coast of India. Journal of Marine Biological Association of India, 55(1), 75–80.Google Scholar
  36. Hallegraeff, G. M. (1993). A review of harmful algal blooms and their apparent global increase. Phycologia, 32(2), 79–99.CrossRefGoogle Scholar
  37. Hansen, J. L. S., & Bendtsen, J. (2009). Effects of climate change on hypoxia in the North Sea – Baltic Sea transition zone. Earth and Environmental Science, 6, 1755–1307.Google Scholar
  38. Head, M. J. (1996). Modern dinoflagellate cysts and their biological affinities. In J. Jansonius & D. C. McGregor (Eds.), Palynology: Principles and applications (Vol. 3, pp. 1197–1248). Salt Lake City: A.A.S.P. Foundation.Google Scholar
  39. Hess, P., Butter, T., Petersen, A., Silke, J., & McMahon, T. (2009). Performance of the EU-harmonised mouse bioassay for lipophilic toxins for the detection of azaspiracids in naturally contaminated mussel (Mytilus edulis) hepatopancreas tissue homogenates characterized by liquid chromatography coupled to tandem mass spectrometry. Toxicon, 53(7), 713–722.CrossRefGoogle Scholar
  40. Hollingworth, T., & Wekell, M. M. (1990). Fish and other marine products 959.08. Paralytic shellfish poisoning. Biological method, final action. In K. Hellrich (Ed.), Official methods of analysis of the Association of Official Analytical Chemists (15th ed., pp. 881–882). Arlington: Association of Official Analytical Chemists.Google Scholar
  41. Hornell, J., & Nayudu, R. M. (1923). A contribution to the life history of sardines with notes on the plankton of the Malabar Coast. Madras Fisheries Bulletin, 17, 129–197.Google Scholar
  42. Howarth, R. W., Anderson, D., Cloern, J., Elfring, C., Hopkinson, C., Lapointe, B., Malone, T., Marcus, N., McGlathery, K., Sharpley, A., & Walker, D. (2000). Nutrient pollution of coastal rivers, bays, and seas. Issues. Ecology, 7, 1–15.Google Scholar
  43. ICES. (1984). Report of the ICES special meeting on the causes, dynamics and effects of exceptional marine blooms and related events (International Council Meeting Paper 1984/ E, 42, ICES.Google Scholar
  44. IOCCG. (2000). Remote sensing of ocean color in coastal, and other optically complex waters. In S. Sathyendranath (Ed.), Reports of the International Color Coordinating Group 3 (p. 144). Dartmouth: IOCCG Project Office.Google Scholar
  45. Ismael, A. A. (1993). Systematic and ecological studies of the planktonic dinoflagellates of the coastal water of Alexandria. M.Sc. Thesis, Faculty of Science in Alexandria University, p. 115.Google Scholar
  46. Ismael, A. A., & Khadr, A. (2003). Alexandrium minutum cysts in sediment cores from the Eastern Harbour of Alexandria, Egypt. Oceanologia, 45(4), 721–731.Google Scholar
  47. Ismael, A., El-Masry, E., & Khadr, A. (2014). Dinoflagellate [cyst] [S1] as signals for eutrophication in the eastern harbour of Alexandria-Egypt. Indian Journal of Geo-Marine Sciences, 43(3), 365–371.Google Scholar
  48. Iyer, C. S. P., Robin, R. S., Sreekala, M. S., & Kumar, S. S. (2008). Kareniamikimotoi bloom in Arabian Sea. Harmful Algae News, 37, 9–10.Google Scholar
  49. James, K. J., Furey, A., Lehane, M., Moroney, C., Satake, M., & Yasumoto, T. (2001). LC-MS methods for the investigation of a new shellfish toxic syndrome–Azaspiracid Poisoning (AZP). In Mycotoxins and phycotoxins in perspective at the turn of the century (pp. 401–408). Wageningen.Google Scholar
  50. James, K. J., Sierra, M. D., Lehane, M., Magdalena, A. B., & Furey, A. (2003). Detection of five new hydroxyl analogues of azaspiracids in shellfish using multiple tandem mass spectrometry. Toxicon, 41, 277–283.CrossRefGoogle Scholar
  51. Justic, D., Rabalais, N. N., & Turner, R. E. (1995). Stoichiometric nutrient balance and origin of coastal eutrophication. Marine Pollution Bulletin, 30(1), 41–46.CrossRefGoogle Scholar
  52. Kanaya, G, Nakamura, Y, & Koizumi, T. (2018). Ecological thresholds of hypoxia and sedimentary H2S in coastal soft-bottom habitats: A macro invertebrate-based assessment. Marine Environmental Research (article in press).CrossRefGoogle Scholar
  53. Karunasagar, I. (1993). Gymnodinium kills farm fish in India. Harmful Algae News, 5(3).Google Scholar
  54. Karunasagar, I., Gowda, H. S. V., Subburaj, M., Venugopal, M. N., & Karunasagar, I. (1984). Outbreak of paralytic shellfish poisoning in Mangalore, west coast of India. Current Science, 53, 247–249.Google Scholar
  55. Katti, R. J., Gupta, T. R. C., & Shetty, H. P. C. (1988). On the occurrence of “green tide” in the Arabian Sea off Mangalore. Current Science, 57, 38–381.Google Scholar
  56. Klemas, V. (2012). Remote sensing of algal blooms: An overview with case studies. Journal of Coastal Research, 28(1A), 34–43.CrossRefGoogle Scholar
  57. Krumbein, W. C., & Pettijohn, F. J. (1938). Manual of sedimentary petrology (p. 549). New York: Appleton Century and Crofts.Google Scholar
  58. Lee, Z., Carder, K. L., Florida, S., & Petersburg, S. (2005). Hyperspectral remote sensing. In Remote sensing of coastal aquatic environments technologies, techniques and applications (pp. 181–204). Dordrecht: Springer.Google Scholar
  59. Lehane, M., Brana-Magdalena, A., Moroney, C., Furey, A., & James, K. J. (2002). Liquid chromatography with electrospray ion trap mass spectrometry for the determination of five azaspiracids in shellfish. Journal of Chromatography A, 950, 139–147.CrossRefGoogle Scholar
  60. Lehane, M., Saez, M. J. F., Magdalena, A. B., Canas, I. R., Sierra, M. D., Hamilton, B., Furey, A., & James, K. J. (2004). Liquid chromatography– Multiple tandem mass spectrometry for the determination of ten azaspiracids, including hydroxyl analogues in shellfish. Journal of Chromatography A, 1024, 63–70.CrossRefGoogle Scholar
  61. Lucas, C. E. (1947). The ecological effects of external metabolites. Biological Reviews, 22(3), 270–295.CrossRefGoogle Scholar
  62. Lunetta, R., Schaeffer, B., Stumpf, R., Keith, D., Jacobs, S., & Murphy, M. (2015). Evaluation of cyanobacteria cell count detection derived from MERIS imagery across the eastern USA. Remote Sensing of Environment, Elsevier, 157, 24–34.CrossRefGoogle Scholar
  63. Madhu, N. V., Reny, P. D., Paul, M., Ulhas, N., & Resmi, P. (2011). Occurrence of red tide caused by Kareniamikimotoi (toxic dinoflagellate) in the south-west coast of india. Indian Journal of Geo-Marine Sciences, 40(6), 821–825.Google Scholar
  64. Marret, F., & Zonneveld, K. A. F. (2003). Atlas of modern organic- walled dinoflagellate cyst distribution. Review of Palaeobotany and Palynology, 125, 1251–1200.CrossRefGoogle Scholar
  65. Matsuoka, K. (1985). Sustained oscillations generated by mutually inhibiting neurons with adaptation. Biological Cybernetics, 52, 367–376.CrossRefGoogle Scholar
  66. Matsuoka, K. (1987). Mechanisms of frequency and pattern control in the neural rhythm generators. Biological Cybernetics, 56, 345–353.CrossRefGoogle Scholar
  67. Matsuoka, K. (1999). Eutrophication process recorded in dinoflagellate cyst assemblages a case of Yokohama Port, Tokyo Bay. Japan Science of the Total Environment, 231, 17–35.CrossRefGoogle Scholar
  68. Matsuoka, K. (2001). Further evidence for a marine dinoflagellate cyst as an indicator of eutrophication process in Yokohama Port, Tokyo Bay, Japan. Comments on a discussion by B. Dale. Japan Science of the Total Environment, 264, 221–233.CrossRefGoogle Scholar
  69. Matsuoka, K., & Fukuyo, Y. (2000). Technical guide for modern Dinoflagellate cyst study (p. 29). WESTPAC- HAB/WESTPAC/IOC, Japan Society for the Promotion of Science.Google Scholar
  70. Matsuoka, K., Joyce, L. B., Kotani, Y., & Matsuyama, Y. (2003). Modern dinoflagellate cysts in hypertrophic coastal waters of Tokyo Bay, Japan. Journal of Plankton Research, 25, 1461–1470.CrossRefGoogle Scholar
  71. Meire, L., Soetaert, K. E. R., & Meysman, F. J. R. (2013). Impact of global change on coastal oxygen dynamics and risk of hypoxia. Biogeosciences, 10(4), 2633–2653.CrossRefGoogle Scholar
  72. Mohanty, A. K., Satpathy, K. K., Sahu, G., Sasmal, S. K., Sahu, B. K., & Panigrahy, R. C. (2007). Red tide of Noctilucascintillans and its impact on the coastal water quality of the near-shore waters, off the Rushikulya River, Bay of Bengal. Current Science, 93, 616–618.Google Scholar
  73. Mora, C., et al. (2013). Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. PLoS Biology, 11, e1001682.CrossRefGoogle Scholar
  74. Morel, A., & Prieur, L. (1977). Analysis of variations in ocean color. Limnology and Oceanography, 22, 709–722.CrossRefGoogle Scholar
  75. Moroney, C., Lehane, M., Brana-Magdalena, A., Furey, A., & James, K. J. (2002). Comparison of solid-phase extraction methods for the determination of azaspiracids in shellfish by liquid chromatography–electrospray mass spectrometry. Journal of Chromatography A, 963, 353–361.CrossRefGoogle Scholar
  76. Mudroch, A., Azcue, J. M., & Mudroch, P. (1997). Influence of the use of a drainage basin on physical and chemical properties of bottom sediments of lakes (p. 287). Boca Raton: Lewis Publishers, CRC Press, Inc.Google Scholar
  77. Murata, A., Nagashima, Y., & Taguchi, S. (2012). N: P ratios controlling the growth of the marine dinoflagellate Alexandrium tamarense: Content and composition of paralytic shellfish poison. Harmful Algae, 20, 11–18.CrossRefGoogle Scholar
  78. Nagvi, S. W. A., Yoshinari, T., Jayakumar, D. A., Altabet, M. A., Narvekar, R. V., Devol, A. H., Brandes, J. A., & Codispoti, L. A. (1998). Budgetary and biogeochemical implications of N2O isotope signatures in the Arabian Sea. Nature, 394, 462–464.CrossRefGoogle Scholar
  79. Nayak, B. B., Karunasagar, I., & Karunasagar, I. (2000). Bacteriological and physico-chemical factors associated with Noctilucamilliaris bloom, along Mangalore, southwest coast of India. Indian Journal of Marine Science, 29(2), 139–143.Google Scholar
  80. Nixon, S. W. (1995). Coastal marine eutrophication – A definition, social causes, and future concerns. Ophelia, 41, 199–219.CrossRefGoogle Scholar
  81. Nixon, S. W. (1996). Regional coastal research—What is it? Why do it? What role should NAML play? Biological Bulletin, 190, 252–259.CrossRefGoogle Scholar
  82. Novoa, S., Chust, G., Valencia, V., Froidefond, J.-M., & Morichon, D. (2011). Estimation of chlorophyll-a concentration in waters over the continental shelf of the Bay of Biscay: A comparison of remote sensing algorithms. International Journal of Remote Sensing, 32, 8349–8371.CrossRefGoogle Scholar
  83. O’Herald. (2001). NIO discovers toxic algal off Goa. O’Herald Newspaper Goa.Google Scholar
  84. O’Neil, J. M. (2012). The psychology of men. In E. Altmaier & J. Hansen (Eds.), Oxford handbook of counseling psychology. New York: Oxford University Press.Google Scholar
  85. Ofuji, K., Satake, M., Oshima, Y., McMahon, T., James, K. J., & Yasumoto, T. (1999). A sensitive and specific determination method for azaspiracids by liquid chromatography mass spectrometry. Natural Toxins, 7, 247–250.CrossRefGoogle Scholar
  86. Oliver, M. (2017). Meat industry blamed for largest-ever ‘dead zone’ in Gulf of Mexico. The Guardian. ISSN 0261-3077.Google Scholar
  87. Padmakumar, K. B., Sanilkumar, M. G., Saramma, A. V., Sanjeevan, V. N., & Menon, N. R. (2007). Green tide of Noctilucamiliarisin the Northern Arabian Sea. Harmful Algae News, 1–16.Google Scholar
  88. Padmakumar, K. B., Sanilkumar, M. G., Saramma, A. V., Sanjeevan, V. N., & Menon, N. R. (2008a). Microcystisaeruginosa bloom on Southwest coast of India. Harmful Algae News, 37, 11–12.Google Scholar
  89. Padmakumar, K. B., Sanilkumar, M. G., Saramma, A. V., Sanjeevan, V. N., & Menon, N. R. (2008b). “Green tide” of Noctilucamiliaris in the Northern Arabian Sea. Harmful Algae News, 36, 12.Google Scholar
  90. Padmakumar, K. B., Smitha, B. R., Thomas, L. C., Fanimol, C. L., SreeRenjima, G., Menon, N. R., & Sanjeevan, V. N. (2010). Blooms of Trichodesmium erythraeum in the South Eastern Arabian Sea during the onset of 2009 summer monsoon. Ocean Science Journal, 45(3), 151–157.CrossRefGoogle Scholar
  91. Padmakumar, K. B., Thomas, L. C., Salini, T. C., John, E., Menon, N. R., & Sanjeevan, V. N. (2011). Monospecific bloom ofnoxious raphidophyteChattonella marina in the coastal waters of South-West coast of India. International Journal of Biosciences, 1(1), 57–69.Google Scholar
  92. Pearl, H. W., & Huisman, J. (2009). Climate change: A catalyst for global expansion of harmful cyanobacterial blooms. Environmental Microbiology, 1, 27–37.CrossRefGoogle Scholar
  93. Pearl, H. W., & Otten, T. G. (2013). Harmful cyanobacterial blooms: Causes, consequences, and controls. Microbial Ecology, 65, 995–1010.CrossRefGoogle Scholar
  94. Pickard, G. L., & Emery, W. J. (1982). Description physical oceanography: An introduction (p. 47). Oxford: Pergamon Press.Google Scholar
  95. Pospelova, V., & Chmura, G. L. (1998). Modern distribution of dinoflagellate cysts in coastal lagoons of Rhode Island, USA. Norges teknisk-naturvitenskapelige universitet Vitenskapsmuseet Rapport Botanisk Serie, 1, 122–123.Google Scholar
  96. Pospelova, V., & Head, M. J. (2002). Islandinium brevispinosum sp. nov. (Dinoflagellata), a new species of organic-walled dinoflagellate cyst from modern estuarine sediments of New England (USA). Journal of Phycology, 38, 593–601.CrossRefGoogle Scholar
  97. Pospelova, V., & Kim, S. J. (2010). Dinoflagellate cysts in recent estuarine sediments from aquaculture sites of southern South Korea. Marine Micropaleontology, 76, 37–51.CrossRefGoogle Scholar
  98. Poulin, R. X., Poulson-Ellestad, K. L., Roy, J. S., & Kubanek, J. (2018). Variable allelopathy among phytoplankton reflected in red tide metabolome. Harmful Algae, 71, 50–56.CrossRefGoogle Scholar
  99. PrabhuMatondkar, S. G., Bhat, S. R., Dwivedi, R. M., & Nayak, S. R. (2004). Indian satellite IRS-P4 (OCEANSAT). Monitoring algal blooms in the Arabian Sea. Harmful Algae News, 26, 4–5.Google Scholar
  100. Prakash, A., & Sarma, A. H. V. (1964). On the occurrence of “red water”phenomenon on the west coast of India. Current Science, 33, 168–170.Google Scholar
  101. Procházková, T., Sychrová, E., Javůrková, B., Večerková, J., Kohoutek, J., Lepšová-Skácelová, O., & Hilscherová, K. (2017). Phytoestrogens and sterols in waters with cyanobacterial blooms-analytical methods and estrogenic potencies. Chemosphere, 170, 104–112.CrossRefGoogle Scholar
  102. Quilliam, M. A., Hess, P., & Dell’Aversano, C. (2001). Recent developments in the analysis of phycotoxins by liquid chromatography–mass spectrometry. In Mycotoxins and phycotoxins in perspective at the turn of the century (pp. 383–391). Wageningen: Ponsen and Looijen.Google Scholar
  103. Rajasekar, K. T., Rajkumar, M., Sun, J., Prabu, V. A., & Perumal, P. (2010). Bloom forming species of phytoplankton in two coastal waters in the Southeast coast of India. Journal of Ocean University of China, 9(3), 265–272.CrossRefGoogle Scholar
  104. Redfield, A. C. (1934). In R. J. Daniel (Ed.), James Johnstone memorial volume. Liverpool: Liverpool University Press.Google Scholar
  105. Redfield, A. C. (1958). The biological control of chemical factors in the environment. American Scientist, 46, 205–221.Google Scholar
  106. Rehmann, N., Hess, P., & Quilliam, M. A. (2008). Discovery of new analogs of the marine biotoxin azaspiracid in blue mussels (Mytilus edulis) by ultra-performance liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 22(4), 549–558.CrossRefGoogle Scholar
  107. Ryther, J. H., & Dunxtan, W. M. (1971). Nitrogen, phosphorus, and eutrophication in the coastal marine environment. Science, 171(3975), 1008–1013.CrossRefGoogle Scholar
  108. Ryu, K., Lee, H.-R., & Kim, W. G. (2012). The influence of the quality of the physical environment, food, and service on restaurant image, customer perceived value, customer satisfaction, and behavioral intentions. International Journal of Contemporary Hospitality Management, 24(2), 200–223.CrossRefGoogle Scholar
  109. Saetre, M. M. L., Dale, B., Abdullah, M. I., & Saetre, G. P. O. (1997). Dinoflagellate cysts as potential indicators of industrial pollution in a Norwegian fjord. Marine Environmental Research, 44(2), 167–189.CrossRefGoogle Scholar
  110. Sahayak, S., Jyothibabu, R., Jayalakshmi, K. J., Habeebrehman, H., Sabu, P., Prabhakaran, M. P., Jasmine, P., Shaiju, P., George, R. M., Threslamma, J., & Nair, K. K. C. (2005). Red tide of Noctilucamiliaris off south of Thiruvananthapuram subsequent to the ‘stench event’ at the southern Kerala coast. Current Science, 89, 1472–1473.Google Scholar
  111. Sanilkumar, M. G., Thomas, A. M., Philip, A. A., Hatha, M., Sanjeevan, V. N., & Saramma, A. V. (2009). First report of Protoperidinium bloom from Indian waters. Harmful Algae News, 39, 15.Google Scholar
  112. Santhosh Kumar, C., Ashok Prabu, V., Sampathkumar, P., & Anantharaman, P. (2010). Occurrence of algal bloom Microcystisaeruginosa in the Vellar estuary, South-East coast of India. International Journal of Current Research, 5, 52–55.Google Scholar
  113. Sarangi, R. K., & Mohamed, G. (2011). Seasonal algal bloom and water quality around the coastal Kerala during southwest monsoon using in situ and satellite data. Indian Journal of Geo-Marine Sciences, 40(3), 356–369.Google Scholar
  114. Sahu, S. K., & Mukhopadhyay, S. (2015). On generating a flexible class of anisotropic spatial models using gaussian predictive processes. Technical Report, University of Southampton.Google Scholar
  115. Satpathy, K. K., Mohanty, A. K., Sahu, G., Prasad, M. V. R., Venkatesan, R., Natesan, U., & Rajan, M. (2007). On the occurrence of Trichodesmium erythraeum (Ehr.) bloom in the coastal waters of Kalpakkam, east coast of India. Indian Journal of Science and Technology, 1(2), 1–9.Google Scholar
  116. Schindler, D. W. (1974). Eutrophication and recovery in experimental lakes: Implications for lake management. Science, 184(4139), 897–899.CrossRefGoogle Scholar
  117. Schindler, D. W. (2006). Recent advances in the understanding and management of eutrophication. Limnology and Oceanography, 51(1part2), 356–363.CrossRefGoogle Scholar
  118. Smayda, T. J. (1989). Primary production and the global epidemic of phytoplankton blooms in the sea: A linkage? In E. M. Cosper, V. M. Bricelj, & E. J. Carpenter (Eds.), Novel phytoplankton blooms (pp. 449–483). Berlin: Springer.CrossRefGoogle Scholar
  119. Smayda, T. J. (1990). Novel and nuisance phytoplankton blooms in the sea: Evidence for a global epidemic. In E. Graneli, B. Sundstrom, L. Edler, & D. M. Anderson (Eds.), Toxic marine phytoplankton (pp. 29–40). New York: Elsevier.Google Scholar
  120. Smayda, T. J. (2004). Eutrophication and phytoplankton. In P. Wassmann, & K. Olli (Eds.), Integrated approaches to drainage basin nutrient inputs and coastal eutrophication (pp. 89–98). Electronic-Book (pdf file on web page: http://www.ut.ee/_olli/eutr/).
  121. Smayda, T. J., & White, A. W. (1990). Has there been a global expansion of algal blooms? If so is there a connection with human activities? In E. Granelli (Ed.), Toxic marine phytoplankton (p. 516). New York: Elsevier.Google Scholar
  122. Stolte, W., McCollin, T., Noordeloos, A. A. M., & Riegman, R. (1994). Effect of nitrogen source on the size distribution within marine phytoplankton populations. Journal of Experimental Marine Biology and Ecology, 184, 83–97.CrossRefGoogle Scholar
  123. Suikkanen, S., Pulina, S., Engström-Öst, J., Lehtiniemi, M., Lehtinen, S., & Brutemark, A. (2013). Climate change and eutrophication induced shifts in northern summer plankton communities. PLoS One, 8(6), 466–475.CrossRefGoogle Scholar
  124. Suzuki, T. M., Sherr, B. E., & Sherr, F. B. (1996). Estimation of ammonium regeneration efficiencies associated with bacterivory in pelaglc food webs via a 15N tracer method. Journal of Plankton Research, 18, 411–428.CrossRefGoogle Scholar
  125. Syrett, P. J. (1981). Nitrogen metabolism of microalgae. Canadian Bulletin of Fisheries and Aquatic Sciences, 210, 182–210.Google Scholar
  126. Taylor F. J. R., Pallingher U., 1987. Ecology of dinoflagellates. In: F. J. R. Taylor (Ed.), The biology of dinoflagellates (Botanical monographs, Vol. 21, pp. 399–529). Oxford: Blackwell Scientific.Google Scholar
  127. Thorsen, T. A., & Dale, B. (1997). Dinoflagellate cysts as indicators of pollution and past climate in a Norwegian fjord. Holocene, 7(4), 433–446.CrossRefGoogle Scholar
  128. Tiwari, L. R., & Nair, V. R. (1998). Ecology of phytoplankton from Dharmatar creek, west coast of India. Indian Journal of Marine Science, 27(3&4), 302–309.Google Scholar
  129. Turner, R. E., Qureshi, N., Rabalais, N. N., Dortch, Q., Justic, D., Shaw, R., & Cope, J. (1998). Fluctuating silicate: Nitrate ratios and coastal plankton food webs. Proceedings of the National Academy of Sciences of the United States of America, 95, 13048–13051.CrossRefGoogle Scholar
  130. Turner, M. G., Gardner, R. H., & O’Neill, R. V. (2001). Landscape ecology in theory and practice (p. 401). New York: Springer.Google Scholar
  131. Urquhart, E. A., Schaeffer, B. A., Stumpf, R. P., Loftin, K. A., & Jeremy Werdell, P. (2017). A method for examining temporal changes in cyanobacterial harmful algal bloom spatial extent using satellite remote sensing. Harmful Algae, 67, 144–152.CrossRefGoogle Scholar
  132. Usleber, E., Straka, M., & Terplan, G. (1994). Enzyme immunoassay for fumonisin B1 applied to cornbased food. Journal of Agricultural and Food Chemistry, 42, 1392–1396.CrossRefGoogle Scholar
  133. Van Dolah, F. M. (2000). Marine algal toxins: Origins, health effects, and their increased occurrence. Environmental Health Perspectives, 108(1), 133–141.CrossRefGoogle Scholar
  134. Van Egmond, H. P., Aune, T., Lassus, P., Speijers, G., & Waldock, M. (1993). Paralytic and diarrheic shellfish poisons: Occurrence in Europe, toxicity, analysis and regulation. Journal of Natural Toxins, 2, 41–83.Google Scholar
  135. Vaquer-Sunyer, R., & Duarte, C. M. (2008). Threshholds of hypoxia for marine biodiversity. Proceedings of the National Academy of Sciences, 105(40), 15452–15457.CrossRefGoogle Scholar
  136. Venugopal, P., Haridas, P., MadhuPratap, M., SRao, S., & T. (1979). Incidence of red water along south Kerala coast. Indian Journal of Marine Science, 8, 94–97.Google Scholar
  137. Volmer, D. A., Brombacher, S., & Whitehead, B. (2002). Studies on Azaspiracid biotoxins. I. Ultrafast high-resolution liquid chromatography/mass spectrometry separations using monolithic columns. Rapid Communications in Mass Spectrometry, 16, 2298–2305.CrossRefGoogle Scholar
  138. Wynne, T. T., Stumpf, R. P., Tomlinson, M. C., Warner, R. A., Tester, P. A., Dyble, J., & Fahnenstiel, G. L. (2008). Relating spectral shape to cyanobacterial blooms in the Laurentian Great Lakes. International Journal of Remote Sensing, 29(12), 3665–3672.CrossRefGoogle Scholar
  139. Yasumoto, T., Murata, M., Oshima, Y., Matsumoto, G. K., & Clardy, J. (1984). Diarrheic shellfish poisoning. In Seafood toxins. Washington, DC: American Chemical Society.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Santosh Kumar Sarkar
    • 1
  1. 1.Department of Marine ScienceUniversity of CalcuttaCalcuttaIndia

Personalised recommendations