Bee Diversity and Current Status of Beekeeping in Japan

  • Mikio YoshiyamaEmail author
  • Kiyoshi Kimura


Beekeeping in Japan is not a large industry; however, because of the role as pollinator, beekeeping is considered to be major agriculture sector. Beekeeping in Japan faces many problems as it does in European and North American counties. In this chapter, we will describe such problems focusing on bee diseases and parasites.


Pollination Apis cerana japonica Apis mellifera Bee diseases Traditional beekeeping Insecticide History of beekeeping 


  1. Abrol DP (2006) Defensive behaviour of Apis cerana F. against predatory wasps. J Apic Sci 50(2):39–46Google Scholar
  2. Allen MF, Ball BV (1996) The incidence and world distribution of honey bee viruses. Bee World 77:141–162CrossRefGoogle Scholar
  3. Amdam GV, Hartfelder K, Norberg K et al (2004) Altered physiology in worker honey bees (Hymenoptera: Apidae) infested with the mite Varroa destructor (Acari: Varroidae): a factor in colony loss during overwintering? J Econ Entomol 97:741–747PubMedCrossRefPubMedCentralGoogle Scholar
  4. Anderson DL, Trueman JW (2000) Varroa jacobsoni (Acari: Varroidae) is more than one species. Exp Appl Acarol 24(3):165–189PubMedPubMedCentralCrossRefGoogle Scholar
  5. Animal Quarantine Service, Ministry of Agriculture, Forestry and Fishery (2015) Annual report of animal quarantine 2015. Animal Quarantine Service, Ministry of Agriculture, Forestry and Fishery, Tokyo. 145pp (In Japanese)Google Scholar
  6. Arai R, Tominaga K, Wu M et al (2012) Diversity of Melissococcus plutonius from honeybee larvae in Japan and experimental reproduction of European foulbrood with cultured atypical isolates. PLoS One 7:e33708PubMedPubMedCentralCrossRefGoogle Scholar
  7. Aronstein KA, Murray KD (2010) Chalkbrood disease in honey bees. J Invertebr Pathol 103:S20–S29. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Aufauvre J, Biron DG, Vidau C et al (2012) Parasite–insecticide interactions: a case study of Nosema ceranae and fipronil synergy on honeybee. Sci Rep 2(326):1–7. CrossRefGoogle Scholar
  9. Azuma R (1956) About foulbrood of honeybee. J Jpn Vet Med Assoc 9:255–259CrossRefGoogle Scholar
  10. Bailey L (1967) Nosema apis and dysentery of the honeybee. J Apic Res 6:121–125CrossRefGoogle Scholar
  11. Bailey L (1969) The multiplication and spread of sacbrood virus of bees. Ann Appl Biol 63:483–491PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bailey L, Ball BV (1991) Honey bee pathology, 2nd edn. Academic Press, London. 193ppGoogle Scholar
  13. Bailey L, Fernando EFW (1972) Effects of sacbrood virus on adult honey-bees. Ann Appl Biol 72:27–35CrossRefGoogle Scholar
  14. Bailey L, Gibbs AJ, Woods RD (1963) Two viruses from adult honeybees (Apis mellifera Linnaeus). Virology 21:390–395PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bailey L, Gibbs AJ, Woods RD (1968) The purification and properties of chronic bee-paralysis virus. J Gen Virol 2:251–260PubMedCrossRefPubMedCentralGoogle Scholar
  16. Bailey L, Carpenter JM, Woods RD (1982) A strain of sacbrood virus from Apis cerana. J Invertebr Pathol 39:264–265CrossRefGoogle Scholar
  17. Ball BV (1983) The association of Varroa jacobsoni with virus diseases of honey bees. Exp Appl Acarol 19:607–613Google Scholar
  18. Ball BV, Bailey L (1997) Viruses. In: Morse RA, Flottum K (eds) Honeybee pest, predators, & diseases. The A. I. Root Co., Medina, pp 11–31Google Scholar
  19. Boecking O, Genersch E (2008) Varroasis—the ongoing crisis in bee keeping. J Consum Protect Food Safety 3(2):221–228CrossRefGoogle Scholar
  20. Brion ACB (2015) Small hive beetle poses threat to bee industry. In: The Philippine Star. Accessed 10 Sept 2017
  21. Bureau of Animal Husbandry, Ministry of Agriculture and Forestry (1966) History of livestock development. Chuou-Kouron, Tokyo, 1843 (in Japanese)Google Scholar
  22. Chen YP, Siede R (2007) Honey bee viruses. Adv Virus Res 70:33–80PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chen YP, Higgins JA, Feldlaufer MF (2005) Quantitative real-time reverse transcription–PCR analysis of deformed wing virus infection in the honeybee (Apis mellifera L.) Appl Environ Microbiol 71:436–441PubMedPubMedCentralCrossRefGoogle Scholar
  24. Chen YP, Pettis JS, Collins A et al (2006) Prevalence and transmission of honeybee viruses. Appl Environ Microbiol 72:606–611PubMedPubMedCentralCrossRefGoogle Scholar
  25. Choi MB, Martin SJ, Lee JW (2012) Distribution, spread, and impact of the invasive hornet Vespa velutina in South Korea. J Asia Pac Entomol 15:473–477CrossRefGoogle Scholar
  26. Clarke KE, Rinderer TE, Franck P et al (2002) The Africanization of honeybees (Apis mellifera L.) of the Yucatan: a study of a massive hybridization event across time. Evolution 56(7):1462–1474PubMedPubMedCentralGoogle Scholar
  27. Cornman RS, Schatz MC, Johnston JS et al (2010) Genomic survey of the ectoparasitic mite Varroa destructor, a major pest of the honey bee Apis mellifera. BMC Genomics 11:602. CrossRefPubMedPubMedCentralGoogle Scholar
  28. de Guzman LI, Rinderer TE, Stelzer JA (1999) Occurrence of two genotypes of Varroa jacobsoni Oud. in North America. Apidologie 30:31–36CrossRefGoogle Scholar
  29. De Jong D, Morse RA, Eickwort GC (1982a) Mite pests of honey bees. Annu Rev Entomol 27:229–252CrossRefGoogle Scholar
  30. De Jong D, de Jong PH, Gonçalves LS (1982b) Weight loss and other damage to developing worker honeybees from infestation with V. jacobsoni. J Apic Res 21:165–216CrossRefGoogle Scholar
  31. de Miranda J, Genersch E (2010) Deformed wing virus. J Invertebr Pathol 103:S48–S61PubMedCrossRefGoogle Scholar
  32. Doublet V, Labarussias M, de Miranda JR et al (2015) Bees under stress: sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle. Environ Microbiol 17:969–983. CrossRefPubMedGoogle Scholar
  33. Ebeling J, Knispel H, Hertlein G et al (2016) Biology of Paenibacillus larvae, a deadly pathogen of honey bee larvae. Appl Microbiol Biotechnol 100(17):7387–7395PubMedCrossRefGoogle Scholar
  34. Eischen FA, Cardoso-Tamez D, Wilson WT et al (1989) Honey production of honey bee colonies infested with Acarapis woodi (Rennie). Apidologie 20(1):1–8CrossRefGoogle Scholar
  35. Ellis JD, Munn PA (2005) The worldwide health status of honey bees. Bee World 86:88–101CrossRefGoogle Scholar
  36. Ellis JD, Graham JR, Mortensen A (2013) Standard methods for wax moth research. J Apic Res 52(1):1–17CrossRefGoogle Scholar
  37. Elzen P, Baxter J, Spivak M et al (2000) Control of Varroa jacobsoni Oud. resistant to fluvalinate and amitraz using coumaphos. Apidologie 31:437–441CrossRefGoogle Scholar
  38. Engel MS (1999) The taxonomy of recent and fossil honey bees (Hymenoptera: Apidae: Apis). J Hymenopt Res 8:165–196Google Scholar
  39. Forsgren E (2010) European foulbrood in honey bees. J Invertebr Pathol 103:S5–S9. CrossRefPubMedGoogle Scholar
  40. Franck P, Garnery L, Loiseau A et al (2001) Genetic diversity of the honeybee in Africa: microsatellite and mitochondrial data. Heredity 86(4):420–430CrossRefPubMedGoogle Scholar
  41. Fries I (2010) Nosema ceranae in European honey bees (Apis mellifera). J Invertebr Pathol 103:S73–S79. CrossRefPubMedGoogle Scholar
  42. Fries I, Feng F, Da Silva A et al (1996) Nosema ceranae n. sp. (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae). Eur J Protistol 32:356–365CrossRefGoogle Scholar
  43. Genersch E (2010) American foulbrood in honeybees and its causative agent, Paenibacillus larvae. J Invertebr Pathol 103:S10–S19PubMedPubMedCentralCrossRefGoogle Scholar
  44. Genersch E, Aubert M (2010) Emerging and re-emerging viruses of the honey bee (Apis mellifera L.) Vet Res 41(6):54. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Genersch E, Ashiralieva A, Fries I (2005) Strain-and genotype-specific differences in virulence of Paenibacillus larvae subsp. larvae, a bacterial pathogen causing American foulbrood disease in honeybees. Appl Environ Microbiol 71:7551–7555PubMedPubMedCentralCrossRefGoogle Scholar
  46. Genersch E, Forsgren E, Pentikäinen J et al (2006) Reclassification of Paenibacillus larvae subsp. pulvifaciens and Paenibacillus larvae subsp. larvae as Paenibacillus larvae without subspecies differentiation. Int J Syst Evol Microbiol 56:501–511PubMedCrossRefGoogle Scholar
  47. Gracia-Salinas MJ, Ferrer-Dufol M, Latorre-Castro E et al (2006) Detection of fluvalinate resistance in Varroa destructor in Spanish apiaries. J Apic Res 45(3):101–105CrossRefGoogle Scholar
  48. Hasemann L (1961) How long can spores of American foulbrood live? Am Bee J 101:298–299Google Scholar
  49. Heath LAF (1982) Development of Chalkbrood in a honey bee colony; Chalkbrood pathogens: a review. Bee World 63(3):119–135CrossRefGoogle Scholar
  50. Hedtke K, Jensen PM, Jensen AB et al (2011) Evidence for emerging parasites and pathogens influencing outbreaks of stress-related diseases like chalkbrood. J Invertebr Pathol 108(3):167–173. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Higes M, Martín R, Meana A et al (2006) Nosema ceranae, a new microsporidian parasite in honeybees in Europe. J Invertebr Pathol 92:81–83CrossRefGoogle Scholar
  52. Higes M, Martín-Hernandez R, Botias C et al (2008) How natural infection by Nosema ceranae causes honeybee colony collapse. Environ Microbiol 10:2659–2669PubMedCrossRefPubMedCentralGoogle Scholar
  53. Hirai Y, Suzuki T, Inaba N et al (2016) Existence of Paenibacillus larvae genotypes ERIC I-ST2, ERIC I-ST15 and ERIC II-ST10 in the western region of Aichi prefecture, Japan. J Vet Med Sci 78(7):1195–1199. CrossRefPubMedPubMedCentralGoogle Scholar
  54. Huang W, Jiang J, Chen Y et al (2007) A Nosema ceranae isolate from the honeybee Apis mellifera. Apidologie 38:30–37CrossRefGoogle Scholar
  55. Inoue MN, Yokoyama J, Washitani I (2008) Displacement of Japanese native bumblebees by the recently introduced Bombus terrestris(L.) (Hymenoptera: Apidae). J Insect Conserv 12:135–146CrossRefGoogle Scholar
  56. Japan Beekeeping Association (2005) The honeybee plants of Japan. The Japan Beekeeping Association, Tokyo. 333pp. (in Japanese)Google Scholar
  57. Japan Beekeeping Association (2011) Damage situation in apiculture by bears. The Bee Journal in Japan Volume 577. The Japan Beekeeping Association, Tokyo. (in Japanese)Google Scholar
  58. Kawashima M (2000) Apiten, the preventive drug against American foulbrood. Honeybee Sci 21(2):55–60. (In Japanese; English abstract)Google Scholar
  59. Ken T, Hepburn HR, Radloff SE et al (2005) Heat-balling wasps by honeybees. Naturwissenschaften 92:492–495PubMedPubMedCentralCrossRefGoogle Scholar
  60. Kimura K (2011) Investigation to determine the cause of honey bee colony loss and prompt measures. Nougyou 1544:25–35. (In Japanese)Google Scholar
  61. Kimura K, Yoshiyama M, Saito K et al (2014) Examination of mass honey bee death at the entrance to hives in a paddy rice production district in Japan: the influence of insecticides sprayed on nearby rice fields. J Apic Res 53(5):599–606. CrossRefGoogle Scholar
  62. Kinoda K, Tamakizawa K, Ito M (2013) The bumblebees of Japan. Hokkaido University Press, Sapporo. 194pp. (In Japanese)Google Scholar
  63. Klee J, Besana AM, Genersch E et al (2007) Widespread dispersal of the microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera. J Invertebr Pathol 96:1–10PubMedPubMedCentralCrossRefGoogle Scholar
  64. Kojima Y, Toki T, Morimoto T et al (2011) Infestation of Japanese native honey bees by tracheal mite and virus from non-native European honey bees in Japan. Microb Ecol 62(4):895–906. CrossRefPubMedPubMedCentralGoogle Scholar
  65. Koulianos S, Crozier RH (1996) Mitochondrial DNA sequence data provides further evidence that the honeybees of Kangaroo Island, Australia are of hybrid origin. Apidologie 27:165–174CrossRefGoogle Scholar
  66. Kurihara T (2010) Records of recent bear witnesses in Kyushu Island, Japan. Mamm Sci 50:187–193. (In Japanese; English abstract)Google Scholar
  67. Langridge D, McGhee R (1967) Crithidia mellificae: an acidophilic trypanosomatide of honey bee Apis mellifera. J Protozool 14:485–487PubMedCrossRefGoogle Scholar
  68. Maeda T (2015) Infestation of honey bees by tracheal mites, Acarapis woodi, in Japan. J Acarol Soc Jpn 24(1):9–17. (In Japanese; English abstract)CrossRefGoogle Scholar
  69. Maeda T (2016) Effects of tracheal mite infestation on Japanese honey bee, Apis cerana japonica. J Acarol Soc Jpn 25(S1):109–117.Google Scholar
  70. Maeda T, Sakamoto Y (2016) Tracheal mites, Acarapis woodi, greatly increase overwinter mortality in colonies of the Japanese honeybee, Apis cerana japonica. Apidologie 47:762. CrossRefGoogle Scholar
  71. Maeta Y (1990) Utilization of wild bees. Farm Japan 24:13–19Google Scholar
  72. Maeta Y (1993) Utilization of Osmia cornifrons for apple pollination. In: Inoue T, Kato M (eds) Animals attracted by flowers. Heibonsha, Tokyo, pp 195–232. (in Japanese)Google Scholar
  73. Martin SJ (2001) The role of Varroa and viral pathogens in the collapse of honeybee colonies: a modelling approach. J Appl Ecol 38:1082–1093CrossRefGoogle Scholar
  74. Martin SJ, Hogarth A, van Breda J et al (1998) A scientific note on Varroa jacobsoni Oudemans and the collapse of Apis mellifera colonies in the United Kingdom. Apidologie 29:369–370CrossRefGoogle Scholar
  75. Martín-Hernández R, Botías C, Bailón EG et al (2012) Microsporidia infecting Apis mellifera: coexistence or competition. Is Nosema ceranae replacing Nosema apis? Environ Microbiol 14:2127–2138PubMedCrossRefPubMedCentralGoogle Scholar
  76. Matsumura C, Yokoyama J, Washitani I (2004) Invasion status and potential ecological impacts of an invasive alien bumblebee, Bombus terrestris L. (Hymenoptera: Apidae) naturalized in southern Hokkaido, Japan. Glob Environ Res 8:51–66Google Scholar
  77. Matsuura M (1988) Ecological studies on vespine wasps (Hymenoptera: Vespidae) attacking honeybee colonies. Appl Entomol Zool 23:428–440CrossRefGoogle Scholar
  78. Matsuura M, Yamane S (1984) Ethology of Vespinae. Hokkaido University Press, Sapporo. 428pp. (in Japanese)Google Scholar
  79. Matsuura M, Yamane S (1990) Biology of the Vespine wasps. Springer, Berlin. 323ppCrossRefGoogle Scholar
  80. McMullan JB, Brown MJF (2009) A qualitative model of mortality in honeybee (Apis mellifera) colonies infested with tracheal mites (Acarapis woodi). Exp Appl Acarol 47(3):225–234PubMedCrossRefPubMedCentralGoogle Scholar
  81. Ministry of Agriculture, Forestry and Fisheries MAFF (2016a) Situation over beekeeping (in Japanese).
  82. Ministry of Agriculture, Forestry and Fisheries MAFF (2016b) System for ensuring the stability of honey bees for pollination (in Japanese).
  83. Ministry of Agriculture, Forestry and Fisheries MAFF (2017a) The outbreak situation of the monitoring epidemic (in Japanese).
  84. Ministry of Agriculture, Forestry and Fisheries MAFF (2017b) Influence of chemicals on honey bees (in Japanese).
  85. Ministry of Environment ME and Ministry of Agriculture, Forestry and Fisheries MAFF (2017) Usage policy of alternative species of alien bumblebee (in Japanese).
  86. Morimoto T, Kojima Y, Yoshiyama M et al (2012) Molecular identification of chronic bee paralysis virus infection in Apis mellifera colonies in Japan. Virus 4(7):1093–1103CrossRefGoogle Scholar
  87. Morimoto T, Kojima Y, Yoshiyama M et al (2013) Molecular detection of protozoan parasites infecting Apis mellifera colonies in Japan. Environ Microbiol Rep 5:74–77. CrossRefPubMedPubMedCentralGoogle Scholar
  88. Morrissey BJ, Helgason T, Poppinga L et al (2015) Biogeography of Paenibacillus larvae, the causative agent of American foulbrood, using a new multilocus sequence typing scheme. Environ Microbiol 17:1414–1424PubMedCrossRefPubMedCentralGoogle Scholar
  89. Neumann P, Ellis JD (2008) The small hive beetle (Aethina tumida Murray, Coleoptera: Nitidulidae): distribution, biology and control of an invasive species. J Apic Res 47(3):181–183Google Scholar
  90. Neumann P, Pettis JS, Schäfer MO (2016) Quo vadis Aethina tumida? Biology and control of small hive beetles. Apidologie 47:427–466CrossRefGoogle Scholar
  91. Office International des Épizooties, OIE (2008) Manual of standards for diagnostic test and vaccines for terrestrial animals. Chapter 2.2.1. Acarapisosis of honeybees. OIE—World Organisation for Animal Health.
  92. Oldroyd BP, Cornuet JM, Rowe D et al (1995) Racial admixture of Apis mellifera in Tasmania, Australia: similarities and differences with natural hybrid zones in Europe. Heredity 74:315–325. CrossRefGoogle Scholar
  93. Ono M, Igarashi T, Ohno E et al (1995) Unusual thermal defence by a honeybee against mass attack by hornets. Nature 377:334–336CrossRefGoogle Scholar
  94. Paxton RJ, Klee J, Korpela S et al (2007) Nosema ceranae has infected Apis mellifera in Europe since at least 1998 and may be more virulent than Nosema apis. Apidologie 38:558–565CrossRefGoogle Scholar
  95. Pettis JS, Wilson WT (1996) Life history of the honey bee tracheal mite (Acari: Tarsonemidae). Ann Entomol Soc Am 89(3):368–374CrossRefGoogle Scholar
  96. Rana BS, Garg ID, Khurana SM et al (1986) Thai sacbrood virus of honeybees (Apis cerana indica F) in northwest Himalayas. Indian J Virol 2:127–131Google Scholar
  97. Rauch S, Ashiralieva A, Hedtke K et al (2009) Negative correlation between individual-insect-level virulence and colony-level virulence of Paenibacillus larvae, the etiological agent of American foulbrood of honeybees. Appl Environ Microbiol 75:3344–3347PubMedPubMedCentralCrossRefGoogle Scholar
  98. Ravoet J, Maharramov J, Meeus I et al (2013) Comprehensive bee pathogen screening in Belgium reveals Crithidia mellificae as a new contributory factor to winter mortality. PLoS ONE 8(8):e72443.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Ravoet J, Schwarz RS, Descamps T et al (2015) Differential diagnosis of the honey bee trypanosomatids Crithidia mellificae and Lotmaria passim. J Invertebr Pathol 130:21–27. CrossRefPubMedPubMedCentralGoogle Scholar
  100. Rennie J (1921) Isle of Wight disease in hive bees—acarine disease: the organism associated with the disease—Tarsonemus woodi, nsp. Earth and Environ Science Trans Royal Soc Edinburgh 52(4):768–779CrossRefGoogle Scholar
  101. Rosenkranz P, Aumeier P, Ziegelmann B (2010) Biology and control of Varroa destructor. J Invertebr Pathol 103:S96–S119PubMedCrossRefPubMedCentralGoogle Scholar
  102. Ruttner F (1988) Biogeography and taxonomy of honeybees. Springer, Heidelberg. 284ppCrossRefGoogle Scholar
  103. Sakai Y, Takahashi J (2014) Discovery of a worker of Vespa velutina (Hymenoptera: Vespidae) from Tsushima Island, Japan. Kontyu (new series) 17:32–36. (in Japanese)Google Scholar
  104. Sammataro D, Gerson U, Needham G (2000) Parasitic mites of honey bees: life history, implications, and impact. Annu Rev Entomol 45:519–548PubMedPubMedCentralCrossRefGoogle Scholar
  105. Sammataro D, Untalan P, Guerrero F et al (2005) The resistance of Varroa mites (Acari: Varroidae) to acaricides and the presence of esterase. Int J Acarol 31:67–74CrossRefGoogle Scholar
  106. Sasaki M (1999) Wonders of the Japanese honey bee. Kaiyusha, Tokyo. 191pp (in Japanese; English abstract)Google Scholar
  107. Sasaki M (2013) Bee’s eye view of flowering plants—nectar and pollen source plants and related honeybee products. Kaiyusha, Tokyo. 413pp. (in Japanese; English abstract)Google Scholar
  108. Schwarz RS, Bauchan G, Murphy C et al (2015) Characterization of two species of Trypanosomatidae from the honey bee Apis mellifera: Crithidia mellificae Langridge and McGhee, 1967 and Lotmaria passim n. gen., n. sp. J Eukaryot Microbiol 62:567–583PubMedCrossRefPubMedCentralGoogle Scholar
  109. Sugahara M, Sakamoto F (2009) Heat and carbon dioxide generated by honeybees jointly act to kill hornets. Naturwissenschaften 96:1133–1136PubMedCrossRefPubMedCentralGoogle Scholar
  110. Takahashi J, Yoshida T (2003) The origin of Japanese honey bee Apis cerana japonica inferred from mitochondrial DNA. Honeybee Sci 24(2):71–76. (in Japanese; English abstract)Google Scholar
  111. Takahashi J, Yoshida T, Takagi T et al (2007) Geographic variation in the Japanese islands of Apis cerana japonica and in A. cerana populations bordering its geographic range. Apidologie 38:335–340CrossRefGoogle Scholar
  112. Takahashi J, Takeuchi M, Matsumoto M et al (2014) Genetic structure of apicultural honeybee Apis Mellifera in Japan. Bull Res Inst Adv Technol Kyoto Sangyo Univ 13:25–37. (in Japanese; English abstract)Google Scholar
  113. Takamatsu D, Morinishi K, Arai R et al (2014) Typing of Melissococcus plutonius isolated from European and Japanese honeybees suggests spread of sequence types across borders and between different Apis species. Vet Microbiol 171(1–2):221–226. CrossRefPubMedPubMedCentralGoogle Scholar
  114. Tentcheva D, Gauthier L, Zappulla N et al (2004) Prevalence and seasonal variations of six bee viruses in Apis mellifera L. and Varroa destructor mite populations in France. Appl Environ Microbiol 70:7185–7191PubMedPubMedCentralCrossRefGoogle Scholar
  115. Thompson HM, Brown MA, Ball RF et al (2002) First report of Varroa destructor resistance to pyrethroids in the UK. Apidologie 33(4):357–366CrossRefGoogle Scholar
  116. Tsuruga H, Mano T, Yamanaka M et al (1994) Estimate of genetic variations in Hokkaido brown bears (Ursus arctos yesoensis) by DNA fingerprinting. Jpn J Vet Res 42(3–4):127–136PubMedPubMedCentralGoogle Scholar
  117. Uemura T, Sakashita N, Morinishi, K et al (2013) Cases of occurrence of European foulbrood (in Japanese).
  118. Verma LR, Rana BS, Verma S (1990) Observations on Apis cerana colonies surviving from Thai sacbrood virus infestation. Apidologie 21:169–174CrossRefGoogle Scholar
  119. Vidau C, Diogon M, Aufauvre J et al (2011) Exposure to sublethal doses of fipronil and thiacloprid highly increases mortality of honeybees previously infected by Nosema ceranae. PLoS One 6:e21550. CrossRefPubMedPubMedCentralGoogle Scholar
  120. Wang DL, Moeller FE (1970) Comparison of the free amino acid composition in the haemolymph of healthy and Nosema-infected female honey bees. J Invertebr Pathol 15:202–206CrossRefGoogle Scholar
  121. White G (1913) Sacbrood, a disease of bees. US Dept Agr Bur Entomol Circ 169:1–5Google Scholar
  122. Wilfert L, Long G, Leggett HC et al (2016) Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites. Science 351(6273):594–597PubMedCrossRefPubMedCentralGoogle Scholar
  123. Yamada M (1986) Control techniques of acarid mites on Osmia cornifrons [Hymenoptera: Megachilidae] pollinating apple. Agric Hortic 61(3):425–429. (in Japanese)Google Scholar
  124. Yamashita T, Tanaka S (2010) Colony collapse of Japanese honeybee in Yamaguchi prefecture. Honeybee Sci 28(2):73–80. (in Japanese; English abstract)Google Scholar
  125. Yang X, Cox-Foster D (2007) Effects of parasitization by Varroa destructor on survivorship and physiological traits of Apis mellifera in correlation with viral incidence and microbial challenge. Parasitology 134:405–412PubMedCrossRefPubMedCentralGoogle Scholar
  126. Yang B, Peng G, Li T et al (2013) Molecular and phylogenetic characterization of honey bee viruses, Nosema microsporidia, protozoan parasites, and parasitic mites in China. Ecol Evol 3:298–311. CrossRefPubMedPubMedCentralGoogle Scholar
  127. Yoshida T (2000) Methods of rearing and ecology of Japanese honey bee. Tamagawa University Press, Machida, Tokyo. 135pp (in Japanese)Google Scholar
  128. Yue C, Genersch E (2005) RT-PCR analysis of deformed wing virus in honeybees (Apis mellifera) and mites (Varroa destructor). J Gen Virol 86:3419–3424PubMedCrossRefPubMedCentralGoogle Scholar
  129. Yue C, Schroder M, Gisder S et al (2007) Vertical-transmission routes of deformed wing virus of honeybees (Apis mellifera). J Gen Virol 88:2329–2336PubMedCrossRefPubMedCentralGoogle Scholar
  130. Yue D, Nordhoff M, Wieler LH et al (2008) Fluorescence in situ hybridization (FISH) analysis of the interactions between honeybee larvae and Paenibacillus larvae, the causative agent of American foulbrood of honeybees (Apis mellifera). Environ Microbiol 10:1612–1620PubMedCrossRefPubMedCentralGoogle Scholar
  131. Zaghloul OA, Mourad AK, El Kady MB et al (2005) Assessment of losses in honey yield due to the chalkbrood disease, with reference to the determination of its economic injury levels in Egypt. Commun Agric Appl Biol Sci 70(4):703–714PubMedPubMedCentralGoogle Scholar
  132. Ministry of Agriculture, Forestry and Fisheries MAFF (2011) The outbreak situation of the monitoring epidemic (in Japanese).

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Honeybee Research Group, Animal Genetics Unit, Division of Animal Breeding and Reproduction ResearchInstitute of Livestock and Grassland Science, NAROTsukubaJapan
  2. 2.Biosphere Resource Science and Technology ProgramGraduate School of Life and Environmental Sciences, University of TsukubaTsukubaJapan

Personalised recommendations