Metal-Functional Nucleic Acid Nanocomposite Based Biosensor

  • Yunbo Luo


Metal-based nanomaterials are most commonly used carrier for construction of functional nucleic acids sensors. Including gold nanoparticles (AuNPs) and magnetic beads (MBs), they play important roles in signal transmission and amplification. Further, the combination between different functional nucleic acids and metal-based nanomaterials also give these sensors multiple detection ability and high sensitivity. In this chapter, the metal-nucleic acids nanocomposite sensors are classified according to the dimensional of functional nucleic acids and elaborated respectively.


Functional nucleic acids Metal-based nanomaterials Gold nanoparticles (AuNPs) Magnetic beads (MBs) 


  1. 1.
    X. Xue, F. Wang, X. Liu, One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates. J. Am. Chem. Soc. 130(11), 3244–3245 (2008)CrossRefGoogle Scholar
  2. 2.
    E. Golub, G. Pelossof, R. Freeman, H. Zhang, I. Willner, Electrochemical, photoelectrochemical, and surface plasmon resonance detection of cocaine using supramolecular aptamer complexes and metallic or semiconductor nanoparticles. Anal. Chem. 81(22), 9291–9298 (2009)CrossRefGoogle Scholar
  3. 3.
    M. Retout, H. Valkenier, T. Eo, T. Doneux, K. Bartik, G. Bruylants, Rapid and selective detection of proteins by dual trapping using gold nanoparticles functionalized with peptide aptamers. ACS Sens. 1(7), 929–933 (2016)CrossRefGoogle Scholar
  4. 4.
    Z. Zhou, Y. Du, S. Dong, Double-strand DNA-templated formation of copper nanoparticles as fluorescent probe for label-free aptamer sensor. Anal. Chem. 83(13), 5122–5127 (2011)CrossRefGoogle Scholar
  5. 5.
    Y. Pang, Z. Rong, R. Xiao, S. Wang, “Turn on” and label-free core−shell Ag@ SiO2 nanoparticles-based metal-enhanced fluorescent (MEF) aptasensor for Hg2+. Sci. Rep. 5, 9451 (2015)Google Scholar
  6. 6.
    C. Fan, K.W. Plaxco, A.J. Heeger, Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proc. Natl. Acad. Sci. 100(16), 9134–9137 (2003)CrossRefGoogle Scholar
  7. 7.
    L. Hong, J. Wan, X. Zhang, G. Wang, DNA–gold nanoparticles network based electrochemical biosensors for DNA MTase activity. Talanta 152, 228–235 (2016)CrossRefGoogle Scholar
  8. 8.
    J. Zhuang, D. Tang, W. Lai, M. Xu, D. Tang, Target-induced nano-enzyme reactor mediated hole-trapping for high-throughput immunoassay based on a split-type photoelectrochemical detection strategy. Anal. Chem. 87(18), 9473–9480 (2015)CrossRefGoogle Scholar
  9. 9.
    C.H. Chung, J.H. Kim, J. Jung, B.H. Chung, Nuclease-resistant DNA aptamer on gold nanoparticles for the simultaneous detection of Pb2+ and Hg2+ in human serum. Biosens. Bioelectron. 41, 827–832 (2013)Google Scholar
  10. 10.
    H. Zhang, L. Lin, X. Zeng, Y. Ruan, Y. Wu, M. Lin, Y. He, F. Fu, Magnetic beads-based DNAzyme recognition and AuNPs-based enzymatic catalysis amplification for visual detection of trace uranyl ion in aqueous environment. Biosens. Bioelectron. 78, 73–79 (2016)CrossRefGoogle Scholar
  11. 11.
    S. Liu, Y. Wang, W. Xu, X. Leng, H. Wang, Y. Guo, J. Huang, A novel sandwich-type electrochemical aptasensor based on GR-3D Au and aptamer-AuNPs-HRP for sensitive detection of oxytetracycline. Biosens. Bioelectron. 88, 181–187 (2017)CrossRefGoogle Scholar
  12. 12.
    P. Zhu, Y. Shang, W. Tian, K. Huang, Y. Luo, W. Xu, Ultra-sensitive and absolute quantitative detection of Cu2+ based on DNAzyme and digital PCR in water and drink samples. Food Chem. 221, 1770–1777 (2017)CrossRefGoogle Scholar
  13. 13.
    P. Zhu, W. Tian, N. Cheng, K. Huang, Y. Luo, W. Xu, Ultra-sensitive “turn-on” detection method for Hg2+ based on mispairing biosensor and emulsion PCR. Talanta 155, 168–174 (2016)CrossRefGoogle Scholar
  14. 14.
    E. Perozo, D.M. Cortes, P. Sompornpisut, A. Kloda, B. Martinac, Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418(6901), 942 (2002)CrossRefGoogle Scholar
  15. 15.
    X. Hou, W. Guo, F. Xia, F.Q. Nie, H. Dong, Y. Tian, L. Wen, L. Wang, L. Cao, Y. Yang, A biomimetic potassium responsive nanochannel: G-quadruplex DNA conformational switching in a synthetic nanopore. Am. Chem. Soc. 131(22), 7800–7805 (2009)CrossRefGoogle Scholar
  16. 16.
    Y. Jiang, N. Liu, W. Guo, F. Xia, L. Jiang, Highly-efficient gating of solid-state nanochannels by DNA supersandwich structure containing ATP aptamers: a nanofluidic implication logic device. J. Am. Chem. Soc. 134(37), 15395–15401 (2012)CrossRefGoogle Scholar
  17. 17.
    W. Guo, L. Cao, J. Xia, F.Q. Nie, W. Ma, J. Xue, Y. Song, D. Zhu, Y. Wang, L. Jiang, Energy harvesting with single-ion-selective nanopores: a concentration-gradient-driven nanofluidic power source. Adv. Funct. Mater. 20(8), 1339–1344 (2010)CrossRefGoogle Scholar
  18. 18.
    L. Wen, X. Hou, Y. Tian, J. Zhai, L. Jiang, Bio-inspired photoelectric conversion based on smart-gating nanochannels. Adv. Funct. Mater. 20(16), 2636–2642 (2010)CrossRefGoogle Scholar
  19. 19.
    S. Wen, T. Zeng, L. Liu, K. Zhao, Y. Zhao, X. Liu, H.C. Wu, Highly sensitive and selective DNA-based detection of mercury (II) with α-hemolysin nanopore. J. Am. Chem. Soc. 133(45), 18312–18317 (2011)CrossRefGoogle Scholar
  20. 20.
    Z. Zhang, D. Balogh, F. Wang, I. Willner, Smart mesoporous SiO2 nanoparticles for the DNAzyme-induced multiplexed release of substrates. J. Am. Chem. Soc. 135(5), 1934–1940 (2013)CrossRefGoogle Scholar
  21. 21.
    Y. Chen, D. Zhou, Z. Meng, J. Zhai, An ion-gating multinanochannel system based on a copper-responsive self-cleaving DNAzyme. Chem. Commun. 52(65), 10020–10023 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Yunbo Luo
    • 1
  1. 1.Food Science &Nutritional EngineeringChina Agricultural UniversityBeijingChina

Personalised recommendations