Functional Nucleic Acid Based Biosensors for Noble Metal Ion Detection

  • Yunbo Luo


There are eight noble metals: gold (Au), silver (Ag) and Platinum Group Metals (PGM) including platinum (Pt), iridium (Ir), palladium (Pd), rhodium (Rh), ruthenium (Ru), and osmium (Os). Many of noble metals have excellent electrical and thermal conductivity properties. They are used for currency and jewelry throughout history, as well as aeronautics, electronic information and pharmaceutics. Human activities, such as mining, burning, and draining, bring contaminant-containing noble metal ions to our surroundings. These metal ions enter our water and food systems via the food chain, resulting in risks to human health. Thus, it is of the utmost importance to analyze metal ions in our environment. Traditional analysis methods based on precise instruments, like atomic absorption/emission and mass spectroscopy, are highly sensitive and accurate but very costly, involve complicated pretreatment, and require trained personnel. Therefore, the traditional methods are unlikely for on-site screening of large samples. To solve these problems and improve on-site detection capabilities, recognition elements for specific metal ions based on functional nucleic acids (FNAs) are receiving widespread attention owing to their high sensitivity, great selectivity, low cost, easy synthesis, smart programming, and ability to combine perfectly with various sensing components. In this chapter, different sensing methods composed of FNAs for signal recognition and sensing components for signal output are reviewed for Ag+, Au+ (Au3+) and Pt2+.


Functional nucleic acids Noble metal ion detection Signaling methods 


  1. 1.
    H.T. Ratte, Bioaccumulation and toxicity of silver compounds: a review. Environ. Toxicol. Chem. 18(1), 89–108 (1999)CrossRefGoogle Scholar
  2. 2.
    P.L. Drake, K.J. Hazelwood, Exposure-related health effects of silver and silver compounds: a review. Ann. Occup. Hyg. 49(7), 575–585 (2005)PubMedGoogle Scholar
  3. 3.
    R. Saran, J. Liu, A silver DNAzyme. Anal. Chem. 88(7), 4014–4020 (2016)CrossRefPubMedGoogle Scholar
  4. 4.
    R. Saran, K. Kleinke, W. Zhou, T. Yu, J. Liu, A silver-specific DNAzyme with a new silver aptamer and salt-promoted activity. Biochemistry 56(14), 1955–1962 (2017)CrossRefPubMedGoogle Scholar
  5. 5.
    J. Müller, Functional metal ions in nucleic acids. Metallomics 2(5), 318–327 (2010)CrossRefPubMedGoogle Scholar
  6. 6.
    J. Schnabl, R.K. Sigel, Controlling ribozyme activity by metal ions. Curr. Opin. Chem. Biol. 14(2), 269–275 (2010)CrossRefPubMedGoogle Scholar
  7. 7.
    A. Ono, S. Cao, H. Togashi, M. Tashiro, T. Fujimoto, T. Machinami, S. Oda, Y. Miyake, I. Okamoto, Y. Tanaka, Specific interactions between silver(I) ions and cytosine-cytosine pairs in DNA duplexes. Chem. Commun. 39(39), 4825 (2008)CrossRefGoogle Scholar
  8. 8.
    A.T. Phan, V. Kuryavyi, D.J. Patel, DNA architecture: from G to. Z. Curr. Opin. Struc. Biol. 16(3), 288–298 (2006)CrossRefGoogle Scholar
  9. 9.
    X.H. Zhou, D.M. Kong, H.X. Shen, Ag+ and cysteine quantitation based on G-quadruplex− hemin DNAzymes disruption by Ag+. Anal. Chem. 82(3), 789–793 (2009)Google Scholar
  10. 10.
    K. Gehring, J.L. Leroy, M. Guéron, A tetrameric DNA structure with protonated cytosine-cytosine base pairs. Nature 363(6429), 561–565 (1993)CrossRefPubMedGoogle Scholar
  11. 11.
    A. Dembska, The analytical and biomedical potential of cytosine-rich oligonucleotides: a review. Anal. Chim. Acta 930, 1–12 (2016)CrossRefPubMedGoogle Scholar
  12. 12.
    H.A. Day, C. Huguin, Z.A. Waller, Silver cations fold i-motif at neutral pH. Chem. Commun. 49(70), 7696–7698 (2013)CrossRefGoogle Scholar
  13. 13.
    P. Travascio, Y. Li, D. Sen, DNA-enhanced peroxidase activity of a DNA aptamer-hemin complex. Chem. biol. 5(9), 505–517 (1998)CrossRefPubMedGoogle Scholar
  14. 14.
    D.M. Kong, L.L. Cai, H.X. Shen, Quantitative detection of Ag+ and cysteine using G-quadruplex–hemin DNAzymes. Analyst 135(6), 1253–1258 (2010)CrossRefPubMedGoogle Scholar
  15. 15.
    J. Huang, X. Su, Z. Li, Metal ion detection using functional nucleic acids and nanomaterials. Biosens. Bioelectron. 96, 127–139 (2017)CrossRefPubMedGoogle Scholar
  16. 16.
    H. Xi, M. Cui, W. Li, Z. Chen, Colorimetric detection of Ag+ based on C-Ag+-C binding as a bridge between gold nanoparticles. Sensors Actuators B Chem. 250, 641–646 (2017)Google Scholar
  17. 17.
    Y. Zhang, M. Li, H. Liu, S. Ge, J. Yu, Label-free colorimetric logic gates based on free gold nanoparticles and the coordination strategy between cytosine and silver ions. New J. Chem. 40(6), 5516–5522 (2016)CrossRefGoogle Scholar
  18. 18.
    A. Safavi, R. Ahmadi, Z. Mohammadpour, Colorimetric sensing of silver ion based on anti aggregation of gold nanoparticles. Sensors Actuators B Chem. 242, 609–615 (2017)CrossRefGoogle Scholar
  19. 19.
    B. Liu, H. Tan, Y. Chen, Visual detection of silver(I) ions by a chromogenic reaction catalyzed by gold nanoparticles. Microchim. Acta 180(5–6), 331–339 (2013)CrossRefGoogle Scholar
  20. 20.
    W. Zhai, C. Wang, P. Yu, Y. Wang, L. Mao, Single-layer MnO2 nanosheets suppressed fluorescence of 7-hydroxycoumarin: mechanistic study and application for sensitive sensing of ascorbic acid in vivo. Anal. Chem. 86(24), 12206–12213 (2014)CrossRefPubMedGoogle Scholar
  21. 21.
    X. Liu, Q. Wang, H. Zhao, L. Zhang, Y. Su, Y. Lv, BSA-templated MnO2 nanoparticles as both peroxidase and oxidase mimics. Analyst 137(19), 4552–4558 (2012)CrossRefPubMedGoogle Scholar
  22. 22.
    J. Liu, L. Meng, Z. Fei, P.J. Dyson, X. Jing, X. Liu, MnO2 nanosheets as an artificial enzyme to mimic oxidase for rapid and sensitive detection of glutathione. Biosens. Bioelectron. 90, 69–74 (2017)CrossRefPubMedGoogle Scholar
  23. 23.
    L. He, Y. Lu, F. Wang, W. Jing, Y. Chen, Y. Liu, Colorimetric sensing of silver ions based on glutathione-mediated MnO2 nanosheets. Sensors Actuators B Chem. 254, 468–474 (2017)CrossRefGoogle Scholar
  24. 24.
    B.M. Wile, K. Ban, Y.S. Yoon, G. Bao, Molecular beacon–enabled purification of living cells by targeting cell type–specific mRNAs. Nat. Protoc. 9(10), 2411–2424 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    S. Bi, B. Ji, Z. Zhang, J.J. Zhu, Metal ions triggered ligase activity for rolling circle amplification and its application in molecular logic gate operations. Chem. Sci. 4(4), 1858–1863 (2013)CrossRefGoogle Scholar
  26. 26.
    K.J. Livak, S. Flood, J. Marmaro, W. Giusti, K. Deetz, Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. Genome Res. 4(6), 357–362 (1995)CrossRefGoogle Scholar
  27. 27.
    N. Cheng, P. Zhu, Y. Xu, K. Huang, Y. Luo, Z. Yang, W. Xu, High-sensitivity assay for Hg (II) and Ag (I) ion detection: a new class of droplet digital PCR logic gates for an intelligent DNA calculator. Biosens. Bioelectron. 84(15), 1 (2016)CrossRefPubMedGoogle Scholar
  28. 28.
    G. Zhu, Y. Li, C.Y. Zhang, Simultaneous detection of mercury (II) and silver (I) ions with picomolar sensitivity. Chem. Commun. 50(5), 572–574 (2014)CrossRefGoogle Scholar
  29. 29.
    Y. Xiao, V. Pavlov, R. Gill, T. Bourenko, I. Willner, Lighting up Biochemiluminescence by the surface self-assembly of DNA–hemin complexes. Chembiochem 5(3), 374–379 (2004)CrossRefPubMedGoogle Scholar
  30. 30.
    T. Li, B. Li, E. Wang, S. Dong, G-quadruplex-based DNAzyme for sensitive mercury detection with the naked eye. Chem. Commun. 24, 3551–3553 (2009)CrossRefGoogle Scholar
  31. 31.
    J.H. Guo, D.M. Kong, H.X. Shen, Design of a fluorescent DNA IMPLICATION logic gate and detection of Ag+ and cysteine with triphenylmethane dye/G-quadruplex complexes. Biosens. Bioelectron. 26(2), 327–332 (2010)CrossRefPubMedGoogle Scholar
  32. 32.
    Y.J. Lu, N. Ma, Y.J. Li, Z.Y. Lin, B. Qiu, G.N. Chen, K.Y. Wong, Styryl quinolinium/G-quadruplex complex for dual-channel fluorescent sensing of Ag+ and cysteine. Sensors Actuators B Chem. 173, 295–299 (2012)CrossRefGoogle Scholar
  33. 33.
    B.H. Kang, Z.F. Gao, N. Li, Y. Shi, N.B. Li, H.Q. Luo, Thiazole orange as a fluorescent probe: label-free and selective detection of silver ions based on the structural change of i-motif DNA at neutral pH. Talanta 156, 141–146 (2016)CrossRefPubMedGoogle Scholar
  34. 34.
    S.O. Kelley, J.K. Barton, Electron transfer between bases in double helical DNA. Science 283(5400), 375–381 (1999)CrossRefPubMedGoogle Scholar
  35. 35.
    E.L. Rachofsky, E. Seibert, J.T. Stivers, R. Osman, J.A. Ross, Conformation and dynamics of abasic sites in DNA investigated by time-resolved fluorescence of 2-aminopurine. Biochemistry 40(4), 957–967 (2001)CrossRefPubMedGoogle Scholar
  36. 36.
    W. Zhou, J. Ding, J. Liu, 2-aminopurine-modified DNA homopolymers for robust and sensitive detection of mercury and silver. Biosens. Bioelectron. 87, 171–177 (2017)CrossRefPubMedGoogle Scholar
  37. 37.
    L.M. Wilhelmsson, Fluorescent nucleic acid base analogues. Q. Rev. Biophys. 43(2), 159–183 (2010)CrossRefPubMedGoogle Scholar
  38. 38.
    K.S. Park, J.Y. Lee, H.G. Park, Mismatched pyrrolo-dC-modified duplex DNA as a novel probe for sensitive detection of silver ions. Chem. Commun. 48(38), 4549–4551 (2012)CrossRefGoogle Scholar
  39. 39.
    J.L. Hammond, N. Formisano, P. Estrela, S. Carrara, J. Tkac, Electrochemical biosensors and nanobiosensors. Essays Biochem. 60(1), 69–80 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Y. Zhang, H. Li, J. Xie, M. Chen, D. Zhang, P. Pang, H. Wang, Z. Wu, W. Yang, Electrochemical biosensor for silver ions based on amplification of DNA–Au bio–bar codes and silver enhancement. J. Electroanal. Chem. 785, 117–124 (2017)CrossRefGoogle Scholar
  41. 41.
    Y. Zhang, H. Li, M. Chen, X. Fang, P. Pang, H. Wang, Z. Wu, W. Yang, Ultrasensitive electrochemical biosensor for silver ion based on magnetic nanoparticles labeling with hybridization chain reaction amplification strategy. Sensors Actuators B Chem. 249, 431–438 (2017)CrossRefGoogle Scholar
  42. 42.
    G. Xu, G. Wang, X. He, Y. Zhu, L. Chen, X. Zhang, An ultrasensitive electrochemical method for detection of Ag+ based on cyclic amplification of exonuclease III activity on cytosine–Ag+−cytosine. Analyst 138(22), 6900–6906 (2013)CrossRefPubMedGoogle Scholar
  43. 43.
    A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)CrossRefGoogle Scholar
  44. 44.
    Z. Liu, B. Liu, J. Ding, J. Liu, Fluorescent sensors using DNA-functionalized graphene oxide. Anal. Bioanal. Chem. 406(27), 6885–6902 (2014)CrossRefPubMedGoogle Scholar
  45. 45.
    W.Y. Xie, W.T. Huang, N.B. Li, H.Q. Luo, Design of a dual-output fluorescent DNA logic gate and detection of silver ions and cysteine based on graphene oxide. Chem. Commun. 48(1), 82–84 (2012)CrossRefGoogle Scholar
  46. 46.
    Y. Wen, F. Xing, S. He, S. Song, L. Wang, Y. Long, D. Li, C. Fan, A graphene-based fluorescent nanoprobe for silver(I) ions detection by using graphene oxide and a silver-specific oligonucleotide. Chem. Commun. 46(15), 2596–2598 (2010)CrossRefGoogle Scholar
  47. 47.
    X. Gao, Y. Lu, R. Zhang, S. He, J. Ju, M. Liu, L. Li, W. Chen, One-pot synthesis of carbon nanodots for fluorescence turn-on detection of Ag+ based on the Ag+-induced enhancement of fluorescence. J. Mater. Chem. C 3(10), 2302–2309 (2015)CrossRefGoogle Scholar
  48. 48.
    S. Bian, C. Shen, Y. Qian, J. Liu, F. Xi, X. Dong, Facile synthesis of sulfur-doped graphene quantum dots as fluorescent sensing probes for Ag+ ions detection. Sensors Actuators B Chem. 242, 231–237 (2017)CrossRefGoogle Scholar
  49. 49.
    A. Cayuela, M.L. Soriano, S.R. Kennedy, J. Steed, M. Valcárcel, Fluorescent carbon quantum dot hydrogels for direct determination of silver ions. Talanta 151, 100–105 (2016)CrossRefPubMedGoogle Scholar
  50. 50.
    S. Cai, X. Tian, L. Sun, et al., Platinum(II)-Oligonucleotide coordination based aptasensor for simple and selective detection of platinum compounds. Anal. Chem. 87(20), 10542–10546 (2015)CrossRefPubMedGoogle Scholar
  51. 51.
    D. Zhao, J. Li, T. Yang, Z. He, “Turn off–on” fluorescent sensor for platinum drugs-DNA interactions based on quantum dots. Biosens. Bioelectron. 52, 29–35 (2014)CrossRefPubMedGoogle Scholar
  52. 52.
    S. Cai, X. Tian, L. Sun, H. Hu, S. Zheng, H. Jiang, L. Yu, S. Zeng, Platinum (II)-oligonucleotide coordination based aptasensor for simple and selective detection of platinum compounds. Anal. Chem. 87(20), 10542–10546 (2015)CrossRefPubMedGoogle Scholar
  53. 53.
    J.F. Zhang, Y. Zhou, J. Yoon, J.S. Kim, Recent progress in fluorescent and colorimetric chemosensors for detection of precious metal ions (silver, gold and platinum ions). Chem. Soc. Rev. 40(7), 3416–3429 (2011)CrossRefPubMedGoogle Scholar
  54. 54.
    S. Singha, D. Kim, H. Seo, S.W. Cho, K.H. Ahn, Fluorescence sensing systems for gold and silver species. Chem. Soc. Rev. 44(13), 4367–4399 (2015)CrossRefPubMedGoogle Scholar
  55. 55.
    H.K. Suda, D.Y. Petrovykh, M.J. Tarlov, L.J. Whitman, Base-dependent competitive adsorption of single-stranded DNA on gold. J. Am. Chem. Soc. 125(30), 9014–9015 (2003)CrossRefPubMedGoogle Scholar
  56. 56.
    F. Wang, B. Liu, P.J.J. Huang, J. Liu, Rationally designed nucleobase and nucleotide coordinated nanoparticles for selective DNA adsorption and detection. Anal. Chem. 85(24), 12144–12151 (2013)CrossRefPubMedGoogle Scholar
  57. 57.
    Y. Wu, R.Y. Lai, Electrochemical gold (III) sensor with high sensitivity and tunable dynamic range. Anal. Chem. 88(4), 2227–2233 (2016)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Yunbo Luo
    • 1
  1. 1.Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina

Personalised recommendations