Advertisement

Functional Nucleic Acid Based Biosensors for GMO Detection

  • Yunbo Luo
Chapter

Abstract

With the growing presence of genetically modified organisms (GMOs) in our daily lives, discussions and concerns about it have not ceased. Meanwhile, many different methods for GMO detection have been developed based on molecule or protein. And the functional nucleic acid has made an important contribution to the detection with its unique advantages.

Keywords

Genetically modified organisms Biosensor PCR Multiple detection 

References

  1. 1.
    G. Feriotto, M. Borgatti, C. Mischiati, N. Bianchi, R. Gambari, Biosensor technology and surface plasmon resonance for real-time detection of genetically modified Roundup Ready soybean gene sequences. J. Agric. Food Chem. 50(5), 955–962 (2002)CrossRefGoogle Scholar
  2. 2.
    Z. Aghili, N. Nasirizadeh, A. Divsalar, S. Shoeibi, P. Yaghmaei, A nanobiosensor composed of exfoliated graphene oxide and gold nano-urchins, for detection of GMO products. Biosens. Bioelectron. 95, 72–80 (2017)CrossRefGoogle Scholar
  3. 3.
    T.N. Truong, D.L. Tran, T.H. Vu, V.H. Tran, T.Q. Duong, Q.K. Dinh, T. Tsukahara, Y.H. Lee, J.S. Kim, Multi-wall carbon nanotubes (MWCNTs)-doped polypyrrole DNA biosensor for label-free detection of genetically modified organisms by QCM and EIS. Talanta 80(3), 1164 (2010)CrossRefGoogle Scholar
  4. 4.
    M. Wang, X. Du, L. Liu, Q. Sun, X. Jiang, DNA biosensor prepared by electrodeposited Pt-nanoparticles for the detection of specific deoxyribonucleic acid sequence in genetically modified soybean. Chin. J. Anal. Chem. 36(7), 890–894 (2008)CrossRefGoogle Scholar
  5. 5.
    M. Mix, J. Rüger, S. Krüger, I. Broer, G.-U. Flechsig, Electrochemical detection of 0.6% genetically modified maize MON810 in real flour samples. Electrochem. Commun. 22, 137–140 (2012)CrossRefGoogle Scholar
  6. 6.
    Z. Zheng, J. Hu, Z. He, A split G-quadruplex and graphene oxide-based low-background platform for fluorescence authentication of Pseudostellaria heterophylla. Sensors (Basel). 14(12), 22971–22981 (2014)CrossRefGoogle Scholar
  7. 7.
    X. Jiang, H. Zhang, J. Wu, X. Yang, J. Shao, Y. Lu, B. Qiu, Z. Lin, G. Chen, G-quadruplex DNA biosensor for sensitive visible detection of genetically modified food. Talanta 128, 445–449 (2014)CrossRefGoogle Scholar
  8. 8.
    B. Qiu, Y. Zhang, Y. Lin, Y. Lu, Z. Lin, K. Wong, G. Chen, A novel fluorescent biosensor for detection of target DNA fragment from the transgene cauliflower mosaic virus 35S promoter. Biosens. Bioelectron. 41, 168–171 (2013)CrossRefGoogle Scholar
  9. 9.
    N. Cheng, Y. Shang, Y. Xu, L. Zhang, Y. Luo, K. Huang, W. Xu, On-site detection of stacked genetically modified soybean based on event-specific TM-LAMP and a DNAzyme-lateral flow biosensor. Biosens. Bioelectron. 91, 408–416 (2017)CrossRefGoogle Scholar
  10. 10.
    X. Huang, C. Zhai, Q. You, H. Chen, Potential of cross-priming amplification and DNA-based lateral-flow strip biosensor for rapid on-site GMO screening. Anal. Bioanal. Chem. 406(17), 4246–4249 (2014)CrossRefGoogle Scholar
  11. 11.
    W. Hemmer, Foods derived from genetically modified organisms and detection methods. Clin. Immunol. 127(400–401), S83 (1997)Google Scholar
  12. 12.
    Xiaodan Xu, Yingcong Li, Heng Zhao, Siyuan Wen, Shengqi Wang, Huang J, Kunlun Huang A, Yunbo Luo. Rapid and reliable detection and identification of GM events using multiplex PCR coupled with oligonucleotide microarray. J. Agric. Food Chem.. 2005; 53 (10):3789CrossRefGoogle Scholar
  13. 13.
    M. Mendelsohn, J. Kough, Z. Vaituzis, K. Matthews, Are Bt crops safe? Nat. Biotechnol. 21(9), 1003–1009 (2003)CrossRefGoogle Scholar
  14. 14.
    E. Anklam, F. Gadani, P. Heinze, H. Pijnenburg, E. Gvanden, Analytical methods for detection and determination of genetically modified organisms in agricultural crops and plant-derived food products. Eur. Food Res. Technol. 214(1), 3–26 (2002)CrossRefGoogle Scholar
  15. 15.
    J.C. Mieog, C.A. Howitt, J.P. Ral, Fast-tracking development of homozygous transgenic cereal lines using a simple and highly flexible real-time PCR assay. BMC Plant Biol. 13(1), 1–9 (2013)CrossRefGoogle Scholar
  16. 16.
    A. Zimmermann, J. Lüthy, U. Pauli, Event specific transgene detection in Bt11 corn by quantitative PCR at the integration site. LWT Food Sci. Technol. 33(3), 210–216 (2000)CrossRefGoogle Scholar
  17. 17.
    Y.G. Liu, R.F. Whittier, Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25(3), 674–681 (1995)CrossRefGoogle Scholar
  18. 18.
    Y. Aihu, Y. Xu, Z. Changsong, Kewei, Event-specific qualitative and quantitative PCR detection of MON863 maize based upon the 3′ -transgene integration sequence. J. Cereal Sci. 43(2), 250–257 (2006)CrossRefGoogle Scholar
  19. 19.
    G.P. Pfeifer, S.D. Steigerwald, P.R. Mueller, B. Wold, A.D. Riggs, Genomic sequencing and methylation analysis by ligation mediated PCR. Science 246(4931), 810–813 (1989)CrossRefGoogle Scholar
  20. 20.
    A. Holck, M. Vaïtilingom, L. Didierjean, K. Rudi, 5′-nuclease PCR for quantitative event-specific detection of the genetically modified Mon810 MaisGard maize. Eur. Food Res. Technol. 215(2), 182–182 (2002)CrossRefGoogle Scholar
  21. 21.
    T. Kohda, K. Taira, A simple and efficient method to determine the terminal sequences of restriction fragments containing known sequences. Dna Res. Int. J. Rapid Publ. Rep. Genes Genomes 7(2), 151 (2000)Google Scholar
  22. 22.
    A. Rosenthal, D.S. Jones, Genomic walking and sequencing by oligo-cassette mediated polymerase chain reaction. Nucleic Acids Res. 18(10), 3095 (1990)CrossRefGoogle Scholar
  23. 23.
    Y. Ge, N.W. Charon, Identification of a large motility operon in Borrelia burgdorferi by semi-random PCR chromosome walking. Gene 189(2), 195 (1997)CrossRefGoogle Scholar
  24. 24.
    Y. Yan, C. An, L. Li, J. Gu, G. Tan, Z. Chen, T-linker-specific ligation PCR (T-linker PCR): an advanced PCR technique for chromosome walking or for isolation of tagged DNA ends. Nucleic Acids Res. 31(12), e68 (2003)CrossRefGoogle Scholar
  25. 25.
    Q. Trinh, W. Xu, H. Shi, Y. Luo, K. Huang, An A-T linker adapter polymerase chain reaction method for chromosome walking without restriction site cloning bias. Anal. Biochem. 425(1), 62–67 (2012)CrossRefGoogle Scholar
  26. 26.
    J. Riley, R. Butler, D. Ogilvie, R. Finniear, D. Jenner, S. Powell, R. Anand, J.C. Smith, A.F. Markham, A novel, rapid method for the isolation of terminal sequences from yeast artificial chromosome (YAC) clones. Nucleic Acids Res. 18(10), 2887 (1990)CrossRefGoogle Scholar
  27. 27.
    P.N. Hengen, Vectorette, splinkerette and boomerang DNA amplification. Trends Biochem. Sci. 20(9), 372 (1995)CrossRefGoogle Scholar
  28. 28.
    J.H. Shiming Wang, Z. Cui, S. Li, Self-formed adaptor PCR: a simple and efficient method for chromosome walking. Appl. Environ. Microbiol. 73(15), 5048 (2007)CrossRefGoogle Scholar
  29. 29.
    W. Xu, Y. Shang, P. Zhu, Z. Zhai, J. He, K. Huang, Y. Luo, Randomly broken fragment PCR with 5′ end-directed adaptor for genome walking. Sci. Rep. 3, 3465 (2013)CrossRefGoogle Scholar
  30. 30.
    C. Leoni, M. Volpicella, F.D. Leo, R. Gallerani, L.R. Ceci, Genome walking in eukaryotes. FEBS J. 278(21), 3953 (2011)CrossRefGoogle Scholar
  31. 31.
    V. Thirulogachandar, P. Pandey, C.S. Vaishnavi, M.K. Reddy, An affinity-based genome walking method to find transgene integration loci in transgenic genome. Anal. Biochem. 416(2), 196–201 (2011)CrossRefGoogle Scholar
  32. 32.
    D. Kovalic, The use of next generation sequencing and junction sequence analysis bioinformatics to achieve molecular characterization of crops improved through modern biotechnology. Plant Genome. 5(3), 149–163 (2012)Google Scholar
  33. 33.
    J. Shendure, H. Ji, Next-generation DNA sequencing. Nat. Biotechnol. 26(10), 1135 (2008)CrossRefGoogle Scholar
  34. 34.
    P. Medvedev, M. Stanciu, M. Brudno, Computational methods for discovering structural variation with next-generation sequencing. Nat. Methods 6(11 Suppl), S13 (2009)CrossRefGoogle Scholar
  35. 35.
    W. Hua, T. Caitlin, S. Blanchard, Z. Guan, The Fidelity Index provides a systematic quantitation of star activity of DNA restriction endonucleases. Nucleic Acids Res. 36(9), e50 (2008)CrossRefGoogle Scholar
  36. 36.
    Litao Yang, Songci Xu, Aihu Pan, Changsong Yin, Kewei Zhang, Wang Z, Zhigang Zhou A, Dabing Zhang. Event specific qualitative and quantitative polymerase chain reaction detection of genetically modified MON863 maize based on the 5′-transgene integration sequence. J. Agric. Food Chem. 2005; 53 (24):9312CrossRefGoogle Scholar
  37. 37.
    B. Fca, F. Cdoss, L.L. Valente, A. Acm, Nested PCR detection of genetically modified soybean in soybean flour, infant formula and soymilk. LWT Food Sci. Technol. 40(4), 748–751 (2007)CrossRefGoogle Scholar
  38. 38.
    A.Z. Dinon, J.E.D. Melo, A.C.M. Arisi, Monitoring of MON810 genetically modified maize in foods in Brazil from 2005 to 2007. J. Food Compos. Anal. 21(6), 515–518 (2008)CrossRefGoogle Scholar
  39. 39.
    R. Higuchi, C. Fockler, G. Dollinger, R. Watson, Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology 11(9), 1026 (1993)PubMedGoogle Scholar
  40. 40.
    W.T. Xu, W.B. Bai, Y.B. Luo, Y.F. Yuan, K.L. Huang, Research progress in techniques for detecting genetically modified organisms. Chin. J. Agric. Biotechnol. 6(1), 1–9 (2009)CrossRefGoogle Scholar
  41. 41.
    I. Calves, High resolution melting analysis for fast and cheap polymorphism screening of marine populations. Nature Com. (2012)Google Scholar
  42. 42.
    M. Mazzara, A. Bogni, G. Van Den Eede, Event-specific method for the quantification of cotton line MON1445 using real-time PCR. (Publications Office of the European Union, 2008), pp. 1–87Google Scholar
  43. 43.
    L. Yang, A. Pan, K. Zhang, C. Yin, B. Qian, J. Chen, C. Huang, D. Zhang, Qualitative and quantitative PCR methods for event-specific detection of genetically modified cotton Mon1445 and Mon531. Transgenic Res. 14(6), 817–831 (2005)CrossRefGoogle Scholar
  44. 44.
    W.T. Xu, N. Zhang, Y.B. Luo, Z.F. Zhai, Y. Shang, X.H. Yan, J.J. Zheng, K.L. Huang, Establishment and evaluation of event-specific qualitative and quantitative PCR method for genetically modified soybean DP-356043-5. Eur. Food Res. Technol. 233(4), 685 (2011)CrossRefGoogle Scholar
  45. 45.
    N. Zhang, W. Xu, W. Bai, Z. Zhai, Y. Luo, X. Yan, J. He, K. Huang, Event-specific qualitative and quantitative PCR detection of LY038 maize in mixed samples. Food Control 22(8), 1287–1295 (2011)CrossRefGoogle Scholar
  46. 46.
    A. Holck, M. Vaïtilingom, L. Didierjean, K. Rudi, 5′-nuclease PCR for quantitative event-specific detection of the genetically modified Mon810 MaisGard maize. Eur. Food Res. Technol. 214(5), 449–454 (2002)CrossRefGoogle Scholar
  47. 47.
    C. Collonnier, A. Schattner, G. Berthier, F. Boyer, G. Couéphilippe, A. Diolez, M.N. Duplan, S. Fernandez, N. Kebdani, A. Kobilinsky, Characterization and event specific-detection by quantitative real-time PCR of T25 maize insert. J. AOAC Int. 88(2), 536–546 (2005)PubMedGoogle Scholar
  48. 48.
    C.R. Nielsen, K.G. Berdal, A. Holst-Jensen, Characterisation of the 5′ integration site and development of an event-specific real-time PCR assay for NK603 maize from a low starting copy number. Eur. Food Res. Technol. 219(4), 421–427 (2004)CrossRefGoogle Scholar
  49. 49.
    B.J. Hindson, K.D. Ness, D.A. Masquelier, P. Belgrader, N.J. Heredia, A.J. Makarewicz, I.J. Bright, M.Y. Lucero, A.L. Hiddessen, T.C. Legler, High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem. 83(22), 8604 (2011)CrossRefGoogle Scholar
  50. 50.
    S. Bhat, J. Herrmann, P. Armishaw, P. Corbisier, K.R. Emslie, Single molecule detection in nanofluidic digital array enables accurate measurement of DNA copy number. Anal. Bioanal. Chem. 394(2), 457–467 (2009)CrossRefGoogle Scholar
  51. 51.
    A.S. Whale, J.F. Huggett, S. Cowen, V. Speirs, J. Shaw, S. Ellison, C.A. Foy, D.J. Scott, Comparison of microfluidic digital PCR and conventional quantitative PCR for measuring copy number variation. Nucleic Acids Res. 40(11), e82 (2012)CrossRefGoogle Scholar
  52. 52.
    M.J. Burns, A.M. Burrell, C.A. Foy, The applicability of digital PCR for the assessment of detection limits in GMO analysis. Eur. Food Res. Technol. 4(3), 43–53 (1999)Google Scholar
  53. 53.
    M. Baker, Digital PCR hits its stride. Nat. Methods 9(9), 541–544 (2012)CrossRefGoogle Scholar
  54. 54.
    G.P. Mcdermott, D. Do, C.M. Litterst, D. Maar, C.M. Hindson, E.R. Steenblock, T.C. Legler, Y. Jouvenot, S.H. Marrs, A. Bemis, Multiplexed target detection using DNA-binding dye chemistry in droplet digital PCR. Anal. Chem. 85(23), 11619–11627 (2013)CrossRefGoogle Scholar
  55. 55.
    T. Notomi, H. Okayama, H. Masubuchi, T. Yonekawa, K. Watanabe, N. Amino, T. Hase, Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28(12), E63 (2000)CrossRefGoogle Scholar
  56. 56.
    F. Maruyama, T. Kenzaka, N. Yamaguchi, K. Tani, M. Nasu, Detection of bacteria carrying the stx2 gene by in situ loop-mediated isothermal amplification. Appl. Environ. Microbiol. 69(8), 5023 (2003)CrossRefGoogle Scholar
  57. 57.
    G. Zhang, E.W. Brown, N. Gonzálezescalona, Comparison of real-time PCR, reverse transcriptase real-time PCR, loop-mediated isothermal amplification, and the FDA conventional microbiological method for the detection of salmonella spp. in produce. Appl. Environ. Microbiol. 77(18), 6495–6501 (2011)CrossRefGoogle Scholar
  58. 58.
    X.L. Xi Lu, Z. Mo, F. Jin, B. Wang, H. Zhao, X. Shan, L. Shi, Rapid identification of Chikungunya and Dengue virus by a real-time reverse transcription-loop-mediated isothermal amplification method. Am J Trop Med Hyg. 87(5), 947–953 (2012)CrossRefGoogle Scholar
  59. 59.
    A. Ablordey, D.A. Amissah, I.F. Aboagye, B. Hatano, T. Yamazaki, T. Sata, K. Ishikawa, H. Katano, Detection of mycobacterium ulcerans by the loop mediated isothermal amplification method. PLoS Negl. Trop. Dis. 6(4), e1590 (2012)CrossRefGoogle Scholar
  60. 60.
    C. Zahradnik, C. Kolm, R. Martzy, R.L. Mach, R. Krska, A.H. Farnleitner, K. Brunner, Detection of the 35S promoter in transgenic maize via various isothermal amplification techniques: a practical approach. Anal. Bioanal. Chem. 406(27), 6835–6842 (2014)CrossRefGoogle Scholar
  61. 61.
    J. Xu, Q. Zheng, L. Yu, R. Liu, X. Zhao, G. Wang, Q. Wang, J. Cao, Loop-mediated isothermal amplification (LAMP) method for detection of genetically modified maize T25. Food Sci. Nutr. 1(6), 432–438 (2013)CrossRefGoogle Scholar
  62. 62.
    X. Huang, L. Chen, J. Xu, H.F. Ji, S. Zhu, H. Chen, Rapid visual detection of phytase gene in genetically modified maize using loop-mediated isothermal amplification method. Food Chem. 156(3), 184 (2014)CrossRefGoogle Scholar
  63. 63.
    F. Li, W. Yan, L. Long, X. Qi, C. Li, S. Zhang, Development and application of loop-mediated isothermal amplification assays for rapid visual detection of cry2Ab and cry3A genes in genetically-modified crops. Int. J. Mol. Sci. 15(9), 15109–15121 (2014)CrossRefGoogle Scholar
  64. 64.
    X.J. Ma, Y.L. Shu, K. Nie, M. Qin, D.Y. Wang, R.B. Gao, M. Wang, L.Y. Wen, F. Han, S.M. Zhou, Visual detection of pandemic influenza A H1N1 Virus 2009 by reverse-transcription loop-mediated isothermal amplification with hydroxynaphthol blue dye. J. Virol. Methods 167(2), 214–217 (2010)CrossRefGoogle Scholar
  65. 65.
    L. Luo, K. Nie, M.J. Yang, M. Wang, J. Li, C. Zhang, H.T. Liu, X.J. Ma, Visual detection of high-risk human papillomavirus genotypes 16, 18, 45, 52, and 58 by loop-mediated isothermal amplification with Hydroxynaphthol blue dye. J. Clin. Microbiol. 49(10), 3545 (2011)CrossRefGoogle Scholar
  66. 66.
    S. Fukuta, Y. Mizukami, A. Ishida, J. Ueda, M. Hasegawa, I. Hayashi, M. Hashimoto, M. Kanbe, Real-time loop-mediated isothermal amplification for the CaMV-35S promoter as a screening method for genetically modified organisms. Eur. Food Res. Technol. 218(5), 496–500 (2004)CrossRefGoogle Scholar
  67. 67.
    S. Huang, Y. Xu, X. Yan, Y. Shang, P. Zhu, W. Tian, W. Xu, Development and application of a quantitative loop-mediated isothermal amplification method for detecting genetically modified maize MON863. J. Sci. Food Agric. 95(2), 253–259 (2015)CrossRefGoogle Scholar
  68. 68.
    X.U. Wen-Tao, K.L. Huang, Y.B. Luo, SYBR Green I based PCR for detection of the bar and pat genes in genetically modified organisms. Food Sci. 27(3), 202–206 (2006)Google Scholar
  69. 69.
    H.Y.H. And, T.M. Pan, Detection of genetically modified maize MON810 and NK603 by multiplex and real-time polymerase chain reaction methods. J. Agric. Food Chem. 52(11), 3264–3268 (2004)CrossRefGoogle Scholar
  70. 70.
    A. Germini, A. Zanetti, C. Salati, S. Rossi, C. Forré, S. Schmid, R. Marchelli, C. Fogher, Development of a seven-target multiplex PCR for the simultaneous detection of transgenic soybean and maize in feeds and foods. J. Agric. Food Chem. 52(11), 3275–3280 (2004)CrossRefGoogle Scholar
  71. 71.
    W. Xu, Z. Zhai, K. Huang, N. Zhang, Y. Yuan, Y. Shang, Y. Luo, A novel universal primer-multiplex-PCR method with sequencing gel electrophoresis analysis. PLoS One 7(1), e22900 (2012)CrossRefGoogle Scholar
  72. 72.
    W. Xu, Y. Yuan, Y. Luo, W. Bai, C. Zhang, K. Huang, Event-specific detection of stacked genetically modified maize Bt11 x GA21 by UP-M-PCR and real-time PCR. J. Agric. Food Chem. 57(2), 395 (2009)CrossRefGoogle Scholar
  73. 73.
    W.T. Xu, W.B. Bai, Y.B. Luo, Y. Yuan, W. Zhang, X. Guo, K. Huang, A novel common single primer multiplex polymerase chain reaction (CSP-M-PCR) method for the identification of animal species in minced meat. J. Sci. Food Agric. 88(15), 2631–2637 (2008)CrossRefGoogle Scholar
  74. 74.
    C. Zhang, W. Xu, Z. Zhai, Y. Luo, X. Yan, N. Zhang, K. Huang, Universal primer-multiplex-polymerase chain reaction (UP-M-PCR) and capillary electrophoresis-laser-induced fluorescence analysis for the simultaneous detection of six genetically modified maize lines. J. Agric. Food Chem. 59(10), 5188–5194 (2011)CrossRefGoogle Scholar
  75. 75.
    J. Guo, L. Yang, L. Chen, D. Morisset, X. Li, L. Pan, D. Zhang, MPIC: a high-throughput analytical method for multiple DNA targets. Anal. Chem. 83(5), 1579–1586 (2011)CrossRefGoogle Scholar
  76. 76.
    L. Véronèse, O. Tournilhac, P. Combes, N. Prie, E. Pierre-Eymard, R. Guièze, R. Veyrat-Masson, J.O. Bay, P. Vago, A. Tchirkov, Contribution of MLPA to routine diagnostic testing of recurrent genomic aberrations in chronic lymphocytic leukemia. Cancer Gene Ther. 206(1–2), 19–25 (2013)CrossRefGoogle Scholar
  77. 77.
    J. Cui, M. Azimi, A.D. Adekile, A.H. Al, C.C. Hoppe, Detection of anti-Lepore Hb P-Nilotic by multiplex ligation-dependent probe amplification. Hemoglobin 36(3), 276–282 (2012)CrossRefGoogle Scholar
  78. 78.
    F. Moreano, A. Ehlert, U. Busch, K.H. Engel, Ligation-dependent probe amplification for the simultaneous event-specific detection and relative quantification of DNA from two genetically modified organisms. Eur. Food Res. Technol. 222(5–6), 479–485 (2006)CrossRefGoogle Scholar
  79. 79.
    H. AL, D. SM, EH, Quantitative, multiplex ligation-dependent probe amplification for the determination of eight genetically modified maize events. Eur. Food Res. Technol. 230(2), 185–194 (2009)CrossRefGoogle Scholar
  80. 80.
    E. Alexandra, M. Francisco, B. Ulrich, E. Karlheinz, Development of a modular system for detection of genetically modified organisms in food based on ligation-dependent probe amplification. Eur. Food Res. Technol. 227(3), 805–812 (2008)CrossRefGoogle Scholar
  81. 81.
    Y. Shang, P. Zhu, W. Xu, T. Guo, W. Tian, Y. Luo, K. Huang, Single universal primer multiplex ligation-dependent probe amplification with sequencing gel electrophoresis analysis. Anal. Biochem. 443(2), 243–248 (2013)CrossRefGoogle Scholar
  82. 82.
    H.K. Shrestha, K.K. Hwu, S.J. Wang, L.F. Liu, M.C. Chang, Simultaneous detection of eight genetically modified maize lines using a combination of event- and construct-specific multiplex-PCR technique. J. Agric. Food Chem. 56(19), 8962–8968 (2008)CrossRefGoogle Scholar
  83. 83.
    T. Lalic, R.H. Vossen, J. Coffa, J.P. Schouten, M. Gucscekic, D. Radivojevic, M. Djurisic, M.H. Breuning, S.J. White, J.T. den Dunnen, Deletion and duplication screening in the DMD gene using MLPA. Eur. J. Hum. Genet. Ejhg 13(11), 1231 (2005)CrossRefGoogle Scholar
  84. 84.
    Q. Lan, Tianiin. Special-base GMCs detection using multiple PCR and pyrosequencing. J. China Agric. Univ. (2012)Google Scholar
  85. 85.
    Q. Song, G. Wei, G. Zhou, Analysis of genetically modified organisms by pyrosequencing on a portable photodiode-based bioluminescence sequencer. Food Chem. 154(154), 78 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Yunbo Luo
    • 1
  1. 1.Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina

Personalised recommendations