Advertisement

Functional Nucleic Acid Based Biosensor for Microorganism Detection

  • Yunbo Luo
Chapter

Abstract

Food safety especially the problems of microorganism pollution is always a nonnegotiable attribute in food trade, sales, and consumption. It is significant to detect the microorganisms including themselves, their crude excretion or their toxin, and so on that are possible to decrease the quality of food and increase the food safety risks. With the contributions of the progress in analytical chemistry and molecular biology, many kinds of technology satisfy the rapid detections of microorganisms with high specification and sensitivity. However, nucleic acid is a typical factor in these hazard exposures. In this review, we have reached up to a comprehensive representation of functional nucleic acid biosensors for detecting microorganism. Functional nucleic acid is one of the most vital biological micromolecules, indispensable for almost every life events of microorganisms and rich in all organisms. As for the research idea, highlight, and superiority of the functional nucleic acid biosensor for microorganisms, the sequence of nucleic acid is the important part where the information is taken from. From another point of view, DNA can be utilized as recognizing element and enzyme upon the specific structure to detect microorganisms. Therefore, it is shown obviously that functional nucleic acid biosensors can be efficient for detecting microorganisms, and research on it is becoming profound in microorganism detection. And this chapter will be nearly the most comprehensive description about functional nucleic acid-based biosensor for the microorganism detection.

Keywords

Functional nucleic acid Biosensor microorganisms Detection 

References

  1. 1.
    M.R. Riley, C.P. Gerba, M. Elimelech, J. Biol. Eng. 5, 2 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    M.A. Montgomery, M. Elimelech, Environ Sci Technol. 41,17–24, (2007)Google Scholar
  3. 3.
    M.D. Sobsey, S.D. Pillai, J. Water Health 7, S75–S93 (2009)PubMedCrossRefGoogle Scholar
  4. 4.
    M. Fernández, D.M. Linares, B. del Río, V. Ladero, M.A. Alvarez, J. Dairy Res. 74, 276–282 (2007)PubMedCrossRefGoogle Scholar
  5. 5.
    M. Sasser, Identification of bacteria by gas chromatography of cellular fatty acids (1990)Google Scholar
  6. 6.
    M.A. Claydon, S.N. Davey, V. Edwards-Jones, D.B. Gordon, Nat. Biotechnol. 14, 1584–1586 (1996)PubMedCrossRefGoogle Scholar
  7. 7.
    B. Buszewski, M. Szumski, E. Kłodzińska, H. Dahm, J. Sep. Sci. 26, 1045–1049 (2003)CrossRefGoogle Scholar
  8. 8.
    L. Marilley, S. Ampuero, T. Zesiger, M.G. Casey, Int. Dairy J. 14, 849–856 (2004)CrossRefGoogle Scholar
  9. 9.
    Y. Zhao, M. Ye, Q. Chao, N. Jia, Y. Ge, H. Shen, J. Agric. Food Chem. 57, 517–524 (2008)CrossRefGoogle Scholar
  10. 10.
    W. Dudman, J. Bacteriol. 88, 782–794 (1964)PubMedPubMedCentralGoogle Scholar
  11. 11.
    Y.-s. Peng, K.-y. Peng, J. Invertebr. Pathol. 33, 284–289 (1979)CrossRefGoogle Scholar
  12. 12.
    J. Li, K. Xia, C. Yu, Food Control 30, 251–254 (2013)CrossRefGoogle Scholar
  13. 13.
    J.-Y. Hou, T.-C. Liu, G.-F. Lin, Z.-X. Li, L.-P. Zou, M. Li, Y.-S. Wu, Anal. Chim. Acta 734, 93–98 (2012)PubMedCrossRefGoogle Scholar
  14. 14.
    K. Wong, K. Chua, S. Lam, Ann. Neurol. 45, 271–272 (1999)PubMedCrossRefGoogle Scholar
  15. 15.
    M. Famulok, J.S. Hartig, G. Mayer, Chem. Rev. 107, 3715–3743 (2007)PubMedCrossRefGoogle Scholar
  16. 16.
    D. Dell’Atti, S. Tombelli, M. Minunni, M. Mascini, Biosens. Bioelectron. 21, 1876–1879 (2006)PubMedCrossRefGoogle Scholar
  17. 17.
    S.R. Mikkelsen, Electroanalysis 8, 15–19 (1996)CrossRefGoogle Scholar
  18. 18.
    U. Bora, A. Sett, D. Singh, Biosens. J. 1, 104 (2013)Google Scholar
  19. 19.
    J. Zhai, H. Cui, R. Yang, Biotechnol. Adv. 15, 43–58 (1997)PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    J. Wang, Nucleic Acids Res. 28, 3011–3016 (2000)PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    T.M. Herne, M.J. Tarlov, J. Am. Chem. Soc. 119, 8916–8920 (1997)CrossRefGoogle Scholar
  22. 22.
    C. Teller, I. Willner, Curr. Opin. Biotechnol. 21, 376–391 (2010)PubMedCrossRefGoogle Scholar
  23. 23.
    S. Nagatoishi, N. Isono, K. Tsumoto, N. Sugimoto, Biochimie 93, 1231–1238 (2011)PubMedCrossRefGoogle Scholar
  24. 24.
    J. Liu, Z. Cao, Y. Lu, Chem. Rev. 109, 1948–1998 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Y. Li, D. Sen, Nat. Struct. Mol. Biol. 3, 743–747 (1996)CrossRefGoogle Scholar
  26. 26.
    P. Travascio, Y. Li, D. Sen, Chem. Biol. 5, 505–517 (1998)PubMedCrossRefGoogle Scholar
  27. 27.
    M. Wang, Y. Han, Z. Nie, C. Lei, Y. Huang, M. Guo, S. Yao, Biosens. Bioelectron. 26, 523–529 (2010)PubMedCrossRefGoogle Scholar
  28. 28.
    D.S. Wilson, J.W. Szostak, Annu. Rev. Biochem. 68, 611–647 (1999)PubMedCrossRefGoogle Scholar
  29. 29.
    R.R. Breaker, Chem. Rev. 97, 371–390 (1997)PubMedCrossRefGoogle Scholar
  30. 30.
    R.R. Breaker, Curr. Opin. Chem. Biol. 1, 26–31 (1997)PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    M.M. Ali, S.D. Aguirre, H. Lazim, Y. Li, Angew. Chem. Int. Ed. 50, 3751–3754 (2011)CrossRefGoogle Scholar
  32. 32.
    M.D. Frank-Kamenetskii, S.M. Mirkin, Annu. Rev. Biochem. 64, 65–95 (1995)PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    J. Ikbal, G.S. Lim, Z. Gao, TrAC Trends Anal. Chem. 64, 86–99 (2015)CrossRefGoogle Scholar
  34. 34.
    R.M. Clegg, Curr. Opin. Biotechnol. 6, 103–110 (1995)PubMedCrossRefGoogle Scholar
  35. 35.
    R. Jin, G. Wu, Z. Li, C.A. Mirkin, G.C. Schatz, J. Am. Chem. Soc. 125, 1643–1654 (2003)PubMedCrossRefGoogle Scholar
  36. 36.
    Y. Li, H.J. Schluesener, S. Xu, Gold Bull. 43, 29–41 (2010)CrossRefGoogle Scholar
  37. 37.
    Y. Zhou, S. Wang, K. Zhang, X. Jiang, Angew. Chem. 120, 7564–7566 (2008)CrossRefGoogle Scholar
  38. 38.
    P.M. Lizardi, X. Huang, Z. Zhu, P. Bray-Ward, D.C. Thomas, D.C. Ward, Nat. Genet. 19, (1998)Google Scholar
  39. 39.
    T. Notomi, H. Okayama, H. Masubuchi, T. Yonekawa, K. Watanabe, N. Amino, T. Hase, Nucleic Acids Res. 28, e63–e63 (2000)PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    B. Li, X. Chen, A.D. Ellington, Anal. Chem. 84, 8371–8377 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    M. Parida, S. Sannarangaiah, P.K. Dash, P. Rao, K. Morita, Rev. Med. Virol. 18, 407–421 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    P. Gill, A. Ghaemi, Nucleosides Nucleotides Nucleic Acids 27, 224–243 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    L. Yan, J. Zhou, Y. Zheng, A.S. Gamson, B.T. Roembke, S. Nakayama, H.O. Sintim, Mol. BioSyst. 10, 970–1003 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    E.A. Oblath, W.H. Henley, J.P. Alarie, J.M. Ramsey, Lab Chip 13, 1325–1332 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    N. Hierro, B. Esteve-Zarzoso, Á. González, A. Mas, J.M. Guillamón, Appl. Environ. Microbiol. 72, 7148–7155 (2006)PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    R.A. White, P.C. Blainey, H.C. Fan, S.R. Quake, BMC Genomics 10, 116 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    T.G. Kim, S.-Y. Jeong, K.-S. Cho, Appl. Microbiol. Biotechnol. 98, 6105–6113 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    E.A. Ottesen, J.W. Hong, S.R. Quake, J.R. Leadbetter, Science 314, 1464–1467 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    S. Song, L. Wang, J. Li, C. Fan, J. Zhao, TrAC Trends Anal. Chem. 27, 108–117 (2008)CrossRefGoogle Scholar
  50. 50.
    H. Wei, B. Li, J. Li, E. Wang, S. Dong, Chem. Commun. 36, 3735–3737 (2007)CrossRefGoogle Scholar
  51. 51.
    J. Liu, Y. Lu, Nat. Protoc. 1, 246 (2006)PubMedCrossRefGoogle Scholar
  52. 52.
    C. Yang, V. Lates, B. Prieto-Simón, J.-L. Marty, X. Yang, Biosens. Bioelectron. 32, 208–212 (2012)PubMedCrossRefGoogle Scholar
  53. 53.
    V. Pavlov, Y. Xiao, R. Gill, A. Dishon, M. Kotler, I. Willner, Anal. Chem. 76, 2152–2156 (2004)PubMedCrossRefGoogle Scholar
  54. 54.
    Y. Xiao, V. Pavlov, T. Niazov, A. Dishon, M. Kotler, I. Willner, J. Am. Chem. Soc. 126, 7430–7431 (2004)PubMedCrossRefGoogle Scholar
  55. 55.
    A.D. Ellington, J.W. Szostak, Nature 346, 818 (1990)PubMedCrossRefGoogle Scholar
  56. 56.
    R. Stoltenburg, C. Reinemann, B. Strehlitz, Biomol. Eng. 24, 381–403 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    M. Berezovski, M. Musheev, A. Drabovich, S.N. Krylov, J. Am. Chem. Soc. 128, 1410–1411 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    R. White, C. Rusconi, E. Scardino, A. Wolberg, J. Lawson, M. Hoffman, B. Sullenger, Mol. Ther. 4, 567–573 (2001)PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Z. Zhu, Y. Song, C. Li, Y. Zou, L. Zhu, Y. An, C.J. Yang, Anal. Chem. 86, 5881–5888 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    D.A. Daniels, H. Chen, B.J. Hicke, K.M. Swiderek, L. Gold, Proc. Natl. Acad. Sci. 100, 15416–15421 (2003)PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    C.L. Hamula, J.W. Guthrie, H. Zhang, X.-F. Li, X.C. Le, TrAC Trends Anal. Chem. 25, 681–691 (2006)CrossRefGoogle Scholar
  62. 62.
    G. Mayer, L.A. Marie-sophie, A. Dolf, E. Endl, P.A. Knolle, M. Famulok, Nat. Protoc. 5, 1993 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    S.D. Mendonsa, M.T. Bowser, J. Am. Chem. Soc. 126, 20–21 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    M. Berezovski, A. Drabovich, S.M. Krylova, M. Musheev, V. Okhonin, A. Petrov, S.N. Krylov, J. Am. Chem. Soc. 127, 3165–3171 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    L. Johnson, P.D. Gershon, Nucleic Acids Res. 27, 2708–2721 (1999)PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    S.M. Shamah, J.M. Healy, S.T. Cload, Acc. Chem. Res. 41, 130–138 (2008)CrossRefGoogle Scholar
  67. 67.
    Y.-C. Chang, C.-Y. Yang, R.-L. Sun, Y.-F. Cheng, W.-C. Kao, P.-C. Yang, Sci. Rep. 3 (2013)Google Scholar
  68. 68.
    M. Yang, Z. Peng, Y. Ning, Y. Chen, Q. Zhou, L. Deng, Sensors 13, 6865–6881 (2013)PubMedCrossRefGoogle Scholar
  69. 69.
    P. Xie, L. Zhu, X. Shao, K. Huang, J. Tian, W. Xu, Sci. Rep. 6, 29524 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    L. Soleymani, Z. Fang, B. Lam, X. Bin, E. Vasilyeva, A.J. Ross, E.H. Sargent, S.O. Kelley, ACS Nano 5, 3360–3366 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    J.J. Li, W. Tan, Nano Lett. 2, 315–318 (2002)CrossRefGoogle Scholar
  72. 72.
    J. Liu, Y. Lu, J. Am. Chem. Soc. 126, 12298–12305 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    J. Liu, Y. Lu, J. Am. Chem. Soc. 127, 12677–12683 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    H.M. So, D.W. Park, E.K. Jeon, Y.H. Kim, B.S. Kim, C.K. Lee, S.Y. Choi, S.C. Kim, H. Chang, J.O. Lee, Small 4, 197–201 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    C.L. Hamula, H. Zhang, L.L. Guan, X.-F. Li, X.C. Le, Anal. Chem. 80, 7812–7819 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    J.J. DeStefano, J.V. Cristofaro, Nucleic Acids Res. 34, 130–139 (2006)PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    L. Zhu, X. Shao, Y. Luo, K. Huang, W. Xu, ACS Chem. Biol. 12, 1373–1380 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    J. Kosman, B. Juskowiak, Anal. Chim. Acta 707, 7–17 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    R. Kelley, C. Patterson, J. Thromb. Haemost. 4, 1476–1478 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    L. Zhu, Y. Xu, N. Cheng, P. Xie, X. Shao, K. Huang, Y. Luo, W. Xu, Sensors Actuators B Chem. 242, 880–888 (2017)CrossRefGoogle Scholar
  81. 81.
    W. Xu, J. Tian, X. Shao, L. Zhu, K. Huang, Y. Luo, Biosens. Bioelectron. 89, 795–801 (2017)PubMedCrossRefGoogle Scholar
  82. 82.
    A.H. Free, E.C. Adams, M.L. Kercher, H.M. Free, M.H. Cook, Clin. Chem. 3, 163–168 (1957)PubMedGoogle Scholar
  83. 83.
    B. Ngom, Y. Guo, X. Wang, D. Bi, Anal. Bioanal. Chem. 397, 1113–1135 (2010)PubMedCrossRefGoogle Scholar
  84. 84.
    W. Xu, Functional Nucleic Acids Detection Food Safety. Springer (2016)Google Scholar
  85. 85.
    C. Parolo, A. Merkoçi, Chem. Soc. Rev. 42, 450–457 (2013)PubMedCrossRefGoogle Scholar
  86. 86.
    J. Sun, Y. Xianyu, X. Jiang, Chem. Soc. Rev. 43, 6239–6253 (2014)PubMedCrossRefGoogle Scholar
  87. 87.
    P. Yager, G.J. Domingo, J. Gerdes, Annu. Rev. Biomed. Eng. 10, 107–144 (2008)PubMedCrossRefGoogle Scholar
  88. 88.
    J. Hu, S. Wang, L. Wang, F. Li, B. Pingguan-Murphy, T.J. Lu, F. Xu, Biosens. Bioelectron. 54, 585–597 (2014)PubMedCrossRefGoogle Scholar
  89. 89.
    M. Sajid, A.-N. Kawde, M. Daud, J. Saudi Chem. Soc. 19, 689–705 (2015)CrossRefGoogle Scholar
  90. 90.
    D. Quesada-González, A. Merkoçi, Biosens. Bioelectron. 73, 47–63 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    R. Higuchi, C. Fockler, G. Dollinger, R. Watson, Nat. Biotechnol. 11, 1026–1030 (1993)CrossRefGoogle Scholar
  92. 92.
    H. Zipper, H. Brunner, J. Bernhagen, F. Vitzthum, Nucleic Acids Res. 32, e103–e103 (2004)PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    C.A. Heid, J. Stevens, K.J. Livak, P.M. Williams, Genome Res. 6, 986–994 (1996)PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    I. Taverniers, E. Van Bockstaele, M. De Loose, Anal. Bioanal. Chem. 378, 1198–1207 (2004)PubMedCrossRefGoogle Scholar
  95. 95.
    A. Holck, M. Vaïtilingom, L. Didierjean, K. Rudi, Eur. Food Res. Technol. 214, 449–454 (2002)CrossRefGoogle Scholar
  96. 96.
    W.-T. Xu, K.-L. Huang, A.-K. Deng, Z.-h. Liang, Y.-B. Luo, Food Control 18, 1300–1306 (2007)CrossRefGoogle Scholar
  97. 97.
    M. Sakamoto, Y. Takeuchi, M. Umeda, I. Ishikawa, Y. Benno, Microbiol. Immunol. 45, 39–44 (2001)PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    C.E. Shelburne, A. Prabhu, R.M. Gleason, B.H. Mullally, W.A. Coulter, J. Microbiol. Methods 39, 97–107 (2000)PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    S.R. Lyons, A.L. Griffen, E.J. Leys, J. Clin. Microbiol. 38, 2362–2365 (2000)PubMedPubMedCentralGoogle Scholar
  100. 100.
    J. Kim, D.J. Cha, M. Kwon, in: 2016 한국응용곤충학회 임시총회 및 추계학술발표회, (2016), pp. 100–100Google Scholar
  101. 101.
    B. Babu, A. Jeyaprakash, D. Jones, T.S. Schubert, C. Baker, B.K. Washburn, S.H. Miller, K. Poduch, G.W. Knox, F.M. Ochoa-Corona, J. Virol. Methods 235, 41–50 (2016)PubMedCrossRefGoogle Scholar
  102. 102.
    B. Vogelstein, K.W. Kinzler, Proc. Natl. Acad. Sci. 96, 9236–9241 (1999)PubMedCrossRefGoogle Scholar
  103. 103.
    D.-K. Kang, M.M. Ali, K. Zhang, S.S. Huang, E. Peterson, M.A. Digman, E. Gratton, W. Zhao, Nat. Commun. 5, 5427 (2014)Google Scholar
  104. 104.
    D. Porcellato, J. Narvhus, S.B. Skeie, J. Microbiol. Methods 127, 1–6 (2016)PubMedCrossRefGoogle Scholar
  105. 105.
    A. Hennebique, M. Bidart, S. Jarraud, L. Beraud, C. Schwebel, M. Maurin, S. Boisset, Antimicrob. Agents Chemother 61, e00628 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Y. Mori, H. Kanda, T. Notomi, J. Infect. Chemother. 19, 404 (2013)PubMedCrossRefGoogle Scholar
  107. 107.
    T. Song, C. Toma, N. Nakasone, M. Iwanaga, FEMS Microbiol. Lett. 243, 259–263 (2005)PubMedCrossRefGoogle Scholar
  108. 108.
    Y. Yuan, W. Xu, Z. Zhai, H. Shi, Y. Luo, Z. Chen, K. Huang, J. Food Sci. 74, M446–M452 (2009)PubMedCrossRefGoogle Scholar
  109. 109.
    F. Wang, L. Jiang, B. Ge, J. Clin. Microbiol. 50, 91 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    N. Cheng, Y. Xu, X. Yan, Y. Shang, P. Zhu, W. Tian, Z. Liang, W. Xu, J. Food Saf. 36, 237–246 (2016)CrossRefGoogle Scholar
  111. 111.
    G.T. Walker, J.G. Nadeau, P.A. Spears, J.L. Schram, C.M. Nycz, D.D. Shank, Nucleic Acids Res. 22, 2670 (1994)PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    P. Gill, A. Ghaemi, Nucleosides Nucleotides Nucleic Acids 27, 224 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    J.C. Detter, J.M. Jett, S.M. Lucas, E. Dalin, A.R. Arellano, M. Wang, J.R. Nelson, J. Chapman, Y. Lou, D. Rokhsar, Genomics 80, 691–698 (2002)PubMedCrossRefGoogle Scholar
  114. 114.
    S.J. Tehrani, M. Aliabadian, A. Fata, M.J. Najafzadeh, Rev. Invest. Clín 53, 21–27 (2014)Google Scholar
  115. 115.
    D. Zhu, Y. Yan, P. Lei, B. Shen, W. Cheng, H. Ju, S. Ding, Anal. Chim. Acta 846, 44 (2014)PubMedCrossRefGoogle Scholar
  116. 116.
    S.A. Simpkins, A.B. Chan, J. Hays, B. Pöpping, N. Cook, Lett. Appl. Microbiol. 30, 75 (2000)PubMedCrossRefGoogle Scholar
  117. 117.
    J. O’Grady, K. Lacey, B. Glynn, T.J. Smith, T. Barry, M. Maher, FEMS Microbiol. Lett. 301, 218–223 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    E.M. Fykse, T. Nilsen, A.D. Nielsen, I. Tryland, S. Delacroix, J.M. Blatny, Mar. Pollut. Bull. 64, 200 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    M. Vincent, Y. Xu, H. Kong, EMBO Rep. 5, 795–800 (2004)PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    P. Gill, A.H. Alvandi, H. Abdultehrani, M. Sadeghizadeh, Diagn. Microbiol. Infect. Dis. 62, 119 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    H. Kong, L.S. Higgins, M.A. Dalton, R.B. Kucera, I. Schildkraut, G.G. Wilson. N. BstNBI. nicking endonuclease and methods for using endonucleasi in single-stranded displacement amplification in WO, 094544 (2003)Google Scholar
  122. 122.
    X. Wen-Tao, B. Wei-Bin, L. Yun-Bo, Y. Yan-Fang, H. Kun-Lun, Chin. J. Agric. Biotechnol. 6, 1–9 (2009)CrossRefGoogle Scholar
  123. 123.
    K.D. Chavda, M.J. Satlin, L. Chen, C. Manca, S.G. Jenkins, T.J. Walsh, B.N. Kreiswirth, Antimicrob. Agents Chemother. 60, 6957–6961 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    W. Xu, Z. Zhai, K. Huang, N. Zhang, Y. Yuan, Y. Shang, Y. Luo, PLoS One 7, e22900 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    W. Xu, Y. Yuan, Y. Luo, W. Bai, C. Zhang, K. Huang, J. Agric. Food Chem. 57, 395–402 (2008)CrossRefGoogle Scholar
  126. 126.
    H. Shi, Q. Trinh, W. Xu, B. Zhai, Y. Luo, K. Huang, Appl. Microbiol. Biotechnol. 95, 1579–1587 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    T. Yonekita, R. Ohtsuki, E. Hojo, N. Morishita, T. Matsumoto, T. Aizawa, F. Morimatsu, J. Microbiol. Methods 93, 251–256 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Y. Chen, N. Cheng, Y. Xu, K. Huang, Y. Luo, W. Xu, Biosens. Bioelectron. 81, 317–323 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    N. Duan, S. Wu, C. Zhu, X. Ma, Z. Wang, Y. Yu, Y. Jiang, Anal. Chim. Acta 723, 1–6 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    K.O. Duedu, C.E. French, J. Microbiol. Methods 135, 85–92 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    M. Schena, D. Shalon, R.W. Davis, P.O. Brown, Sci. NY Wash. 270, 467–467 (1995)Google Scholar
  132. 132.
    S.P. Fodor, J.L. Read, M.C. Pirrung, L. Stryer, A.T. Lu, D. Solas, Science. 251, 767–773 (1991)PubMedCrossRefGoogle Scholar
  133. 133.
    Y. Wang, Y. Cai, T. Liu, Z. Ong, N. Wang, Z. Wang, Chin. J. Biol. 25, 1383–1386 (2012)Google Scholar
  134. 134.
    D. Lü, X. Shi, M. Chen, P. Wu, L. He, Y. Li, Y. Lin, Y. Qiu, Q. Hu, Wei sheng yan jiu= J. Hyg. Res. 41, 96–101 (2012)Google Scholar
  135. 135.
    J.P. Schouten, C.J. McElgunn, R. Waaijer, D. Zwijnenburg, F. Diepvens, G. Pals. Nucleic Acids Res. 30, e57–e57 (2002)PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    L. Véronèse, O. Tournilhac, P. Combes, N. Prie, E. Pierre-Eymard, R. Guieze, R. Veyrat-Masson, J.-O. Bay, P. Vago, A. Tchirkov, Cancer Genet. 206, 19–25 (2013)PubMedCrossRefGoogle Scholar
  137. 137.
    J. Cui, M. Azimi, A.D. Adekile, H. Al Awadhi, C.C. Hoppe, Hemoglobin 36, 276–282 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    J.M. Zhang, J.F. Sun, P.Y. Feng, X.Q. Li, C.M. Lu, S. Lu, W.Y. Cai, L.Y. Xi, G.S. de Hoog, J. Microbiol. Methods 85, 33–39 (2011)PubMedCrossRefGoogle Scholar
  139. 139.
    Q. Zhong, S. Bhattacharya, S. Kotsopoulos, J. Olson, V. Taly, A.D. Griffiths, D.R. Link, J.W. Larson, Lab Chip 11, 2167–2174 (2011)PubMedCrossRefGoogle Scholar
  140. 140.
    M. Burns, A. Burrell, C. Foy, Eur. Food Res. Technol. 231, 353–362 (2010)CrossRefGoogle Scholar
  141. 141.
    M. Machida, K. Asai, M. Sano, T. Tanaka, T. Kumagai, G. Terai, K.-I. Kusumoto, T. Arima, O. Akita, Y. Kashiwagi, Nature 438, 1157 (2005)PubMedCrossRefGoogle Scholar
  142. 142.
    A. Calistri, G. Palù, Clinical Infections Diseases. 60, 889–891 (2015)Google Scholar
  143. 143.
    S. Chen, A. Yee, M. Griffiths, C. Larkin, C.T. Yamashiro, R. Behari, C. Paszko-Kolva, K. Rahn, A. Stephanie, Int. J. Food Microbiol. 35, 239–250 (1997)PubMedCrossRefGoogle Scholar
  144. 144.
    R. Oberst, M. Hays, L. Bohra, R. Phebus, C. Yamashiro, C. Paszko-Kolva, S. Flood, J. Sargeant, J. Gillespie, Appl. Environ. Microbiol. 64, 3389–3396 (1998)PubMedPubMedCentralGoogle Scholar
  145. 145.
    H.A. Bassler, S.J. Flood, K.J. Livak, J. Marmaro, R. Knorr, C.A. Batt, Appl. Environ. Microbiol. 61, 3724–3728 (1995)PubMedPubMedCentralGoogle Scholar
  146. 146.
    C. Schoen, D. Knorr, G. Leone, Phytopathology 86, 993–999 (1996)CrossRefGoogle Scholar
  147. 147.
    N. Schaad, Y. Berthier-Schaad, A. Sechler, D. Knorr, Plant Dis. 83, 1095–1100 (1999)CrossRefGoogle Scholar
  148. 148.
    P.M. Holland, R.D. Abramson, R. Watson, D.H. Gelfand, Proc. Natl. Acad. Sci. 88, 7276–7280 (1991)PubMedCrossRefGoogle Scholar
  149. 149.
    L.G. Lee, C.R. Connell, W. Bloch, Nucleic Acids Res. 21, 3761–3766 (1993)PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    S. Weller, J. Elphinstone, N. Smith, N. Boonham, D. Stead, Appl. Environ. Microbiol. 66, 2853–2858 (2000)PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    J. Day, U. Basavanna, S. Sharma, Appl. Environ. Microbiol. 75, 5321–5327 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    R.C. Charles, T. Sultana, M.M. Alam, Y. Yu, Y. Wu-Freeman, M.K. Bufano, S.M. Rollins, L. Tsai, J.B. Harris, R.C. LaRocque, PLoS Negl. Trop. Dis. 7, e2335 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    M.A. Nadkarni, F.E. Martin, N.A. Jacques, N. Hunter, Microbiology 148, 257–266 (2002)PubMedCrossRefGoogle Scholar
  154. 154.
    H. Shi, W. Xu, Q. Trinh, Y. Luo, Z. Liang, Y. Li, K. Huang, Food Control 27, 81–86 (2012)CrossRefGoogle Scholar
  155. 155.
    G.-J. Zhang, G. Zhang, J.H. Chua, R.-E. Chee, E.H. Wong, A. Agarwal, K.D. Buddharaju, N. Singh, Z. Gao, N. Balasubramanian, Nano Lett. 8, 1066–1070 (2008)PubMedCrossRefGoogle Scholar
  156. 156.
    B. Cai, S. Wang, L. Huang, Y. Ning, Z. Zhang, G.J. Zhang, ACS Nano 8, 2632 (2014)PubMedCrossRefGoogle Scholar
  157. 157.
    L. Mendes, R. Rocha, A.S. Azevedo, C. Ferreira, M. Henriques, M.G. Pinto, N.F. Azevedo, Microbiol. Res. 192, 185–191 (2016)PubMedCrossRefGoogle Scholar
  158. 158.
    S.P. Lopes, D.T. Carvalho, M.O. Pereira, N.F. Azevedo, Biotechnol. Bioeng. 114, 355–367 (2017)PubMedCrossRefGoogle Scholar
  159. 159.
    I. Willner, B. Shlyahovsky, M. Zayats, B. Willner, Chem. Soc. Rev. 37, 1153–1165 (2008)PubMedCrossRefGoogle Scholar
  160. 160.
    D.M. Kolpashchikov, J. Am. Chem. Soc. 130, 2934–2935 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Z. Cheglakov, Y. Weizmann, M.K. Beissenhirtz, I. Willner, Chem. Commun., 3205–3207 (2006)Google Scholar
  162. 162.
    F. Du, Z. Tang, Chembiochem 12, 43–46 (2011)PubMedCrossRefGoogle Scholar
  163. 163.
    K. Schlosser, Y. Li, Chembiochem 11, 866–879 (2010)PubMedCrossRefGoogle Scholar
  164. 164.
    S.W. Santoro, G.F. Joyce, Proc. Natl. Acad. Sci. 94, 4262–4266 (1997)PubMedCrossRefGoogle Scholar
  165. 165.
    R.R. Breaker, G.F. Joyce, Chem. Biol. 1, 223–229 (1994)PubMedCrossRefGoogle Scholar
  166. 166.
    E. Mokany, S.M. Bone, P.E. Young, T.B. Doan, A.V. Todd, J. Am. Chem. Soc. 132, 1051–1059 (2009)PubMedCentralCrossRefPubMedGoogle Scholar
  167. 167.
    K. Zagorovsky, W.C. Chan, Angew. Chem. Int. Ed. 52, 3168–3171 (2013)CrossRefGoogle Scholar
  168. 168.
    P.Y. Hsieh, M. Monsur Ali, K. Tram, S. Jahanshahi-Anbuhi, C.L. Brown, J.D. Brennan, C.D. Filipe, Y. Li, Chembiochem 18, 502–505 (2017)PubMedCrossRefGoogle Scholar
  169. 169.
    F. Yu, Y. Li, M. Li, L. Tang, J.-J. He, Biosens. Bioelectron. 89, 880–885 (2017)PubMedCrossRefGoogle Scholar
  170. 170.
    J. Cao, C. Feng, Y. Liu, S. Wang, F. Liu, Biosens. Bioelectron. 57, 133–138 (2014)PubMedCrossRefGoogle Scholar
  171. 171.
    M. Donmez, M.D. Yilmaz, B. Kilbas, J. Hazard. Mater. 324, 593–598 (2016)PubMedCrossRefGoogle Scholar
  172. 172.
    B. Jin, S. Wang, M. Lin, Y. Jin, S. Zhang, X. Cui, Y. Gong, A. Li, F. Xu, T.J. Lu, Biosens. Bioelectron. 90, 525 (2017)PubMedCrossRefGoogle Scholar
  173. 173.
    G. Naja, P. Bouvrette, S. Hrapovic, J.H. Luong, Analyst 132, 679–686 (2007)PubMedCrossRefGoogle Scholar
  174. 174.
    H. Zhou, D. Yang, N.P. Ivleva, N.E. Mircescu, R. Niessner, C. Haisch, Anal. Chem. 86, 1525–1533 (2014)PubMedCrossRefGoogle Scholar
  175. 175.
    L. Zhang, Y. Chen, N. Cheng, Y. Xu, K. Huang, Y. Luo, P. Wang, D. Duan, W. Xu, Ultrasensitive detection of viable Enterobacter sakazakii by a continual cascade nanozyme biosensor. Anal. Chem. 89, 10194–10200 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    D. Duan, K. Fan, D. Zhang, S. Tan, M. Liang, Y. Liu, J. Zhang, P. Zhang, W. Liu, X. Qiu, Biosens. Bioelectron. 74, 134–141 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    S. Fu, S. Wang, X. Zhang, A. Qi, Z. Liu, X. Yu, C. Chen, L. Li, Colloids Surf. B: Biointerfaces 154, 239–245 (2017)PubMedCrossRefGoogle Scholar
  178. 178.
    S. Singh, P. Tripathi, N. Kumar, S. Nara, Biosens. Bioelectron. 92, 280–286 (2017)PubMedCrossRefGoogle Scholar
  179. 179.
    A.P. Nagvenkar, A. Gedanken, ACS Appl. Mater. Interfaces 8, 22301–22308 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    W. Li, B. Chen, H. Zhang, Y. Sun, J. Wang, J. Zhang, Y. Fu, Biosens. Bioelectron. 66, 251–258 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    X. Lin, Y. Liu, Z. Tao, J. Gao, J. Deng, J. Yin, S. Wang, Biosens. Bioelectron. 94, 471–477 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    J. Gao, L. Li, P.L. Ho, G.C. Mak, H. Gu, B. Xu, Adv. Mater. 18, 3145–3148 (2006)CrossRefGoogle Scholar
  183. 183.
    H.J. Chung, T. Reiner, G. Budin, C. Min, M. Liong, D. Issadore, H. Lee, R. Weissleder, ACS Nano 5, 8834–8841 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    S. Wu, N. Duan, Z. Shi, C. Fang, Z. Wang, Anal. Chem. 86, 3100–3107 (2014)PubMedCrossRefGoogle Scholar
  185. 185.
    S.A. Marras, Mol. Biotechnol. 38, 247–255 (2008)PubMedCrossRefGoogle Scholar
  186. 186.
    M. Sunbul, A. Jäschke, Angew. Chem. Int. Ed. 52, 13401–13404 (2013)CrossRefGoogle Scholar
  187. 187.
    W.C. Chan, S. Nie, Science 281, 2016–2018 (1998)CrossRefGoogle Scholar
  188. 188.
    Z. Zhelev, H. Ohba, R. Bakalova, R. Jose, S. Fukuoka, T. Nagase, M. Ishikawa, Y. Baba, Chem. Commun. 21, 1980–1982 (2005)Google Scholar
  189. 189.
    E. Zahavy, V. Heleg-Shabtai, Y. Zafrani, D. Marciano, S. Yitzhaki, J. Fluoresc. 20, 389–399 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    B. Dubertret, P. Skourides, D.J. Norris, V. Noireaux, A.H. Brivanlou, A. Libchaber, Science 298, 1759–1762 (2002)PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    N. Duan, S. Wu, Y. Yu, X. Ma, Y. Xia, X. Chen, Y. Huang, Z. Wang, Anal. Chim. Acta 804, 151–158 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    J. Huang, Y. Wu, Y. Chen, Z. Zhu, X. Yang, C.J. Yang, K. Wang, W. Tan, Angew. Chem. Int. Ed. 50, 401–404 (2011)CrossRefGoogle Scholar
  193. 193.
    I. Palchetti, M. Mascini, Anal. Bioanal. Chem. 391, 455–471 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  194. 194.
    O. Lazcka, F.J. Del Campo, F.X. Munoz, Biosens. Bioelectron. 22, 1205–1217 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  195. 195.
    P. Leonard, S. Hearty, J. Brennan, L. Dunne, J. Quinn, T. Chakraborty, R. O’Kennedy, Enzym. Microb. Technol. 32, 3–13 (2003)CrossRefGoogle Scholar
  196. 196.
    R. Chen, E.C. Holmes, Mol. Biol. Evol. 23, 2336–2341 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  197. 197.
    I. Grabowska, K. Malecka, U. Jarocka, J. Radecki, H. Radecka, Acta Biochim. Pol. 61, 471–478 (2014)PubMedPubMedCentralGoogle Scholar
  198. 198.
    K. Malecka, A. Stachyra, A. Góra-Sochacka, A. Sirko, W. Zagórski-Ostoja, H. Radecka, J. Radecki, Sensors Actuators B Chem. 224, 290–297 (2016)CrossRefGoogle Scholar
  199. 199.
    J.W.-F. Law, N.-S. Ab Mutalib, K.-G. Chan, L.-H. Lee, Front. Microbiol. 5, 770 (2014)PubMedPubMedCentralGoogle Scholar
  200. 120.
    V. Velusamy, K. Arshak, O. Korostynska, K. Oliwa, C. Adley, Biotechnol. Adv. 28, 232–254 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  201. 201.
    H. Sharma, R. Mutharasan, Sensors Actuators B Chem. 183, 535–549 (2013)CrossRefGoogle Scholar
  202. 202.
    Y. Wang, J.K. Salazar, Compr. Rev. Food Sci. Food Saf. 15, 183–205 (2016)CrossRefGoogle Scholar
  203. 203.
    M. Xu, R. Wang, Y. Li, Talanta 162, 511–522 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  204. 204.
    E. Sheikhzadeh, M. CHamsaz, A. Turner, E. Jager, V. Beni, Biosens. Bioelectron. 80, 194–200 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  205. 205.
    Z. Izadi, M. Sheikh-Zeinoddin, A.A. Ensafi, S. Soleimanian-Zad, Biosens. Bioelectron. 80, 582–589 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  206. 206.
    L. Reverté, B. Prieto-Simón, M. Campàs, Anal. Chim. Acta 908, 8–21 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  207. 207.
    E. Le Ru, P. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy: And Related Plasmonic Effects. 655–665 (2009).Google Scholar
  208. 208.
    D. Cialla, A. März, R. Böhme, F. Theil, K. Weber, M. Schmitt, J. Popp, Anal. Bioanal. Chem. 403, 27–54 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  209. 209.
    W. Cai, X. Wang, Y. Yan, Mater. Res. Bull. 52, 1–5 (2014)CrossRefGoogle Scholar
  210. 210.
    T.N. Huan, S. Kim, P. Van Tuong, H. Chung, RSC Adv. 4, 3929–3933 (2014)CrossRefGoogle Scholar
  211. 211.
    T.T.B. Quyen, C.-C. Chang, W.-N. Su, Y.-H. Uen, C.-J. Pan, J.-Y. Liu, J. Rick, K.-Y. Lin, B.-J. Hwang, J. Mater. Chem. B 2, 629–636 (2014)CrossRefGoogle Scholar
  212. 212.
    L. Zeiri, B. Bronk, Y. Shabtai, J. Eichler, S. Efrima, Appl. Spectrosc. 58, 33–40 (2004)PubMedCrossRefGoogle Scholar
  213. 213.
    S.P. Ravindranath, Y. Wang, J. Irudayaraj, Sensors Actuators B Chem. 152, 183–190 (2011)CrossRefGoogle Scholar
  214. 214.
    H. Zhang, X. Ma, Y. Liu, N. Duan, S. Wu, Z. Wang, B. Xu, Biosens. Bioelectron. 74, 872–877 (2015)PubMedCrossRefGoogle Scholar
  215. 215.
    S. Zeng, D. Baillargeat, H.-P. Ho, K.-T. Yong, Chem. Soc. Rev. 43, 3426–3452 (2014)PubMedCrossRefGoogle Scholar
  216. 216.
    H.J. Lee, Y. Li, A.W. Wark, R.M. Corn, Anal. Chem. 77, 5096–5100 (2005)PubMedCrossRefGoogle Scholar
  217. 217.
    T.T. Nguyen, K.T.L. Trinh, W.J. Yoon, N.Y. Lee, H. Ju, Sensors Actuators B Chem. 242, 1–8 (2017)CrossRefGoogle Scholar
  218. 218.
    A. Adan, G. Alizada, Y. Kiraz, Y. Baran, A. Nalbant, Crit. Rev. Biotechnol. 37, 163–176 (2017)PubMedCrossRefGoogle Scholar
  219. 219.
    H.M. Shapiro, W.G. Telford, Curr. Protocol. Cytom 49, 1.9.1–1.9.17 (2009)CrossRefGoogle Scholar
  220. 220.
    M.J. Wilkerson, Vet. Clin.: Small Anim. Pract. 42, 53–71 (2012)Google Scholar
  221. 221.
    D. Wlodkowic, J. Skommer, Z. Darzynkiewicz, Mammalian Cell Viability: Methods and Protocols, Met. Mol. Biol. 740 (2011) pp. 81–89Google Scholar
  222. 222.
    M. Berney, F. Hammes, F. Bosshard, H.-U. Weilenmann, T. Egli, Appl. Environ. Microbiol. 73, 3283–3290 (2007)PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    S. Ozawa, in, MS thesis. Sapporo, Hokkaido, Japan: Hokkaido University, (2013). Abstract Available at: www.eng.hokudai.ac.jp/e3/alumni/files/abstract/m237.pdf. Accessed 27 Jan 2016
  224. 224.
    J. Hoffmann, S. Hin, F. von Stetten, R. Zengerle, G. Roth, RSC Adv. 2, 3885–3889 (2012)CrossRefGoogle Scholar
  225. 225.
    Y. Liu-Stratton, S. Roy, C.K. Sen, Toxicol. Lett. 150, 29–42 (2004)PubMedCrossRefGoogle Scholar
  226. 226.
    M.U. Kopp, A.J. De Mello, A. Manz, Science 280, 1046–1048 (1998)PubMedCrossRefGoogle Scholar
  227. 227.
    C.J. Ingham, A. Sprenkels, J. Bomer, D. Molenaar, A. van den Berg, J.E. van Hylckama Vlieg, W.M. de Vos, Proc. Natl. Acad. Sci. 104, 18217–18222 (2007)PubMedCrossRefGoogle Scholar
  228. 228.
    G. Giraffa, E. Neviani, Int. J. Food Microbiol. 67, 19–34 (2001)PubMedCrossRefGoogle Scholar
  229. 229.
    U.M. Schütte, Z. Abdo, S.J. Bent, C. Shyu, C.J. Williams, J.D. Pierson, L.J. Forney, Appl. Microbiol. Biotechnol. 80, 365–380 (2008)PubMedCrossRefGoogle Scholar
  230. 230.
    G. Muyzer, Curr. Opin. Microbiol. 2, 317–322 (1999)PubMedCrossRefPubMedCentralGoogle Scholar
  231. 231.
    F. Sanger, A.R. Coulson, J. Mol. Biol. 94 (1975) 441IN19447-19446IN20448Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Yunbo Luo
    • 1
  1. 1.Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina

Personalised recommendations