Advertisement

Functional Nucleic Acid Based Biosensors for MicroRNA Detection

  • Yunbo Luo
Chapter

Abstract

MicroRNAs (miRNAs) are a class of endogenous, non-protein-coding single-stranded RNA of 17–25 nucleotides generated from endogenous hairpin-shaped transcripts. To date, researchers have found miRNA molecules in different species including Arabidopsis, nematode, drosophila, mice, and humans. miRNAs can regulate 50% of the genes that encode proteins. MiRNAs play important roles in numerous biological processes, including, for example, developmental processes, cell differentiation, cell apoptosis, lipid metabolism, and hormone secretion [1–3].

References

  1. 1.
    D.P. Bartel, MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2), 281–297 (2004)CrossRefGoogle Scholar
  2. 2.
    R.F. Ketting, microRNA Biogenesis and Function : an overview. Adv. Exp. Med. Biol. 700, 1–14 (2011)PubMedGoogle Scholar
  3. 3.
    M. Zorc, T. Kunej, Development of integrative map of microRNA gene regulatory elements. Microrna 4(3), 205–208 (2015)CrossRefGoogle Scholar
  4. 4.
    Y. Kurihara, Y. Watanabe, Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc. Natl. Acad. Sci. U. S. A. 101(34), 12753–12758 (2004)CrossRefGoogle Scholar
  5. 5.
    Y. Kurihara, Y. Takashi, Y. Watanabe, The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA 12(2), 206–212 (2006)CrossRefGoogle Scholar
  6. 6.
    B. Zhang et al., Plant microRNA: a small regulatory molecule with big impact. Dev. Biol. 289(1), 3–16 (2006)CrossRefGoogle Scholar
  7. 7.
    V. Ambros et al., A uniform system for microRNA annotation. RNA 9(3), 277–279 (2003)CrossRefGoogle Scholar
  8. 8.
    E. Hamidi-Asl et al., A review on the electrochemical biosensors for determination of microRNAs. Talanta 115, 74–83 (2013)CrossRefGoogle Scholar
  9. 9.
    D.R. Thevenot et al., Electrochemical biosensors: recommended definitions and classification. Biosens. Bioelectron. 16(1-2), 121–131 (2001)CrossRefGoogle Scholar
  10. 10.
    B.N. Johnson, R. Mutharasan, Biosensor-based microRNA detection: techniques, design, performance, and challenges. Analyst 139(7), 1576–1588 (2014)CrossRefGoogle Scholar
  11. 11.
    H. Dong et al., Highly sensitive multiple microRNA detection based on fluorescence quenching of graphene oxide and isothermal strand-displacement polymerase reaction. Anal. Chem. 84(10), 4587–4593 (2012)CrossRefGoogle Scholar
  12. 12.
    B.N. Johnson, R. Mutharasan, Sample preparation-free, real-time detection of microRNA in human serum using piezoelectric cantilever biosensors at attomole level. Anal. Chem. 84(23), 10426–10436 (2012)CrossRefGoogle Scholar
  13. 13.
    S. Fang et al., Attomole microarray detection of microRNAs by nanoparticle-amplified SPR imaging measurements of surface polyadenylation reactions. J. Am. Chem. Soc. 128(43), 14044–14046 (2006)CrossRefGoogle Scholar
  14. 14.
    H. Yin et al., Electrochemical determination of microRNA-21 based on graphene, LNA integrated molecular beacon, AuNPs and biotin multifunctional bio bar codes and enzymatic assay system. Biosens. Bioelectron. 33(1), 247–253 (2012)CrossRefGoogle Scholar
  15. 15.
    Z. Gao, Y. Peng, A highly sensitive and specific biosensor for ligation- and PCR-free detection of microRNAs. Biosens. Bioelectron. 26(9), 3768–3773 (2011)CrossRefGoogle Scholar
  16. 16.
    Z. Cai et al., An electrochemical sensor based on label-free functional allosteric molecular beacons for detection target DNA/miRNA. Biosens. Bioelectron. 41, 783–788 (2013)CrossRefGoogle Scholar
  17. 17.
    T. Kilic et al., Electrochemical based detection of microRNA, mir21 in breast cancer cells. Biosens. Bioelectron. 38(1), 195–201 (2012)CrossRefGoogle Scholar
  18. 18.
    Y. Peng, G. Yi, Z. Gao, A highly sensitive microRNA biosensor based on ruthenium oxide nanoparticle-initiated polymerization of aniline. Chem. Commun. (Camb.) 46(48), 9131–9133 (2010)CrossRefGoogle Scholar
  19. 19.
    X. Wu et al., A novel label-free electrochemical microRNA biosensor using Pd nanoparticles as enhancer and linker. Analyst 138(4), 1060–1066 (2013)CrossRefGoogle Scholar
  20. 20.
    T. Goda et al., A label-free electrical detection of exosomal microRNAs using microelectrode array. Chem. Commun. (Camb.) 48(98), 11942–11944 (2012)CrossRefGoogle Scholar
  21. 21.
    G.J. Zhang et al., Label-free direct detection of MiRNAs with silicon nanowire biosensors. Biosens. Bioelectron. 24(8), 2504–2508 (2009)CrossRefGoogle Scholar
  22. 22.
    Y. Peng, Z. Gao, Amplified detection of microRNA based on ruthenium oxide nanoparticle-initiated deposition of an insulating film. Anal. Chem. 83(3), 820–827 (2011)CrossRefGoogle Scholar
  23. 23.
    C. Pohlmann, M. Sprinzl, Electrochemical detection of microRNAs via gap hybridization assay. Anal. Chem. 82(11), 4434–4440 (2010)CrossRefGoogle Scholar
  24. 24.
    Y. Wang et al., Nanopore-based detection of circulating microRNAs in lung cancer patients. Nat. Nanotechnol. 6(10), 668–674 (2011)CrossRefGoogle Scholar
  25. 25.
    M. Wanunu et al., Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nat. Nanotechnol. 5(11), 807–814 (2010)CrossRefGoogle Scholar
  26. 26.
    Y. Fan et al., Detection of microRNAs using target-guided formation of conducting polymer nanowires in nanogaps. J. Am. Chem. Soc. 129(17), 5437–5443 (2007)CrossRefGoogle Scholar
  27. 27.
    H. Yang et al., Direct, electronic microRNA detection for the rapid determination of differential expression profiles. Angew. Chem. Int. Ed. 48(45), 8461–8464 (2009)CrossRefGoogle Scholar
  28. 28.
    Z. Gao, Z. Yang, Detection of microRNAs using electrocatalytic nanoparticle tags. Anal. Chem. 78(5), 1470–1477 (2006)CrossRefGoogle Scholar
  29. 29.
    Z. Gao et al., A label-free biosensor for electrochemical detection of femtomolar microRNAs. Anal. Chem. 85(3), 1624–1630 (2013)CrossRefGoogle Scholar
  30. 30.
    E. Paleček et al., 444—Electrochemical analysis of polynucleotides. Bioelectrochem. Bioenerg. 8(5), 497–506 (1981)CrossRefGoogle Scholar
  31. 31.
    Z. Gao, Y.H. Yu, Direct labeling microRNA with an electrocatalytic moiety and its application in ultrasensitive microRNA assays. Biosens. Bioelectron. 22(6), 933–940 (2007)CrossRefGoogle Scholar
  32. 32.
    E.A. Lusi et al., Innovative electrochemical approach for an early detection of microRNAs. Anal. Chem. 81(7), 2819–2822 (2009)CrossRefGoogle Scholar
  33. 33.
    S. Husale, H.H. Persson, O. Sahin, DNA nanomechanics allows direct digital detection of complementary DNA and microRNA targets. Nature 462(7276), 1075–1078 (2009)CrossRefGoogle Scholar
  34. 34.
    P. Noy et al., Instrument for label-free detection of noncoding RNAs. J Sens 2012, 5 (2011)Google Scholar
  35. 35.
    J.-Y. Liao, J.Q. Yin, J.-C. Yue, A novel biosensor to detect microRNAs rapidly. J Sens 2009 (2009)Google Scholar
  36. 36.
    W.-J. Yang et al., Quantification of microRNA by gold nanoparticle probes. Anal. Biochem. 376(2), 183–188 (2008)CrossRefGoogle Scholar
  37. 37.
    R.-Q. Liang et al., An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe. Nucleic Acids Res. 33(2), e17–e17 (2005)CrossRefGoogle Scholar
  38. 38.
    H. Sipova et al., Surface plasmon resonance biosensor for rapid label-free detection of microribonucleic acid at subfemtomole level. Anal. Chem. 82(24), 10110–10115 (2010)CrossRefGoogle Scholar
  39. 39.
    A.J. Qavi, R.C. Bailey, Multiplexed detection and label-free quantitation of microRNAs using arrays of silicon photonic microring resonators. Angew. Chem. Int. Ed. 49(27), 4608–4611 (2010)CrossRefGoogle Scholar
  40. 40.
    A.J. Qavi et al., Anti-DNA: RNA antibodies and silicon photonic microring resonators: increased sensitivity for multiplexed microRNA detection. Anal. Chem. 83(15), 5949–5956 (2011)CrossRefGoogle Scholar
  41. 41.
    S. Fang et al., Attomole microarray detection of microRNAs by nanoparticle-amplified SPR imaging measurements of surface polyadenylation reactions. J. Am. Chem. Soc. 128(43), 14044–14046 (2006)CrossRefGoogle Scholar
  42. 42.
    N. Cheng et al., Specific and relative detection of urinary microRNA signatures in bladder cancer for point-of-care diagnostics. Chem. Commun. (Camb.) 53(30), 4222–4225 (2017)CrossRefGoogle Scholar
  43. 43.
    N. Sugimoto et al., Thermodynamic parameters to predict stability of RNA/DNA hybrid duplexes. Biochemistry 34(35), 11211–11216 (1995)CrossRefGoogle Scholar
  44. 44.
    T. Xia et al., Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson− Crick base pairs. Biochemistry 37(42), 14719–14735 (1998)CrossRefGoogle Scholar
  45. 45.
    T. Špringer et al., Shielding effect of monovalent and divalent cations on solid-phase DNA hybridization: surface plasmon resonance biosensor study. Nucleic Acids Res. 38(20), 7343–7351 (2010)CrossRefGoogle Scholar
  46. 46.
    É. Várallyay, J. Burgyán, Z. Havelda, MicroRNA detection by northern blotting using locked nucleic acid probes. Nat. Protoc. 3(2), 190 (2008)CrossRefGoogle Scholar
  47. 47.
    É. Várallyay, J. Burgyán, Z. Havelda, Detection of microRNAs by Northern blot analyses using LNA probes. Methods 43(2), 140–145 (2007)CrossRefGoogle Scholar
  48. 48.
    A. Válóczi et al., Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res. 32(22), e175–e175 (2004)CrossRefGoogle Scholar
  49. 49.
    E. Kierzek et al., The influence of locked nucleic acid residues on the thermodynamic properties of 2′-O-methyl RNA/RNA heteroduplexes. Nucleic Acids Res. 33(16), 5082–5093 (2005)CrossRefGoogle Scholar
  50. 50.
    Xia, X., Method of isolating, labeling and profiling small RNAs. Google Patents (2009)Google Scholar
  51. 51.
    K.A. Cissell et al., Bioluminescence-based detection of microRNA, miR21 in breast cancer cells. Anal. Chem. 80(7), 2319–2325 (2008)CrossRefGoogle Scholar
  52. 52.
    F. Sato et al., Intra-platform repeatability and inter-platform comparability of microRNA microarray technology. PLoS One 4(5), e5540 (2009)CrossRefGoogle Scholar
  53. 53.
    U. Bissels et al., Absolute quantification of microRNAs by using a universal reference. RNA 15(12), 2375–2384 (2009)CrossRefGoogle Scholar
  54. 54.
    P.S. Mitchell et al., Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. 105(30), 10513–10518 (2008)CrossRefGoogle Scholar
  55. 55.
    C.-G. Liu et al., MicroRNA expression profiling using microarrays. Nat. Protoc. 3(4), 563 (2008)CrossRefGoogle Scholar
  56. 56.
    M. de Planell-Saguer, M.C. Rodicio, Analytical aspects of microRNA in diagnostics: a review. Anal. Chim. Acta 699(2), 134–152 (2011)CrossRefGoogle Scholar
  57. 57.
    Z. Ge et al., Hybridization chain reaction amplification of microRNA detection with a tetrahedral DNA nanostructure-based electrochemical biosensor. Anal. Chem. 86(4), 2124–2130 (2014)CrossRefGoogle Scholar
  58. 58.
    D.A. Buttry, M.D. Ward, Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance. Chem. Rev. 92(6), 1355–1379 (1992)CrossRefGoogle Scholar
  59. 59.
    X. Lou, L. He, Surface passivation using oligo (ethylene glycol) in ATRP-assisted DNA detection. Sensors Actuators B Chem. 129(1), 225–230 (2008)CrossRefGoogle Scholar
  60. 60.
    Z. Hu et al., An antibody-based microarray assay for small RNA detection. Nucleic Acids Res. 34(7), e52–e52 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Yunbo Luo
    • 1
  1. 1.Food Science &Nutritional EngineeringChina Agricultural UniversityBeijingChina

Personalised recommendations