Advertisement

Designing of Natural Anticancerous Drugs and Their Delivery System

  • Manisha Singh
  • Rashi Rajput
  • Ramneek Kaur
  • Sachin Kumar
  • Rachana
Chapter

Abstract

Chemoprevention of cancer with conventional therapeutic approach has shown severe side effects along with high possibility of recurrence of the same. This results in decreased therapeutic efficacy of the chemotherapeutic agents used currently. Therefore, to reduce their ill effects, an alternative gateway for cancer treatment and prevention needs to be explored. The natural, plant-based anticancer compounds are proving to be a substantial target in replacing the common approaches which employs chemical drugs. The natural compounds derived from various medicinal plants like vinca alkaloids, cyanidin, curcumin, fisetin, rosmarinic acid, etc. have already been documented with a remarkable antineoplastic property. The aim of the chapter is to focus on the various phytocompounds and their mechanism of action to treat the tumorigenic growth accompanied with the drug delivery system. Furthermore, the limitations and barriers associated with the formulation of phytocompounds and their possible enhanced therapeutic efficiency by nanoparticle-based drug delivery mechanics are also discussed.

Keywords

Chemoprevention Nanoparticles Medicinal plants Phytocompounds Therapeutics 

References

  1. Abal M, Andreu J, Barasoain I (2003) Taxanes: microtubule and centrosome targets, and cell cycle dependent mechanisms of action. Curr Cancer Drug Targ 3:193–203CrossRefGoogle Scholar
  2. Abdullaev F, Espinosa-Aguirre J (2004) Biomedical properties of saffron and its potential use in cancer therapy and chemoprevention trials. Cancer Detect Prev 28:426–432PubMedCrossRefPubMedCentralGoogle Scholar
  3. Acharya A, Das I, Singh S, Saha T (2010) Chemopreventive properties of indole-3-carbinol, diindolylmethane and other constituents of cardamom against carcinogenesis. Recent Pat Food Nutr Agric 2:166–177PubMedCrossRefPubMedCentralGoogle Scholar
  4. Aggarwal BB, Shishodia S (2004) Suppression of the nuclear factor-kappa B activation pathway by spice-derived phytochemicals: reasoning for seasoning. Ann N Y Acad Sci 1030:434–441PubMedCrossRefPubMedCentralGoogle Scholar
  5. Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61:250–281PubMedCrossRefPubMedCentralGoogle Scholar
  6. Akhavan O, Ghaderi E, Akhavan A (2012) Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials 33:8017–8025PubMedCrossRefPubMedCentralGoogle Scholar
  7. Alexander-Bryant AA, Vanden Berg-Foels WS, Wen X (2013) Bioengineering strategies for designing targeted cancer therapies. Adv Cancer Res 118:1–59PubMedCrossRefPubMedCentralGoogle Scholar
  8. Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5:505–515PubMedCrossRefPubMedCentralGoogle Scholar
  9. Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303:1818–1822PubMedCrossRefPubMedCentralGoogle Scholar
  10. Amin A, Hamza AA, Bajbouj K, Ashraf SS, Daoud S (2011) Saffron: a potential candidate for a novel anticancer drug against hepatocellular carcinoma. Hepatology 54:857–867PubMedCrossRefPubMedCentralGoogle Scholar
  11. Arumugam G, Swamy MK, Sinniah UR (2016) Plectranthus amboinicus (Lour.) Spreng: botanical, phytochemical, pharmacological and nutritional significance. Molecules 21:369CrossRefPubMedGoogle Scholar
  12. Aung H, Wang C, Ni M, Fishbein A, Mehendale SR, Xie JT, Shoyama AY, Yuan CS (2007) Crocin from Crocus sativus possesses significant anti-proliferation effects on human colorectal cancer cells. Exp Oncol 29:175–180PubMedPubMedCentralGoogle Scholar
  13. Bachmeier BE, Mohrenz IV, Mirisola V, Schleicher E, Romeo F, Höhneke C, Jochum M, Nerlich AG, Pfeffer U (2007) Curcumin downregulates the inflammatory cytokines CXCL1 and-2 in breast cancer cells via NFκB. Carcinogenesis 29:779–789PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bachmeier BE, Mirisola V, Romeo F, Generoso L, Esposito A, Dell’Eva R, Blengio F, Killian PH, Albini A, Pfeffer U (2010) Reference profile correlation reveals estrogen-like transcriptional activity of curcumin. Cell Physiol Biochem 26:471–482PubMedCrossRefPubMedCentralGoogle Scholar
  15. Baker JR Jr (2009) Dendrimer-based nanoparticles for cancer therapy. Hematol Am Soc Hematol Educ Program 2009:708–719Google Scholar
  16. Baker Jr JR, Huang BM, Thomas TP (2014) Pro-drug complexes and related methods of use. US Patent No. 8853151Google Scholar
  17. Bandyopadhyay AA, Khetan A, Malmberg LH, Zhou W, Hu WS (2017) Advancement in bioprocess technology: parallels between microbial natural products and cell culture biologics. J Indian Microbiol Biotechnol 44:785–797CrossRefGoogle Scholar
  18. Bathaie SZ, Mousavi SZ (2010) New applications and mechanisms of action of saffron and its important ingredients. Crit Rev Food Sci Nutr 50:761–786PubMedCrossRefPubMedCentralGoogle Scholar
  19. Beevers CS, Chen L, Liu L, Luo Y, Webster NJ, Huang S (2009) Curcumin disrupts the mammalian target of rapamycin-raptor complex. Cancer Res 69:1000–1008PubMedCrossRefPubMedCentralGoogle Scholar
  20. Bennouna J, Delord JP, Campone M, Nguyen L (2008) Vinflunine: a new microtubule inhibitor agent. Clin Cancer Res 14:1625–1632CrossRefPubMedGoogle Scholar
  21. Bohlin L, Rosen B (1996) Podophyllotoxin derivatives: drug discovery and development. Drug Discov Today 1:343–351CrossRefGoogle Scholar
  22. Bruno A, Siena L, Gerbino S, Ferraro M, Chanez P, Giammanco M, Gjomarkaj M, Pace E (2011) Apigenin affects leptin/leptin receptor pathway and induces cell apoptosis in lung adenocarcinoma cell line. Eur J Cancer 47:2042–2051PubMedCrossRefPubMedCentralGoogle Scholar
  23. Calderon-Montano JM, Burgos-Morón E, Pérez-Guerrero C, López-Lázaro M (2011) A review on the dietary flavonoid kaempferol. Mini Rev Med Chem 11:298–344PubMedCrossRefPubMedCentralGoogle Scholar
  24. Callaghan R, Luk F, Bebawy M (2014) Inhibition of the multidrug resistance P-glycoprotein: time for a change of strategy. Drug Metab Dispos 42:623–631PubMedCrossRefPubMedCentralGoogle Scholar
  25. Caminade AM, Turrin CO (2014) Dendrimers for drug delivery. J Mater Chem B 2:4055–4066CrossRefGoogle Scholar
  26. Chan J, Khan SN, Harvey I, Merrick W, Pelletier J (2004) Eukaryotic protein synthesis inhibitors identified by comparison of cytotoxicity profiles. RNA 10:528–543PubMedCrossRefPubMedCentralGoogle Scholar
  27. Chang Y, Yang ST, Liu JH, Dong E, Wang Y, Cao A, Liu Y, Wang H (2011) In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol Lett 200:201–210PubMedCrossRefPubMedCentralGoogle Scholar
  28. Chen B, Liu M, Zhang L, Huang J, Yao J, Zhang Z (2011) Polyethylenimine-functionalized graphene oxide as an efficient gene delivery vector. J Mater Chem 21:7736–7741CrossRefGoogle Scholar
  29. Chryssanthi DG, Dedes PG, Karamanos NK, Cordopatis P, Lamari FN (2011) Crocetin inhibits invasiveness of MDA-MB-231 breast cancer cells via downregulation of matrix metalloproteinases. Planta Med 77:146–151PubMedCrossRefPubMedCentralGoogle Scholar
  30. Chung C, Jiang Y, Cheng D, Birt DF (2007) Impact of adenomatous polyposis coli (APC) tumor suppressor gene in human colon cancer cell lines on cell cycle arrest by apigenin. Mol Carcinog 46:773–782PubMedCrossRefGoogle Scholar
  31. Correia JJ, Lobert S (2001) Physiochemical aspects of tubulin-interacting antimitotic drugs. Curr Pharm Des 7:1213–1228PubMedCrossRefGoogle Scholar
  32. Cragg GM, Newman DJ (2005) Plants as a source of anti-cancer agents. J Ethnopharmacol 100:72–79CrossRefPubMedGoogle Scholar
  33. Cragg G, Newman D (2006) Natural products as sources of antitumor agents. In: Ethnopharmacology. EOLSS Publishers, OxfordGoogle Scholar
  34. Cragg GM, Newman DJ, Snader KM (1997) Natural products in drug discovery and development. J Nat Prod 60:52–60CrossRefPubMedGoogle Scholar
  35. Cui Y, Morgenstern H, Greenland S, Tashkin DP, Mao JT, Cai L, Cozen W, Mack TM, Lu QY, Zhang ZF (2008) Dietary flavonoid intake and lung cancer – a population based case control study. Cancer 112:2241–2248PubMedCrossRefPubMedCentralGoogle Scholar
  36. Dahlqvist SR, Landberg G, Roos G, Norberg B (1994) Cell cycle effects of the anti-rheumatic agent CPH82. Rheumatology 33:327–331CrossRefGoogle Scholar
  37. Danhier F, Feron O, Préat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148:135–146PubMedCrossRefGoogle Scholar
  38. Das S, Khuda-Bukhsh AR (2016) PLGA-loaded nanomedicines in melanoma treatment: future prospect for efficient drug delivery. Indian J Med Res 144:181–193PubMedCrossRefPubMedCentralGoogle Scholar
  39. Das I, Das S, Saha T (2010) Saffron suppresses oxidative stress in DMBA-induced skin carcinoma: a histopathological study. Acta Histochem 112:317–327PubMedCrossRefPubMedCentralGoogle Scholar
  40. Depan D, Shah J, Misra R (2011) Controlled release of drug from folate-decorated and graphene mediated drug delivery system: synthesis, loading efficiency, and drug release response. Mater Sci Eng C 31:1305–1312CrossRefGoogle Scholar
  41. Desai AG, Qazi GN, Ganju RK, El-Tamer M, Singh J, Saxena AK, Bedi YS, Taneja SC, Bhat HK (2008) Medicinal plants and cancer chemoprevention. Curr Drug Metab 9:581–591PubMedCrossRefPubMedCentralGoogle Scholar
  42. El-Alfy TS, Ezzat SM, Hegazy AK, Amer AM, Kamel GM (2011) Isolation of biologically active constituents from Moringa peregrina (Forssk.) Fiori. (family: Moringaceae) growing in Egypt. Pharmacogn Mag 7:109–115PubMedCrossRefPubMedCentralGoogle Scholar
  43. Elujoba AA, Odeleye O, Ogunyemi C (2005) Traditional medicine development for medical and dental primary health care delivery system in Africa. Afr J Tradit Complement Alternat Med 2:46–61Google Scholar
  44. Espinosa A, Di Corato R, Kolosnjaj-Tabi J, Flaud P, Pellegrino T, Wilhelm C (2016) Duality of iron oxide nanoparticles in cancer therapy: amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment. ACS Nano 10:2436–2446PubMedCrossRefPubMedCentralGoogle Scholar
  45. Fenical W, Jensen PR (1993) Marine microorganisms: a new biomedical resource. In: Attaway DH, Zaborsky OR (eds) Pharmaceutical and bioactive natural products. Springer, Boston, pp 419–457CrossRefGoogle Scholar
  46. Gacche RN, Shegokar HD, Gond DS, Yang Z, Jadhav AD (2011) Evaluation of selected flavonoids as antiangiogenic, anticancer, and radical scavenging agents: an experimental and in silico analysis. Cell Biochem Biophys 61:651–663PubMedCrossRefGoogle Scholar
  47. Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60:1307–1315PubMedCrossRefPubMedCentralGoogle Scholar
  48. Gordaliza M, Garcia P, Del Corral JM, Castro MA, Gómez-Zurita MA (2004) Podophyllotoxin: distribution, sources, applications and new cytotoxic derivatives. Toxicon 44:441–459CrossRefPubMedGoogle Scholar
  49. Gouvea R, Kassicieh S (2005) Using resources in R & D policy planning: Brazil, the Amazon and biotechnology. Technol Forecast Soc Chang 72:535–547CrossRefGoogle Scholar
  50. Gryparis EC, Hatziapostolou M, Papadimitriou E, Avgoustakis K (2007) Anticancer activity of cisplatin-loaded PLGA-mPEG nanoparticles on LNCaP prostate cancer cells. Eur J Pharm Biopharm 67:1–8PubMedCrossRefPubMedCentralGoogle Scholar
  51. Gurunathan S, Han JW, Park JH, Eppakayala V, Kim JH (2014) Ginkgo biloba: a natural reducing agent for the synthesis of cytocompatible graphene. Int J Nanomedicine 9:363PubMedCrossRefPubMedCentralGoogle Scholar
  52. Gutheil W, Reed G, Ray A, Anant S, Dhar A (2012) Crocetin: an agent derived from saffron for prevention and therapy for cancer. Curr Pharm Biotechnol 13:173–179PubMedCrossRefPubMedCentralGoogle Scholar
  53. Harvey AL (2008) Natural products in drug discovery. Drug Discov Today 13:894–901CrossRefPubMedGoogle Scholar
  54. Henkel T, Brunne RM, Müller H, Reichel F (1999) Statistical investigation into the structural complementarity of natural products and synthetic compounds. Angew Chem Int Ed Eng 38:643–647CrossRefGoogle Scholar
  55. Hoensch HP, Oertel R (2011) Emerging role of bioflavonoids in gastroenterology: especially their effects on intestinal neoplasia. World J Gastrointest Oncol 3:71–75PubMedCrossRefPubMedCentralGoogle Scholar
  56. Holland HD (1997) Evidence for life on Earth more than 3850 million years ago. Science 275:38–39PubMedCrossRefPubMedCentralGoogle Scholar
  57. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ (2008) Cancer statistics 2008. CA: Cancer J Clin 58:71–96Google Scholar
  58. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics 2010. CA: Cancer J Clin 60:277–300Google Scholar
  59. Jennewein S, Croteau R (2001) Taxol: biosynthesis, molecular genetics, and biotechnological applications. Appl Microbiol Biotechnol 57:13–19PubMedCrossRefPubMedCentralGoogle Scholar
  60. Jeong CH, Bode AM, Pugliese A, Cho YY, Kim HG, Shim JH, Jeon YJ, Li H, Jiang H, Dong Z (2009) [6]-Gingerol suppresses colon cancer growth by targeting leukotriene A4 hydrolase. Cancer Res 69:5584–5591PubMedCrossRefPubMedCentralGoogle Scholar
  61. Jiang W, Kim BY, Rutka JT, Chan WC (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3:145–150PubMedCrossRefPubMedCentralGoogle Scholar
  62. Joel S (1996) The comparative clinical pharmacology of vincristine and vindesine: does vindesine offer any advantage in clinical use. Cancer Treat Rev 21:513–525PubMedCrossRefPubMedCentralGoogle Scholar
  63. Kanagesan S, Hashim M, Aziz ABS, Ismail I, Tamilselvan S, Alitheen N, Swamy MK, Purna Chandra Rao B (2016a) Evaluation of antioxidant and cytotoxicity activities of copper ferrite (CuFe2O4) and zinc ferrite (ZnFe2O4) nanoparticles synthesized by sol-gel self-combustion method. Appl Sci 6:184CrossRefGoogle Scholar
  64. Kanagesan S, Hashim M, Aziz SAB, Ismail I, Tamilselvan S, Alitheen NB, Swamy MK, Rao BPC (2016b) Synthesis, characterization and in vitro evaluation of manganese ferrite (MnFe2O4) nanoparticles for their biocompatibility with murine breast cancer cells (4T1). Molecules 21:312. https://doi.org/10.3390/molecules21030312 CrossRefPubMedGoogle Scholar
  65. Kaur R, Kapoor K, Kaur H (2011) Plants as a source of anticancer agents. J Nat Prod Plant Resour 1:119–124Google Scholar
  66. Kelly MG, Hartwell JL (1954) The biological effects and the chemical composition of podophyllin. Rev J Natl Cancer Inst 14:967–1010Google Scholar
  67. Khlebtsov N, Dykman L (2011) Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev 40:1647–1671PubMedCrossRefPubMedCentralGoogle Scholar
  68. Kim YS, Milner J (2005) Targets for indole-3-carbinol in cancer prevention. J Nutr Biochem 16:65–73PubMedCrossRefPubMedCentralGoogle Scholar
  69. Kim JM, Kim JS, Yoo H, Choung MG, Sung MK (2008) Effects of black soybean [Glycine max (L.) Merr.] seed coats and its anthocyanidins on colonic inflammation and cell proliferation in vitro and in vivo. J Agric Food Chem 56:8427–8433PubMedCrossRefPubMedCentralGoogle Scholar
  70. Kim JE, Kwon JY, Seo SK, Son JE, Jung SK, Min SY, Hwang MK, Heo YS, Lee KW, Lee HJ (2010) Cyanidin suppresses ultraviolet B-induced COX-2 expression in epidermal cells by targeting MKK4, MEK1, and Raf-1. Biochem Pharmacol 79:1473–1482PubMedCrossRefPubMedCentralGoogle Scholar
  71. Knight V, Sanglier JJ, DiTullio D, Braccili S, Bonner P, Waters J, Hughes D, Zhang L (2003) Diversifying microbial natural products for drug discovery. Appl Microbiol Biotechnol 62:446–458PubMedCrossRefPubMedCentralGoogle Scholar
  72. Kohler N, Sun C, Fichtenholtz A, Gunn J, Fang C, Zhang M (2006) Methotrexate-immobilized poly (ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery. Small 2:785–792PubMedCrossRefPubMedCentralGoogle Scholar
  73. Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 75:1–18PubMedCrossRefPubMedCentralGoogle Scholar
  74. Kwon GS (2003) Polymeric micelles for delivery of poorly water-soluble compounds. Crit Rev Ther Drug Carrier Syst 20:357–403PubMedCrossRefPubMedCentralGoogle Scholar
  75. Lasic DD (1996) Doxorubicin in sterically stabilized liposomes. Nature 380:561–562PubMedCrossRefPubMedCentralGoogle Scholar
  76. Lawania R, Mishra A (2013) Anticancer potential of plants and natural products: a review. J Pharmacol Biomed Anal 1:104–115Google Scholar
  77. Leonardi T, Vanamala J, Taddeo SS, Davidson LA, Murphy ME, Patil BS, Wang N, Carroll RJ, Chapkin RS, Lupton JR, Turner ND (2010) Apigenin and naringenin suppress colon carcinogenesis through the aberrant crypt stage in azoxymethane-treated rats. Exp Biol Med 235:710–717CrossRefGoogle Scholar
  78. Li C (2002) Poly (L-glutamic acid)-anticancer drug conjugates. Adv Drug Deliv Rev 54:695–713PubMedCrossRefPubMedCentralGoogle Scholar
  79. Li Y, Liu Y, Fu Y, Wei T, Le Guyader L, Gao G, Liu RS, Chang YZ, Chen C (2012) The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways. Biomaterials 33:402–411PubMedCrossRefPubMedCentralGoogle Scholar
  80. Li N, Zhang Q, Gao S, Song Q, Huang R, Wang L, Liu L, Dai J, Tang M, Cheng G (2013) Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells. Sci Rep 3:1604. https://doi.org/10.1038/srep01604 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Lian P, Zhu X, Liang S, Li Z, Yang W, Wang H (2011) High reversible capacity of SnO2/graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim Acta 56:4532–4539CrossRefGoogle Scholar
  82. Lim TG, Kwon JY, Kim J, Song NR, Lee KM, Heo YS, Lee HJ, Lee KW (2011) Cyanidin-3-glucoside suppresses B[a]PDE-induced cyclooxygenase-2 expression by directly inhibiting Fyn kinase activity. Biochem Pharmacol 82:167–174PubMedCrossRefPubMedCentralGoogle Scholar
  83. Link S, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103:4212–4217CrossRefGoogle Scholar
  84. Liu LF, Desai SD, Li TK, Mao Y, Sun ME, SIM SP (2000) Mechanism of action of camptothecin. Ann N Y Acad Sci 922:1–10PubMedCrossRefPubMedCentralGoogle Scholar
  85. Liu Z, Robinson JT, Tabakman SM, Yang K, Dai H (2011) Carbon materials for drug delivery and cancer therapy. Mater Today 14:316–323CrossRefGoogle Scholar
  86. Liu J, Cui L, Losic D (2013) Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater 9:9243–9257PubMedCrossRefPubMedCentralGoogle Scholar
  87. Luo H, Rankin GO, Li Z, DePriest L, Chen YC (2011) Kaempferol induces apoptosis in ovarian cancer cells through activating p53 in the intrinsic pathway. Food Chem 128:513–519PubMedCrossRefPubMedCentralGoogle Scholar
  88. Madaan K, Kumar S, Poonia N, Lather V, Pandita D (2014) Dendrimers in drug delivery and targeting: drug-dendrimer interactions and toxicity issues. J Pharm Bioallied Sci 6:139–150PubMedCrossRefPubMedCentralGoogle Scholar
  89. Manju K, Jat R, Anju G (2017) A review on medicinal plants used as a source of anticancer agents. Int J Drug Res Technol 2:177–183Google Scholar
  90. Margolis RL, Wilson L (1981) Microtubule treadmills-possible molecular machinery. Nature 293:705–711PubMedCrossRefPubMedCentralGoogle Scholar
  91. Markovic ZM, Harhaji-Trajkovic LM, Todorovic-Markovic BM, Kepić DP, Arsikin KM, Jovanović SP, Pantovic AC, Dramićanin MD, Trajkovic VS (2011) In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes. Biomaterials 32:1121–1129PubMedCrossRefPubMedCentralGoogle Scholar
  92. McCaskill D, Croteau R (1997) Prospects for the bioengineering of isoprenoid biosynthesis. In: Berger RG (ed) Biotechnology of aroma compounds. Springer, Berlin, pp 107–146CrossRefGoogle Scholar
  93. Mohanty SK, Mallappa KS, Godavarthi A, Subbanarasiman B, Maniyam A (2014) Evaluation of antioxidant, in vitro cytotoxicity of micropropagated and naturally grown plants of Leptadenia reticulata (Retz.) Wight & Arn.-an endangered medicinal plant. Asian Pac J Trop Med 7:S267–S271CrossRefGoogle Scholar
  94. Mohanty SK, Swamy MK, Sinniah UR, Anuradha M (2017) Leptadenia reticulata (Retz.) Wight & Arn.(Jivanti): botanical, agronomical, phytochemical, pharmacological, and biotechnological aspects. Molecules 22:1019. https://doi.org/10.3390/molecules22061019 CrossRefGoogle Scholar
  95. Moudi M, Go R, Yien CYS, Nazre M (2013) Vinca alkaloids. Int J Prev Med 4:1231–1235PubMedPubMedCentralGoogle Scholar
  96. Nam KN, Park YM, Jung HJ, Lee JY, Min BD, Park SU, Jung WS, Cho KH, Park JH, Kang I, Hong JW, Lee EH (2010) Anti-inflammatory effects of crocin and crocetin in rat brain microglial cells. Eur J Pharmacol 648:110–116PubMedCrossRefPubMedCentralGoogle Scholar
  97. Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi JS, Chin SF, Sherry AD, Boothman DA, Gao J (2006) Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett 6:2427–2430PubMedCrossRefPubMedCentralGoogle Scholar
  98. Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477CrossRefPubMedGoogle Scholar
  99. Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335PubMedCrossRefPubMedCentralGoogle Scholar
  100. Newman DJ, Cragg GM, Snader KM (2003) Natural products as sources of new drugs over the period 1981-2002. J Nat Prod 66:1022–1037CrossRefPubMedGoogle Scholar
  101. Nirmala MJ, Samundeeswari A, Sankar PD (2011) Natural plant resources in anticancer therapy: a review. Res Plant Biol 1:1–14Google Scholar
  102. Nishiyama N, Kataoka K (2006) Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 112:630–648PubMedCrossRefPubMedCentralGoogle Scholar
  103. Nöthlings U, Murphy SP, Wilkens LR, Henderson BE, Kolonel LN (2007) Flavonols and pancreatic cancer risk: the multiethnic cohort study. Am J Epidemiol 166:924–931PubMedCrossRefPubMedCentralGoogle Scholar
  104. Oerlemans C, Bult W, Bos M, Storm G, Nijsen JF, Hennink WE (2010) Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res 27:2569–2589PubMedCrossRefPubMedCentralGoogle Scholar
  105. Oyagbemi AA, Saba AB, Azeez OI (2010) Molecular targets of [6]-gingerol: its potential roles in cancer chemoprevention. Biofactors 36:169–178PubMedCrossRefPubMedCentralGoogle Scholar
  106. Park JS, Rho HS, Kim DH, Chang IS (2006a) Enzymatic preparation of kaempferol from green tea seed and its antioxidant activity. J Agric Food Chem 54:2951–2956PubMedCrossRefPubMedCentralGoogle Scholar
  107. Park YJ, Wen J, Bang S, Park SW, Song SY (2006b) [6]-Gingerol induces cell cycle arrest and cell death of mutant p53-expressing pancreatic cancer cells. Yonsei Med J 47:688–697PubMedCrossRefPubMedCentralGoogle Scholar
  108. Peng XH, Qian X, Mao H, Wang AY (2008) Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int J Nanomedicine 3:311–321PubMedPubMedCentralGoogle Scholar
  109. Prakash O, Kumar A, Kumar P (2013) Anticancer potential of plants and natural products: a review. Am J Pharma Sci 1:104–115Google Scholar
  110. Premkumar T, Geckeler KE (2012) Graphene-DNA hybrid materials: assembly, applications, and prospects. Prog Polym Sci 37:515–529CrossRefGoogle Scholar
  111. Qian X, Melkamu T, Upadhyaya P, Kassie F (2011) Indole-3-carbinol inhibited tobacco smoke carcinogen-induced lung adenocarcinoma in A/J mice when administered during the post-initiation or progression phase of lung tumorigenesis. Cancer Lett 311:57–65PubMedCrossRefPubMedCentralGoogle Scholar
  112. Qin SY, Zhang AQ, Cheng SX, Rong L, Zhang XZ (2017) Drug self-delivery systems for cancer therapy. Biomaterials 112:234–247PubMedCrossRefPubMedCentralGoogle Scholar
  113. Rahman MM, Khan SB, Jamal A, Faisal M, Aisiri AM (2011) Iron oxide nanoparticles, nanomaterials. In: Rahman M (ed) Nanomaterials. InTech. http://www.intechopen.com/books/nanomaterials/iron-oxide-nanoparticles. Assessed 18 Sept 2017
  114. Raskin I, Ribnicky DM, Komarnytsky S, Ilic N, Poulev A, Borisjuk N, Brinker A, Moreno DA, Ripoll C, Yakoby N, O’Neal JM (2002) Plants and human health in the twenty-first century. Trends Biotechnol 20:522–531PubMedCrossRefPubMedCentralGoogle Scholar
  115. Ravindran J, Prasad S, Aggarwal BB (2009) Curcumin and cancer cells: how many ways can curry kill tumor cells selectively. AAPS J 11:495–510PubMedCrossRefPubMedCentralGoogle Scholar
  116. Rhode J, Fogoros S, Zick S, Wahl H, Griffith KA, Huang J, Liu JR (2007) Ginger inhibits cell growth and modulates angiogenic factors in ovarian cancer cells. BMC Complement Alternat Med 7:44–51CrossRefGoogle Scholar
  117. Roessner CA, Scott AI (1996) Achieving natural product synthesis and diversity via catalytic networking ex vivo. Chem Biol 3:325–330PubMedCrossRefPubMedCentralGoogle Scholar
  118. Rowinsky EK, Donehower RC (1995) Paclitaxel (taxol). New Engl J Med 332:1004–1014PubMedCrossRefPubMedCentralGoogle Scholar
  119. Rudramurthy GR, Swamy MK, Sinniah UR, Ghasemzadeh A (2016) Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules 21:836. https://doi.org/10.3390/molecules21070836 CrossRefGoogle Scholar
  120. Senft C, Polacin M, Priester M, Seifert V, Kögel D, Weissenberger J (2010) The nontoxic natural compound curcumin exerts anti-proliferative, anti-migratory, and anti-invasive properties against malignant gliomas. BMC Cancer 10:491. https://doi.org/10.1186/1471-2407-10-491
  121. Shahil KM, Balandin AA (2012) Thermal properties of graphene and multilayer graphene: applications in thermal interface materials. Solid State Commun 152:1331–1340CrossRefGoogle Scholar
  122. Siddiqui IA, Sanna V, Ahmad N, Sechi M, Mukhtar H (2015) Resveratrol nanoformulation for cancer prevention and therapy. Ann N Y Acad Sci 1348:20–31PubMedCrossRefPubMedCentralGoogle Scholar
  123. Skinnider MA, Dejong CA, Franczak BC, McNicholas PD, Magarvey NA (2017) Comparative analysis of chemical similarity methods for modular natural products with a hypothetical structure enumeration algorithm. J Cheminform 9:46. https://doi.org/10.1186/s13321-017-0234-y CrossRefPubMedPubMedCentralGoogle Scholar
  124. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20PubMedCrossRefPubMedCentralGoogle Scholar
  125. Stanton RA, Gernert KM, Nettles JH, Aneja R (2011) Drugs that target dynamic microtubules: a new molecular perspective. Med Res Rev 31:443–481PubMedCrossRefPubMedCentralGoogle Scholar
  126. Sun C, Lee JS, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60:1252–1265PubMedCrossRefPubMedCentralGoogle Scholar
  127. Swamy MK, Sinniah UR (2015) A comprehensive review on the phytochemical constituents and pharmacological activities of Pogostemon cablin Benth.: an aromatic medicinal plant of industrial importance. Molecules 20:8521–8547CrossRefPubMedGoogle Scholar
  128. Swamy MK, Sinniah UR (2016) Patchouli (Pogostemon cablin Benth.): botany, agrotechnology and biotechnological aspects. Ind Crop Prod 87:161–176CrossRefGoogle Scholar
  129. Swamy MK, Sinniah UR, Akhtar MS (2016) Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review. Evidence-Based Complement Alternat Med 22:1019. https://doi.org/10.3390/molecules22061019 CrossRefGoogle Scholar
  130. Swamy MK, Arumugam G, Kaur R, Ghasemzadeh A, Yusoff MM, Sinniah UR (2017) GC-MS based metabolite profiling, antioxidant and antimicrobial properties of different solvent extracts of Malaysian Plectranthus amboinicus leaves. Evidence-Based Complement Alternat Med 2017:1517683. https://doi.org/10.1155/2017/1517683 CrossRefGoogle Scholar
  131. Tiong SH, Looi CY, Arya A, Ong WF, Hazni H, Mustafa MR, Awang K (2015) Vindogentianine, a hypoglycemic alkaloid from Catharanthus roseus (L.) G. Don (Apocynaceae). Fitoterapia 102:182–188PubMedCrossRefPubMedCentralGoogle Scholar
  132. To KK, Yu L, Liu S, Fu J, Cho CH (2012) Constitutive AhR activation leads to concomitant ABCG2-mediated multidrug resistance in cisplatin-resistant esophageal carcinoma cells. Mol Carcinog 51:449–464PubMedCrossRefPubMedCentralGoogle Scholar
  133. Turktekin M, Konac E, Onen HI, Alp E, Yilmaz A, Menevse S (2011) Evaluation of the effects of the flavonoid apigenin on apoptotic pathway gene expression on the colon cancer cell line (HT29). J Med Food 14:1107–1117PubMedCrossRefPubMedCentralGoogle Scholar
  134. Vallabani N, Mittal S, Shukla RK, Pandey AK, Dhakate SR, Pasricha R, Dhawan A (2011) Toxicity of graphene in normal human lung cells (BEAS-2B). J Biomed Nanotechnol 7:106–107PubMedCrossRefPubMedCentralGoogle Scholar
  135. Van Hattum AH, Pinedo HM, Schlüper HM, Hausheer FH, Boven E (2000) New highly lipophilic camptothecin BNP1350 is an effective drug in experimental human cancer. Int J Cancer 88:260–266PubMedCrossRefPubMedCentralGoogle Scholar
  136. Verdine GL (1996) The combinatorial chemistry of nature. Nature 384:11–13PubMedCrossRefPubMedCentralGoogle Scholar
  137. Wang Y, Chen JT, Yan XP (2013) Fabrication of transferrin functionalized gold nanoclusters/graphene oxide nanocomposite for turn-on near-infrared fluorescent bioimaging of cancer cells and small animals. Anal Chem 85:2529–2535PubMedCrossRefPubMedCentralGoogle Scholar
  138. Xu J, Wang F, Van Keymeulen A, Rentel M, Bourne HR (2005) Neutrophil microtubules suppress polarity and enhance directional migration. Proc Natl Acad Sci U S A 102:6884–6889PubMedCrossRefPubMedCentralGoogle Scholar
  139. Xu M, Bower KA, Wang S, Frank JA, Chen G, Ding M, Wang S, Shi X, Ke Z, Luo J (2010) Cyanidin-3-glucoside inhibits ethanol-induced invasion of breast cancer cells overexpressing ErbB2. Mol Cancer 9:285PubMedCrossRefPubMedCentralGoogle Scholar
  140. Yemisci M, Bozdag S, Çetin M, Söylemezoglu F, Çapan Y, Dalkara T, Vural I (2006) Treatment of malignant gliomas with mitoxantrone-loaded poly (lactide-co-glycolide) microspheres. Neurosurgery 59:1296–1303PubMedCrossRefPubMedCentralGoogle Scholar
  141. Yoo HS, Park TG (2001) Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA-PEG block copolymer. J Control Release 70:63–70PubMedCrossRefPubMedCentralGoogle Scholar
  142. Zeng S, Yong KT, Roy I, Dinh XQ, Yu X, Luan F (2011) A review on functionalized gold nanoparticles for biosensing applications. Plasmonics 6:491–506CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Manisha Singh
    • 1
  • Rashi Rajput
    • 1
  • Ramneek Kaur
    • 1
  • Sachin Kumar
    • 1
  • Rachana
    • 1
  1. 1.Department of BiotechnologyJaypee Institute of Information TechnologyNoidaIndia

Personalised recommendations