Advertisement

Natural Anticancer Compounds and Their Derivatives in Clinical Trials

  • Veerabhadrappa Bhavana
  • Setra Janardhana Shetty Sudharshan
  • Dyavaiah Madhu
Chapter

Abstract

Cancer continues to be a global challenge to both clinicians and researchers with an increasing mortality rate. Despite the enormous progress made in the anticancer drug discovery, there is a constant demand for novel therapeutic agents, because of the development of resistance to the existing chemotherapeutic drugs and their adverse side effects. The anticancer drugs derived from the natural sources have shown to be effective and safe in the treatment of cancers. Secondary metabolite compounds from plants such as alkaloids, flavonoids, and carotenoids are known for their cancer prevention and antitumor properties. Peptides produced from marine organisms and anthracyclines synthesized by microbes as secondary metabolites are also known for their anticancer properties. Some of these natural compounds are widely used in cancer therapy, and some are under clinical or preclinical trials. Some of the potential anticancer agents from plants (paclitaxel, vincristine, vinblastine, irinotecan, etoposide, topotecan, and camptothecin), marines (dolastatin 10, cytarabine, and aplidine), and microorganisms (bleomycin, doxorubicin, and dactinomycin) have been used in cancer therapy. Cancers are characterized by the alterations in the cell signaling pathways. Most of the current anticancer therapies involve the modulation of altered signaling targets in cancers. The advantage of using natural compounds with antitumor properties for cancer therapy is that the compounds have well-defined signaling targets with a minimal toxicity. Natural anticancer drugs have been categorized based on their target-specific signaling pathways, which include DNA-damaging drugs, methyltransferase inhibitors, mitotic disrupters, and histone deacetylase inhibitors. Thus, the present chapter highlights the natural anticancer compounds and their derivatives which are under clinical trials and their mechanism of action in cancer therapy.

Keywords

Anticancer Clinical trial Natural compound Toxicity Therapy 

References

  1. Anitha Sri S (2016) Pharmacological activity of vinca alkaloids. J Pharmacogn Phytochem 4:27–34Google Scholar
  2. Arastu-Kapur S, Anderl JL, Kraus M, Parlati F, Shenk KD, Lee SJ, Muchamuel T, Bennett MK, Driessen C, Ball AJ, Kirk CJ (2011) Nonproteasomal targets of the proteasome inhibitors bortezomib and carfilzomib: a link to clinical adverse events. Clin Cancer Res 17:2734–2743PubMedCrossRefGoogle Scholar
  3. Arora S, Gonzalez AF, Solanki K (2013) Combretastatin A-4 and its analogs in cancer therapy. Int J Pharm Sci Rev Res 22:168–174Google Scholar
  4. Badgujar VB, Ansari MT, Abdullah MS (2015) Homoharringtonine: a nascent phytochemical for cancer treatment. World J Pharm Pharm Sci 4:1380–1391Google Scholar
  5. Baghel SS, Shrivastava N, Baghel RS (2016) A review of quercetin: antioxidant and anticancer properties. World J Pharm Pharm Sci 1:146–160Google Scholar
  6. Ballou LM, Lin RZ (2008) Rapamycin and mTOR kinase inhibitors. J Chem Biol 1:27–36PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bayala B, Bassole IH, Scifo R, Gnoula C, Morel L, Lobaccaro JMA, Simpore J (2014) Anticancer activity of essential oils and their chemical components-a review. Am J Cancer Res 4:591–607PubMedPubMedCentralGoogle Scholar
  8. Behrangi N, Hashemi M, Borna H (2012) Microtubules and tubulins as target for some natural anticancer agents extracted from marines, bacteruim, and fungus. Adv Stud Biol 4:1–9Google Scholar
  9. Bennouna J, Delord JP, Campone M, Nguyen L (2008) Vinflunine: a new microtubule inhibitor agent. Clin Cancer Res 14:1625–1632PubMedCrossRefGoogle Scholar
  10. Bhanot A, Sharma R, Noolvi MN, Bhanot SR, Noolvi MN (2011) Natural sources as potential anticancer agents: a review. Int J Phytomed 3:9–26Google Scholar
  11. Bhatnagar I, Kim SK (2010) Marine antitumor drugs: status, shortfalls and strategies. Mar Drugs 8:2702–2720PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bhattacharya B, Mukherjee S (2015) Cancer therapy using antibiotics. J Cancer Ther 6:849–858CrossRefGoogle Scholar
  13. Bhuvaneswari V, Nagini S (2005) Lycopene: a review of its potential as an anticancer agent. Curr Med Chem 5:627–635Google Scholar
  14. Biggar RJ, Wohlfahrt J, Melbye M (2012) Digoxin use and the risk of cancers of the corpus uteri, ovary and cervix. Int J Cancer 131:716–721PubMedCrossRefGoogle Scholar
  15. Biggar RJ, Andersen EW, Kroman N, Wohlfahrt J, Melbye M (2013) Breast cancer in women using digoxin: tumor characteristics and relapse risk. Breast Cancer Res 15:R13.  https://doi.org/10.1186/bcr3386 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Blasiak J, Sikora A, Wozniak K, Drzewoski J (2004) Genotoxicity of streptozotocin in normal and cancer cells and its modulation by free radical scavengers. Cell Biol Toxicol 20:83–96PubMedCrossRefGoogle Scholar
  17. Brunello A, Roma A, Basso U, Jirillo A (2010) A review of Vinorelbine in the treatment of advanced breast cancer. Clin Med Ther 1:1715–1726Google Scholar
  18. Butler MS, Robertson AAB, Cooper MA (2014) Natural product and natural product derived drugs in clinical trials. Nat Prod Rep 31:1612–1661PubMedCrossRefGoogle Scholar
  19. Calderón-Montaño JM, Burgos-Morón E, Orta ML, Maldonado-Navas D, García-Domínguez I, López-Lázaro M (2014) Evaluating the cancer therapeutic potential of cardiac glycosides. Biomed Res Int 2014:794930.  https://doi.org/10.1155/2014/794930 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Cao W, Liu Y, Zhang R, Zhang B, Wang T, Zhu X, Mei L, Chen H, Zhang H, Ming P, Huang L (2015) Homoharringtonine induces apoptosis and inhibits STAT3 via IL-6/JAK1/STAT3 signal pathway in Gefitinib-resistant lung cancer cells. Sci Rep 5:8477.  https://doi.org/10.1038/srep08477 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Chen J, Song Y, Zhang L (2013) Lycopene/tomato consumption and the risk of prostate cancer: a systematic review and meta-analysis of prospective studies. J Nutr Sci Vitaminol 59:213–223PubMedCrossRefGoogle Scholar
  22. Cheung-Ong K, Giaever G, Nislow C (2013) DNA-damaging agents in cancer chemotherapy: serendipity and chemical biology. Chem Biol 20:648–659PubMedCrossRefGoogle Scholar
  23. Chinta G, Syed SB, MSC C, Periyasamy L (2015) Piperine: a comprehensive review of pre-clinical and clinical investigations. Curr Bioact Compd 11:156–169CrossRefGoogle Scholar
  24. Choi JY, Hong WG, Cho JH, Kim EM, Kim J, Jung CH, Hwang SG, Um HD, Park JK (2015) Podophyllotoxin acetate triggers anticancer effects against non-small cell lung cancer cells by promoting cell death via cell cycle arrest, ER stress and autophagy. Int J Oncol 47:1257–1265PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chung KS, Yim N-H, Lee SH, Choi SJ, Hur KS, Hoe KL, Kim DU, Goehle S, Kim HB, Song KB, Yoo HS, Bae KH, Simon J, Won M (2008) Identification of small molecules inducing apoptosis by cell-based assay using fission yeast deletion mutants. Investig New Drugs 26:299–307CrossRefGoogle Scholar
  26. Cragg GM, Newman DJ (2005) Plants as a source of anti-cancer agents. J Ethnopharmacol 100:72–79CrossRefPubMedGoogle Scholar
  27. Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 1830:3670–3695PubMedPubMedCentralCrossRefGoogle Scholar
  28. Cragg GM, Grothaus PG, Newman DJ (2009) Impact of natural products on developing new anti-cancer agents. Chem Rev 109:3012–3043PubMedCrossRefGoogle Scholar
  29. Crawford LJ, Walker B, Irvine AE (2011) Proteasome inhibitors in cancer therapy. J Cell Commun Signal 5:101–110PubMedPubMedCentralCrossRefGoogle Scholar
  30. Cushnie TPT, Cushnie B, Lamb AJ (2014) Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int J Antimicrob Agents 44:377–386PubMedCrossRefPubMedCentralGoogle Scholar
  31. D’Incalci M, Galmarini CM (2010) A review of trabectedin (ET-743): a unique mechanism of action. Mol Cancer Ther 9:2157–2163PubMedCrossRefPubMedCentralGoogle Scholar
  32. Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15:7313–7352CrossRefPubMedGoogle Scholar
  33. Damelin M, Bankovich A, Park A, Aguilar J, Anderson W, Santaguida M, Aujay M, Fong S, Khandke K, Pulito V, Ernstoff E, Escarpe P, Bernstein J, Pysz M, Zhong W, Upeslacis E, Lucas JJ, Lucas JJ, Nichols T, Loving K, Foord O, Hampl J, Stull R, Barletta F, Falahatpisheh H, Sapra P, Gerber HP, Dylla SJ (2015) Anti-EFNA4 calicheamicin conjugates effectively target triple-negative breast and ovarian tumor-initiating cells to result in sustained tumor regressions. Clin Cancer Res 21:4165–4173PubMedCrossRefPubMedCentralGoogle Scholar
  34. Del Rio D, Stalmach A, Calani L, Crozier A (2010) Bioavailability of coffee chlorogenic acids and green tea flavan-3-ols. Forum Nutr 2:820–833Google Scholar
  35. Demain AL, Vaishnav P (2011) Natural products for cancer chemotherapy. Microb Biotechnol 4:687–699PubMedPubMedCentralCrossRefGoogle Scholar
  36. Dixit RB, Suseela MR (2013) Cyanobacteria: potential candidates for drug discovery. Antonie Van Leeuwenhoek 103:947–961PubMedCrossRefGoogle Scholar
  37. Dizon DS, Krilov L, Cohen E, Gangadhar T, Ganz PA, Hensing TA, Hunger S, Krishnamurthi SS, Lassman AB, Markham MJ, Mayer E, Neuss M, Pal SK, Richardson LC, Schilsky R, Schwartz GK, Spriggs DR, Villalona-Calero MA, Villani G, Masters G (2016) Clinical cancer advances 2016: annual report on progress against cancer from the American Society of Clinical Oncology. J Clin Oncol 34:987–1011PubMedPubMedCentralCrossRefGoogle Scholar
  38. Efferth T, Fu YJ, Zu YG, Schwarz G, Konkimalla VSB, Wink M (2007) Molecular target-guided tumor therapy with natural products derived from traditional Chinese medicine. Curr Med Chem 14:2024–2032PubMedCrossRefGoogle Scholar
  39. Escuin D, Kline ER, Giannakakou P (2005) Both microtubule-stabilizing and microtubule-destabilizing drugs inhibit hypoxia-inducible factor-1. Accumulation and activity by disrupting microtubule function. Cancer Res 65:9021–9028PubMedCrossRefGoogle Scholar
  40. Fanale D, Bronte G, Passiglia F, Calo V, Castiglia M, Di Piazza F, Barraco N, Cangemi A, Catarella MT, Insalaco L, Listi A, Maragliano R, Massihnia D, Perez A, Toia F, Cicero G, Bazan V (2015) Stabilizing versus destabilizing the microtubules: a double-edge sword for an effective cancer treatment option. Anal Cell Pathol 2015:690916.  https://doi.org/10.1155/2015/690916 CrossRefGoogle Scholar
  41. Fauzee NJS, Dong Z, Wang YL (2011) Taxanes: promising anti-cancer drugs. Asian Pac J Cancer Prev 12:837–851PubMedGoogle Scholar
  42. Ferrandina G, Mariani M, Andreoli M, Shahabi S, Scambia G, Ferlini C (2012) Novel drugs targeting microtubules: the role of epothilones. Curr Pharm Des 18:2793–2803PubMedCrossRefGoogle Scholar
  43. Florento L, Matias R, Tuaño E, Santiago K, Dela Cruz F, Tuazon A (2012) Comparison of cytotoxic activity of anticancer drugs against various human tumor cell lines using in vitro cell-based approach. Int J Biomed Sci 8:76–80Google Scholar
  44. Foss F, Horwitz S, Pro B, Prince HM, Sokol L, Balser B, Wolfson J, Coiffier B (2016) Romidepsin for the treatment of relapsed/refractory peripheral T cell lymphoma: prolonged stable disease provides clinical benefits for patients in the pivotal trial. J Hematol Oncol 9:22.  https://doi.org/10.1186/s13045-016-0243-8 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Fukuyo Y, Hunt CR, Horikoshi N (2010) Geldanamycin and its anti-cancer activities. Cancer Lett 290:24–35PubMedCrossRefGoogle Scholar
  46. Ganguly A, Yang H, Cabral F (2010) Paclitaxel-dependent cell lines reveal a novel drug activity. Mol Cancer Ther 9:2914–2923PubMedPubMedCentralCrossRefGoogle Scholar
  47. Gibellini L, Pinti M, Nasi M, Montagna JP, De Biasi S, Roat E, Bertoncelli L, Cooper EL, Cossarizza A (2011) Quercetin and cancer chemoprevention. Evid Based Compl Altern Med 2011:591356.  https://doi.org/10.1093/ecam/neq053 CrossRefGoogle Scholar
  48. Giddings LA, Newman DJ (2013) Microbial natural products: molecular blueprints for antitumor drugs. J Ind Microbiol Biotechnol 40:1181–1210PubMedCrossRefGoogle Scholar
  49. Gomes NGM, Lefranc F, Kijjoa A, Kiss R (2015) Can some marine-derived fungal metabolites become actual anticancer agents. Mar Drugs 13:3950–3991PubMedPubMedCentralCrossRefGoogle Scholar
  50. Gordaliza M, Castro MA, del Corral JM, Feliciano AS (2000) Antitumor properties of podophyllotoxin and related compounds. Curr Pharm Des 6:1811–1839PubMedCrossRefGoogle Scholar
  51. Greenwell M, Rahman PKSM (2015) Medicinal plants: their use in anticancer treatment. Int J Pharm Sci Res 6:4103–4112PubMedPubMedCentralGoogle Scholar
  52. Harvey AL (2008) Natural products in drug discovery. Drug Discov Today 13:894–901PubMedCrossRefGoogle Scholar
  53. Hecht SM (2000) Bleomycin: new perspectives on the mechanism of action. J Nat Prod 63:158–168PubMedCrossRefGoogle Scholar
  54. Hoelder S, Clarke PA, Workman P (2012) Discovery of small molecule cancer drugs: successes, challenges and opportunities. Mol Oncol 6:155–176PubMedPubMedCentralCrossRefGoogle Scholar
  55. Huang M, Lu JJ, Huang MQ, Bao JL, Chen XP, Wang YT (2012) Terpenoids: natural products for cancer therapy. Expert Opin Investig Drugs 21:1801–1818PubMedCrossRefGoogle Scholar
  56. Hussain MS, Fareed S, Ansari S, Khan MS (2012) Marine natural products: a lead for anti-cancer. Indian J Mar Sci 41:891–903Google Scholar
  57. Imperatore C, Aiello A, D’Aniello F, Senese M, Menna M (2014) Alkaloids from marine invertebrates as important leads for anticancer drugs discovery and development. Molecules 19:20391–20423PubMedCrossRefGoogle Scholar
  58. Irie K, Yanagita RC, Nakagawa Y (2012) Challenges to the development of bryostatin-type anticancer drugs based on the activation mechanism of protein kinase Cδ. Med Res Rev 32:518–535PubMedCrossRefGoogle Scholar
  59. Jimeno J, Faircloth G, Sousa-Faro JF, Scheuer P, Rinehart K (2004) New marine derived anticancer therapeutics – a journey from the sea to clinical trials. Mar Drugs 2:14–29PubMedCentralCrossRefPubMedGoogle Scholar
  60. Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4:253–265PubMedCrossRefGoogle Scholar
  61. Jordan M, Toso RJ, Thrower D, Wilson L (1993) Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc Natl Acad Sci U S A 90:9552–9556PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kathiravan MK, Khilare MM, Nikoomanesh K, Chothe AS, Jain KS (2013) Topoisomerase as target for antibacterial and anticancer drug discovery. J Enzyme Inhib Med Chem 28:419–435PubMedCrossRefGoogle Scholar
  63. Kaur R, Arora S (2015) Alkaloids-important therapeutic secondary metabolites of plant origin. J Crit Rev 2:1–8Google Scholar
  64. Kepp O, Menger L, Vacchelli E, Adjemian S, Martins I, Ma Y, Sukkurwala AQ, Michaud M, Galluzzi L, Zitvogel L, Kroemer G (2012) Anticancer activity of cardiac glycosides: at the frontier between cell-autonomous and immunological effects. Oncoimmunology 1:1640–1642PubMedPubMedCentralCrossRefGoogle Scholar
  65. Khazir J, Riley DL, Pilcher LA, De-Maayer P, Mir BA (2014) Anticancer agents from diverse natural sources. Nat Prod Commun 9:1655–1669PubMedGoogle Scholar
  66. Kinghorn AD (2015) Review of anticancer agents from natural products. J Nat Prod 78:2315–2315CrossRefGoogle Scholar
  67. Kinghorn AD, Carcache De Blanco EJ, Lucas DM, Rakotondraibe HL, Orjala J, Soejarto DD, Oberlies NH, Pearce CJ, Wani MC, Stockwell BR, Burdette JE, Swanson SM, Fuchs JR, Phelps MA, Xu L, Zhang X, Shen YY (2016) Discovery of anticancer agents of diverse natural origin. Anticancer Res 36:5623–5637PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kumar S (2015) Drug targets for cancer treatment: an overview. Med Chem 5:115–123CrossRefGoogle Scholar
  69. Kuznetsov G, TenDyke K, Towle MJ, Cheng H, Liu J, Marsh JP, Schiller SER, Spyvee MR, Yang H, Seletsky BM, Shaffer CJ, Marceau V, Yao Y, Suh EM, Campagna S, Fang FG, Kowalczyk JJ, Littlefield BA (2009) Tubulin-based antimitotic mechanism of E7974, a novel analogue of the marine sponge natural product hemiasterlin. Mol Cancer Ther 8:2852–2860PubMedCrossRefGoogle Scholar
  70. Lee W, St.Onge RP, Proctor M, Flaherty P, Jordan MI, Arkin AP, Davis RW, Nislow C, Giaever G (2005) Genome-wide requirements for resistance to functionally distinct DNA-damaging agents. PLoS Genet 1:e24.  https://doi.org/10.1371/journal.pgen.0010024 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Lee TJ, Jung EM, Lee JT, Kim S, Park JW, Choi KS, Kwon TK (2006) Mithramycin A sensitizes cancer cells to TRAIL-mediated apoptosis by down-regulation of XIAP gene promoter through Sp1 sites. Mol Cancer Ther 5:2737–2746PubMedCrossRefGoogle Scholar
  72. Li Y, Zhang T, Schwartz SJ, Sun D (2009) New developments in Hsp90 inhibitors as anti-cancer therapeutics: mechanisms, clinical perspective and more potential. Drug Resist Updat 12:17–27PubMedPubMedCentralCrossRefGoogle Scholar
  73. Li J, Kim SG, Blenis J (2014a) Rapamycin: one drug, many effects. Cell Metab 19:373–379PubMedPubMedCentralCrossRefGoogle Scholar
  74. Li Y, Lu X, Qi H, Li X, Xiao X, Gao J (2014b) Ursolic acid induces apoptosis through mitochondrial intrinsic pathway and suppression of ERK1/2 MAPK in HeLa cells. J Pharmacol Sci 125:202–210PubMedCrossRefGoogle Scholar
  75. Li K, Chung-Davidson YW, Bussy U, Li W (2015) Recent advances and applications of experimental technologies in marine natural product research. Mar Drugs 13:2694–2713PubMedPubMedCentralCrossRefGoogle Scholar
  76. Lin RK, Hsu CH, Wang YC (2007) Mithramycin A inhibits DNA methyltransferase and metastasis potential of lung cancer cells. Anti-Cancer Drugs 18:1157–1164PubMedCrossRefGoogle Scholar
  77. Lippi G, Targher G (2011) Tomatoes, lycopene-containing foods and cancer risk. Br J Cancer 104:1234–1235PubMedPubMedCentralCrossRefGoogle Scholar
  78. Lo YS, Tseng WH, Chuang CY, Hou MH (2013) The structural basis of actinomycin D-binding induces nucleotide flipping out, a sharp bend and a left-handed twist in CGG triplet repeats. Nucleic Acids Res 41:4284–4294PubMedPubMedCentralCrossRefGoogle Scholar
  79. Lopez-Lazaro M (2009) Digoxin, HIF-1, and cancer. Proc Natl Acad Sci U S A 106:E26–E27PubMedPubMedCentralCrossRefGoogle Scholar
  80. Lü S, Wang J (2014) Homoharringtonine and omacetaxine for myeloid hematological malignancies. J Hematol Oncol 7:2.  https://doi.org/10.1186/1756-8722-7-2 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Lu JJ, Bao JL, Chen XP, Huang M, Wang YT (2012) Alkaloids isolated from natural herbs as the anticancer agents. Evid Based Compl Altern Med 2012:485042.  https://doi.org/10.1155/2012/485042 CrossRefGoogle Scholar
  82. Luthria DL, Mukhopadhyay S (2006) Influence of sample preparation on assay of phenolic acids from eggplant. J Agric Food Chem 54:41–47PubMedCrossRefGoogle Scholar
  83. Mans DRA (2016) Exploring the global animal biodiversity in the search for new drugs-marine invertebrates exploring the global animal biodiversity in the search for new drugs – marine invertebrates. J Transl Sci 2:170–179Google Scholar
  84. Mariaule G, Belmont P (2014) Cyclin-dependent kinase inhibitors as marketed anticancer drugs: where are we now. A short survey. Molecules 19:14366–14382PubMedCrossRefGoogle Scholar
  85. Martin DM (2003) Induction of volatile terpene biosynthesis and diurnal emission by methyl jasmonate in foliage of Norway spruce. Plant Physiol 132:1586–1599PubMedPubMedCentralCrossRefGoogle Scholar
  86. Mastron JK, Siveen KS, Sethi G, Bishayee A (2015) Silymarin and hepatocellular carcinoma: a systematic, comprehensive, and critical review. Anti-Cancer Drugs 26:475–486PubMedCrossRefGoogle Scholar
  87. McKinney JS, Sethi S, Tripp JD, Nguyen TN, Sanderson BA, Westmoreland JW, Resnick MA, Lewis LK (2013) A multistep genomic screen identifies new genes required for repair of DNA double-strand breaks in Saccharomyces cerevisiae. BMC Genomics 14:251PubMedPubMedCentralCrossRefGoogle Scholar
  88. Mehta HJ, Patel V, Sadikot RT (2014) Curcumin and lung cancer-a review. Target Oncol 9:295–310PubMedCrossRefGoogle Scholar
  89. Melorose J, Perroy R, Careas S, Martin LP, Hamilton TC, Schilder RJ, Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA (2008) DNA repair pathways as targets for cancer therapy. Nat Rev Cancer 14:1291–1295Google Scholar
  90. Miura S, Izuta S (2004) DNA polymerases as targets of anticancer nucleosides. Curr Drug Targets 5:191–195PubMedCrossRefGoogle Scholar
  91. Moore BS, Eustáquio AS, McGlinchey RP (2008) Advances in and applications of proteasome inhibitors. Curr Opin Chem Biol 12:434–440PubMedPubMedCentralCrossRefGoogle Scholar
  92. Mottamal M, Zheng S, Huang T, Wang G (2015) Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules 20:3898–3941PubMedPubMedCentralCrossRefGoogle Scholar
  93. Moudi M, Go R, Yien CYS, Nazre M (2013) Vinca alkaloids. Int J Prev Med 4:1131–1135Google Scholar
  94. Mukhtar E, Adhami VM, Mukhtar H (2014) Targeting microtubules by natural agents for cancer therapy. Mol Cancer Ther 13:275–284PubMedPubMedCentralCrossRefGoogle Scholar
  95. Munoz-Alonso M, Gonza L, Zarich N, Martı T, Alvarez E (2008) Plitidepsin has a dual effect inhibiting cell cycle and inducing apoptosis via Rac1/c-Jun NH2-terminal kinase activation in human melanoma cells. J Pharmacol Exp Ther 324:1093–1101PubMedCrossRefGoogle Scholar
  96. Neckers L (2002) Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol Med 8:55–61CrossRefGoogle Scholar
  97. Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477CrossRefPubMedGoogle Scholar
  98. Newman DJ, Cragg GM (2014) Marine-sourced anti-cancer and cancer pain control agents in clinical and late preclinical development. Mar Drugs 12:255–278PubMedPubMedCentralCrossRefGoogle Scholar
  99. Newman DJ, Cragg GM (2016a) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79:629–661CrossRefGoogle Scholar
  100. Newman DJ, Cragg GM (2016b) Drugs and drug candidates from marine sources: an assessment of the current “State of play”. Planta Med 82:775–789PubMedCrossRefGoogle Scholar
  101. Newman DJ, Cragg GM, Snader KM (2003) Natural products as sources of new drugs over the period 1981–2002. J Nat Prod 66:1022–1037CrossRefPubMedGoogle Scholar
  102. Nicolaou KC, Smitht AL, Yue EW (1993) Review chemistry and biology of natural and designed enediynes. Proc Natl Acad Sci 90:5881–5888PubMedCrossRefGoogle Scholar
  103. Nijwening JH, Kuiken HJ, Beijersbergen RL (2011) Screening for modulators of cisplatin sensitivity: unbiased screens reveal common themes. Cell Cycle 10:380–386PubMedCrossRefGoogle Scholar
  104. Orlowski RZ, Kuhn DJ (2008) Proteasome inhibitors in cancer therapy: lessons from the first decade. Clin Cancer Res 14:1649–1657PubMedCrossRefGoogle Scholar
  105. Ozcan T, Akpinar-Bayizit A, Yilmaz-Ersan L, Delikanli B (2014) Phenolics in human health. Int J Chem Eng Appl 5:393–396Google Scholar
  106. Pangestuti R, Kim SK (2017) Bioactive peptide of marine origin for the prevention and treatment of non-communicable diseases. Mar Drugs 15:1–23CrossRefGoogle Scholar
  107. Pavese JM, Farmer RL, Bergan RC (2010) Inhibition of cancer cell invasion and metastasis by genistein. Cancer Metastasis Rev 29:465–482PubMedPubMedCentralCrossRefGoogle Scholar
  108. Petek BJ, Jones RL (2014) PM00104 (Zalypsis®): a marine derived alkylating agent. Molecules 19:12328–12335PubMedCrossRefGoogle Scholar
  109. Pichersky E (2006) Biosynthesis of plant volatiles: nature’s diversity and ingenuity. Science 311:808–811PubMedPubMedCentralCrossRefGoogle Scholar
  110. Pommier Y (2006) Topoisomerase I inhibitors: camptothecins and beyond. Nat Rev Cancer 6:789–802PubMedCrossRefGoogle Scholar
  111. Prasad S, Yadav VR, Sung B, Reuter S, Kannappan R, Deorukhkar A, Diagaradjane P, Wei C, Baladandayuthapani V, Krishnan S, Guha S, Aggarwal BB (2012) Ursolic acid inhibits growth and metastasis of human colorectal cancer in an orthotopic nude mouse model by targeting multiple cell signaling pathways: chemosensitization with capecitabine. Clin Cancer Res 18:4942–4953PubMedPubMedCentralCrossRefGoogle Scholar
  112. Priyadarshini K, Keerthi A (2012) Paclitaxel against cancer: a short review. Med Chem 2:142–146Google Scholar
  113. Priyankashukla XX (2014) Marine natural products as anticancer agents. J Pharm Biol Sci 9:60–64Google Scholar
  114. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM (2014) Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the united states. Cancer Res 74:2913–2921PubMedCrossRefGoogle Scholar
  115. Rahmani AH, Al Zohairy MA, Aly SM, Khan MA (2014) Curcumin: a potential candidate in prevention of cancer via modulation of molecular pathways. Biomed Res Int 2014:761608.  https://doi.org/10.1155/2014/761608 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Raju U, Nakata E, Mason KA, Ang KK, Milas L (2003) Flavopiridol, a cyclin-dependent kinase inhibitor, enhances radiosensitivity of ovarian carcinoma cells. Cancer Res 63:3263–3267PubMedGoogle Scholar
  117. Ramasamy K, Agarwal R (2008) Multitargeted therapy of cancer by silymarin. Cancer Lett 269:352–362PubMedPubMedCentralCrossRefGoogle Scholar
  118. Rangel M, Falkenberg M (2015) An overview of the marine natural products in clinical trials and on the market. J Coast Life Med 3:421–428Google Scholar
  119. Ray A, Okouneva T, Manna T, Miller HP, Schmid S, Arthaud L, Luduena R, Jordan MA, Wilson L (2007) Mechanism of action of the microtubule-targeted antimitotic depsipeptide tasidotin (formerly ILX651) and its major metabolite tasidotin C-carboxylate. Cancer Res 67:3767–3776PubMedCrossRefGoogle Scholar
  120. Raza A, Aslam B, Naseer MU, Ali A, Majeed W, Hassan SU (2015) Antitumor activity of berberine against breast cancer: a review. Int Res J Pharm 6:81–85CrossRefGoogle Scholar
  121. Reichenbach H, Höfle G (2008) Discovery and development of the epothilones: a novel class of antineoplastic drugs. Drugs R D 9:1–10PubMedCrossRefGoogle Scholar
  122. Reusser F (1971) Mode of action of streptozotocin. J Bacteriol 105:580–588PubMedPubMedCentralGoogle Scholar
  123. Rida PCG, Livecche D, Ogden A, Zhou J, Aneja R (2015) The noscapine chronicle: a pharmaco-historic biography of the opiate alkaloid family and its clinical applications. Med Res Rev 35:1072–1096PubMedPubMedCentralCrossRefGoogle Scholar
  124. Robert J (2007) Preclinical assessment of anthracycline cardiotoxicity in laboratory animals: predictiveness and pitfalls. Cell Biol Toxicol 23:27–37PubMedCrossRefGoogle Scholar
  125. Rocha LD, Monteiro MC, Teodoro AJ (2012) Anticancer properties of hydroxycinnamic acids-a review. Cancer Clin Oncol 1:109–121Google Scholar
  126. Romano M, Frapolli R, Zangarini M, Bello E, Porcu L, Galmarini CM, García-Fernández LF, Cuevas C, Allavena P, Erba E, D’Incalci M (2013) Comparison of in vitro and in vivo biological effects of trabectedin, lurbinectedin (PM01183) and Zalypsis® (PM00104). Int J Cancer 133:2024–2033PubMedCrossRefGoogle Scholar
  127. Russo M, Russo GL, Daglia M, Kasi PD, Ravi S, Nabavi SF, Nabavi SM (2016) Understanding genistein in cancer: the “good” and the “bad” effects: a review. Food Chem 196:589–600PubMedCrossRefGoogle Scholar
  128. Salem M, Rohani S, Gillies ER (2014) Curcumin, a promising anti-cancer therapeutic: a review of its chemical properties, bioactivity and approaches to cancer cell delivery. RSC Adv 4:10815CrossRefGoogle Scholar
  129. Schutz FA, Bellmunt J, Rosenberg JE, Choueiri TK (2011) Vinflunine: drug safety evaluation of this novel synthetic vinca alkaloid. Expert Opin Drug Saf 10:645–653PubMedCrossRefGoogle Scholar
  130. Schwartsmann G, da Rocha AB, Berlinck RG, Jimeno J (2001) Marine organisms as a source of new anticancer agents. Lancet Oncol 2:221–225PubMedCrossRefGoogle Scholar
  131. Scully OJ, Bay BH, Yip G, Yu Y (2012) Breast cancer metastasis. Cancer Genomics Proteomics 9:311–320PubMedGoogle Scholar
  132. Seto B (2012) Rapamycin and mTOR: a serendipitous discovery and implications for breast cancer. Clin Transl Med 1:29.  https://doi.org/10.1186/2001-1326-1-29 CrossRefPubMedPubMedCentralGoogle Scholar
  133. Shan J, Xuan Y, Ruan S, Sun M (2011) Proliferation-inhibiting and apoptosis-inducing effects of ursolic acid and oleanolic acid on multi-drug resistance cancer cells in vitro. Chin J Integr Med 17:607–611PubMedCrossRefGoogle Scholar
  134. Shapiro RS (2015) Antimicrobial induced DNA damage and genomic instability in microbial pathogens. PLoS Pathog 11:e1004678.  https://doi.org/10.1371/journal.ppat.1004678 CrossRefPubMedPubMedCentralGoogle Scholar
  135. Shen B, Hindra YX, Huang T, Ge H, Yang D, Teng Q, Rudolf JD, Lohman JR (2015) Enediynes: exploration of microbial genomics to discover new anticancer drug leads. Bioorg Med Chem Lett 25:9–15PubMedCrossRefGoogle Scholar
  136. Siegel RL, Miller KDJA (2017) Cancer statistics, 2017. CA Cancer J Clin 67:7–30CrossRefGoogle Scholar
  137. Siemann DW, Chaplin DJ, Walicke PA (2009) A review and update of the current status of the vasculature-disabling agent combretastatin-A4 phosphate (CA4P). Expert Opin Investig Drugs 18:189–197PubMedPubMedCentralCrossRefGoogle Scholar
  138. Simmons TL, Andrianasolo E, Mcphail K, Flatt P, Gerwick WH (2005) Minireview marine natural products as anticancer drugs. Mol Cancer Ther 4:333–342PubMedGoogle Scholar
  139. Simon J, Szankasi P, Nguyen DK, Ludlow C, Dunstan HM, Roberts CJ, Jensen EL, Hartwell LH, Friend SH (2000) Differential toxicities of anticancer agents among DNA repair and checkpoint mutants of Saccharomyces cerevisiae differential toxicities of anticancer agents among DNA repair and checkpoint mutants of Saccharomyces cerevisiae 1. Cancer Res 60:328–333PubMedGoogle Scholar
  140. Singh A, Duggal S (2009) Piperine-review of advances in pharmacology. Int J Pharm Sci Nanotechnol 2:615–620Google Scholar
  141. Singh B, Sharma RA (2015) Plant terpenes: defense responses, phylogenetic analysis, regulation and clinical applications. 3 Biotech 5:129–151PubMedCrossRefGoogle Scholar
  142. Singh R, Sharma M, Joshi P, Rawat DS (2008) Clinical status of anti-cancer agents derived from marine sources. Anti Cancer Agents Med Chem 8:603–617CrossRefGoogle Scholar
  143. Sobral MV, Xavier AL, Lima TC, De Sousa DP (2014) Antitumor activity of monoterpenes found in essential oils. Sci World J 2014:953451.  https://doi.org/10.1155/2014/953451 CrossRefGoogle Scholar
  144. Souto AL, Tavares JF, Da Silva MS, De Diniz MFFM, De Athayde-Filho PF, Barbosa Filho JM (2011) Anti-inflammatory activity of alkaloids: an update from 2000 to 2010. Molecules 16:8515–8534PubMedCrossRefGoogle Scholar
  145. Spagnuolu C, Russo GL, Orhan Llkay E, Habtemariam S, Daglia M, Sureda A, Nabavi SF, Devi KP, Loizzo MR, Tundis R, Nabavi SM (2015) Genistein and cancer: current status, challenges, and future directions. Adv Nutr An Int Rev J 6:408–419CrossRefGoogle Scholar
  146. Srivastava S, Somasagara RR, Hegde M, Nishana M, Tadi SK, Srivastava M, Choudhary B, Raghavan SC (2016) Quercetin, a natural flavonoid interacts with DNA, arrests cell cycle and causes tumor regression by activating mitochondrial pathway of apoptosis. Sci Rep 6:24049.  https://doi.org/10.1038/srep24049 CrossRefPubMedPubMedCentralGoogle Scholar
  147. Stanton RA, Gernert KM, Nettles JH, Aneja R (2011) Drugs that target dynamic microtubules: a new molecular perspective. Med Res Rev 31:443–481PubMedPubMedCentralCrossRefGoogle Scholar
  148. Sun J (2007) D-limonene: safety and clinical applications. Altern Med Rev 12:259–264PubMedGoogle Scholar
  149. Sun Y, Xun K, Wang Y, Chen X (2009) A systematic review of the anticancer properties of berberine, a natural product from Chinese herbs. Anti-Cancer Drugs 20:757–769PubMedCrossRefGoogle Scholar
  150. Takebayashi Y, Pourquier P, Zimonjic DB, Nakayama K, Emmert S, Ueda T, Urasaki Y, Kanzaki A, Akiyama S, Popescu N, Kraemer KH, Pommier Y (2001) Antiproliferative activity of ecteinascidin 743 is dependent upon transcription-coupled nucleotide excision repair. Nat Med 7:961–966PubMedCrossRefGoogle Scholar
  151. Tan AR, Swain SM (2002) Review of flavopiridol, a cyclin-dependent kinase inhibitor, as breast cancer therapy. Semin Oncol 29:77–85PubMedCrossRefGoogle Scholar
  152. Thakur NL, Thakur AN, Müller WEG (2005) Marine natural products in drug discovery. Nat Prod Radiance 4:471–477Google Scholar
  153. Tiong SH, Looi CY, Hazni H, Arya A, Paydar M, Wong WF, Cheah SC, Mustafa MR, Awang K (2013) Antidiabetic and antioxidant properties of alkaloids from Catharanthus roseus (L.) G. Don. Molecules 18:9770–9784PubMedCrossRefGoogle Scholar
  154. Tomasz M (1995) Mitomycin C: small, fast and deadly (but very selective). Chem Biol 2:575–579PubMedCrossRefPubMedCentralGoogle Scholar
  155. Towle MJ, Salvato KA, Budrow J, Wels BF, Kuznetsov G, Aalfs KK, Welsh S, Zheng W, Seletsky BM, Palme MH, Habgood GJ, Singer LA, Dipietro LV, Wang Y, Chen JJ, Quincy DA, Davis A, Yoshimatsu K, Kishi Y, Yu MJ, Littlefield BA (2001) In vitro and in vivo anticancer activities of synthetic macrocyclic ketone analogues of halichondrin B. Cancer Res 61:1013–1021Google Scholar
  156. Tu HY, Huang AM, Wei BL, Gan KH, Hour TC, Yang SC, Pu YS, Lin CN (2009) Ursolic acid derivatives induce cell cycle arrest and apoptosis in NTUB1 cells associated with reactive oxygen species. Bioorg Med Chem 17:7265–7274PubMedCrossRefPubMedCentralGoogle Scholar
  157. Vasavirama K, Upender M (2014) Piperine: a valuable alkaloid from piper species. Int J Pharm Pharm Sci 6:34–38Google Scholar
  158. Venditto VJ, Simanek EE (2010) Cancer therapies utilizing the camptothecins: a review of the in vivo literature. Mol Pharm 7:307–349PubMedPubMedCentralCrossRefGoogle Scholar
  159. Wahid M, Bano Q (2014) Structure activity relationship and clinical development perspective of analogs. J Appl Pharmacol 6:286–295Google Scholar
  160. Waksman SA, Woodruff HB (1941) Actinomyces antibioticus, a new soil organism antagonistic to pathogenic and non-pathogenic bacteria 1. J Bacteriol 42:231–249PubMedPubMedCentralGoogle Scholar
  161. Wang J, Ren T, Xi T (2012) Ursolic acid induces apoptosis by suppressing the expression of FoxM1 in MCF-7 human breast cancer cells. Med Oncol 29:10–15PubMedCrossRefGoogle Scholar
  162. Wang XH, Zhou SY, Qian ZZ, Zhang HL, Qiu LH, Song Z, Zhao J, Wang P, Hao XS, Wang HQ (2013) Evaluation of toxicity and single-dose pharmacokinetics of intravenous ursolic acid liposomes in healthy adult volunteers and patients with advanced solid tumors. Expert Opin Drug Metab Toxicol 9:117–125PubMedCrossRefGoogle Scholar
  163. Wei MY, Giovannucci EL (2012) Lycopene, tomato products, and prostate cancer incidence: a review and reassessment in the PSA screening era. J Oncol 2012:271063.  https://doi.org/10.1155/2012/271063 CrossRefPubMedPubMedCentralGoogle Scholar
  164. Wellington KW (2015) Understanding cancer and the anticancer activities of naphthoquinones – a review. RSC Adv 5:20309–20338CrossRefGoogle Scholar
  165. Wilken R, Veena MS, Wang MB, Srivatsan ES (2011) Curcumin: a review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol Cancer 10:12.  https://doi.org/10.1186/1476-4598-10-12 CrossRefPubMedPubMedCentralGoogle Scholar
  166. Wondrak GT (2009) Redox-directed cancer therapeutics: molecular mechanisms and opportunities. Antioxid Redox Signal 11:3013–3069PubMedPubMedCentralCrossRefGoogle Scholar
  167. Wozniak L, Skapska S, Marszalek K (2015) Ursolic acid – a pentacyclic triterpenoid with a wide spectrum of pharmacological activities. Molecules 20:20614–20641PubMedCrossRefGoogle Scholar
  168. Xu WS, Parmigiani RB, Marks PA (2007) Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 26:5541–5552PubMedCrossRefGoogle Scholar
  169. Yan Z, Zhu Z, Qian Z, Zhao C, Wang H, Ying G (2013) A phase I pharmacokinetic study of ursolic acid nanoliposomes in healthy volunteers and patients with advanced solid tumors. Int J Nanomedicine 8:129–136PubMedPubMedCentralCrossRefGoogle Scholar
  170. Zhen J, Villani TS, Guo Y, Qi Y, Chin K, Pan MH, Ho CT, Simon JE, Wu Q (2016) Phytochemistry, antioxidant capacity, total phenolic content and anti-inflammatory activity of Hibiscus sabdariffa leaves. Food Chem 190:673–680PubMedCrossRefGoogle Scholar
  171. Zhou J, Giannakakou P (2005) Targeting microtubules for cancer chemotherapy. Curr Med Chem Anticancer Agents 5:65–71PubMedCrossRefGoogle Scholar
  172. Ziegler J, Facchini PJ (2008) Alkaloid biosynthesis: metabolism and trafficking. Annu Rev Plant Biol 59:735–769PubMedCrossRefGoogle Scholar
  173. Zwergel C, Valente S, Mai A (2015) DNA methyltransferases inhibitors from natural sources. Curr Top Med Chem 16:680–696CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Veerabhadrappa Bhavana
    • 1
  • Setra Janardhana Shetty Sudharshan
    • 1
    • 2
  • Dyavaiah Madhu
    • 1
    • 2
  1. 1.Department of Biochemistry and Molecular BiologyPondicherry UniversityPondicherryIndia
  2. 2.DBT-IPLS Program, School of Life SciencesPondicherry UniversityPondicherryIndia

Personalised recommendations