Signaling Pathways of Anticancer Plants: Action and Reaction

  • Bilal Ahmad
  • Mohd Irfan Naikoo
  • Hassan Jaleel
  • Asfia Shabbir
  • Farha Rehman
  • Yawar Sadiq
  • M. Masroor Akhtar Khan


Insights into the alterations of the mammalian genome in neoplastic diseases and the mechanism of action of the therapeutic anticancer drugs are one of the extremely important, diverse, and challenging areas of study currently. By the virtue of lingering toxicity of the reputable chemical drugs, plant-derived anticancer substances, viz., vinblastine, vincristine, Taxol, topotecan, camptothecin, and podophyllotoxin derivatives, are highly safe and efficient in the treatment and management of this monstrous disease. Among the list of accessible targets of the therapeutic drugs, DNA replication and mitosis, hormonal regulation of cell growth, aberrant signaling pathways, cell surface receptors, and second messengers are noteworthy. Nowadays, newer therapeutic approaches are being followed, and an increased understanding into the mechanism of action of the therapeutic anticancer agents is evolving due to continuous and relentless efforts of the researchers. The aim of the present chapter is to highlight the application of medicinal plants and their secondary metabolites as anticancer substances and also focus on the signaling aspects of potential anticancer compounds to find out their mechanisms of action against cancer cells.


Cancer cell DNA methylation Epigenetic factors Secondary metabolites Therapeutic potential 


  1. Adan A, Baran Y (2015) The pleiotropic effects of fisetin and hesperetin on human acute promyelocytic leukemia cells are mediated through apoptosis, cell cycle arrest, and alterations in signaling networks. Tumor Biol 36:8973–8984CrossRefGoogle Scholar
  2. Aggarwal BB, Shishodia S (2006) Guggulsterone inhibits NF-kappa and kappa B alpha kinase activation, suppresses expression of anti-apoptotic gene products, and enhances apoptosis. Biochem Pharmacol 71:1397–1421PubMedCrossRefPubMedCentralGoogle Scholar
  3. Alhosin M, Abusnina A, Achour M, Sharif T, Muller C, Peluso J, Chataigneau T, Lugnier C, Schini-Kerth VB, Bronner C, Fuhrmann G (2010) Induction of apoptosis by thymoquinone in lymphoblastic leukemia Jurkat cells is mediated by a p73-dependent pathway which targets the epigenetic integrator UHRF1. Biochem Pharmacol 79:1251–1260PubMedCrossRefPubMedCentralGoogle Scholar
  4. Araujo JR, Goncalves P, Martel F (2011) Chemopreventive effect of dietary polyphenols in colorectal cancer cell lines. Nutr Res 31:77–87PubMedCrossRefPubMedCentralGoogle Scholar
  5. Arbiser JL, Klauber N, Rohan R, van Leeuwen R, Huang MT, Fisher C, Flynn E, Byers HR (1998) Curcumin is an in vivo inhibitor of angiogenesis. Mol Med 4:376–383Google Scholar
  6. Atkinson JM, Falconer RA, Edwards DR, Pennington CJ, Siller CS, Shnyder SD, Bibby MC, Patterson LH, Loadman PM, Gill JH (2010) Development of a novel tumor-targeted vascular disrupting agent activated by membrane-type matrix metalloproteinases. Cancer Res 70:6902–6912PubMedPubMedCentralCrossRefGoogle Scholar
  7. Azarenko O, Okouneva T, Singletary KW, Jordan MA, Wilson L (2008) Suppression of microtubule dynamic instability and turnover in MCF7 breast cancer cells by sulforaphane. Carcinogenesis 29:2360–2368PubMedPubMedCentralCrossRefGoogle Scholar
  8. Balasubramanyam K, Swaminathan V, Ranganathan A, Kundu TK (2003) Small molecule modulators of histone acetyltransferase p300. J Biol Chem 278:19134–19140PubMedCrossRefPubMedCentralGoogle Scholar
  9. Balunas MJ, Kinghorn AD (2005) Drug discovery from medicinal plants. Life Sci 78:431–441CrossRefPubMedGoogle Scholar
  10. Barnes S (1995) Effect of genistein on in vitro and in vivo models of cancer. J Nutr 125:S777–S783Google Scholar
  11. Bertino JR (1997) Irinotecan for colorectal cancer. Semin Oncol 24:S18–S23PubMedPubMedCentralGoogle Scholar
  12. Best J, Carey N (2010) Epigenetic opportunities and challenges in cancer. Drug Discov Today 15:65–70PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bishop JM (1987) The molecular genetics of cancer. Science 235:305–311PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bourguignon L, Xia W, Wong G (2009) Hyaluronan mediated CD44 interaction with p300 and SIRT1 regulates β-catenin signaling and NFkB-specific transcription activity leading to MDR1 and Bcl-xL gene expression and chemoresistance in breast tumor cells. J Biol Chem 284:2657–2671PubMedPubMedCentralCrossRefGoogle Scholar
  15. Cai J, Yi FF, Bian ZY, Shen DF, Yang L, Yan L et al (2009) Crocetin protects against cardiac hypertrophy by blocking MEK-ERK1/2 signaling pathway. J Cell Mol Med 13:909–925PubMedCrossRefPubMedCentralGoogle Scholar
  16. Chandregowda V, Kush A, Reddy G (2009) Synthesis of benzamide derivatives of anacardic acid and their cytotoxic activity. Eur J Med Chem 44:2711–2719PubMedCrossRefPubMedCentralGoogle Scholar
  17. Chaturvedi MM, Kumar A, Darnay BG, Chainy GB, Agarwal S, Aggarwal BB (1997) Sanguinarine (Pseudochelerythrine) is a potent inhibitor of NF-kB activation, Ik-Bα phosphorylation, and degradation. J Biol Chem 272:30129–30134PubMedCrossRefPubMedCentralGoogle Scholar
  18. Chen Y, Shu W, Chen W, Wu Q, Liu H, Cui G (2007) Curcumin, both histone deacetylase and p300/CBP specific inhibitor, represses the activity of nuclear factor kappa B and Notch 1 in Raji cells. Basic Clin Pharmacol Toxicol 101:427–433PubMedCrossRefPubMedCentralGoogle Scholar
  19. Cragg GM, Newman DJ (2005) Plants as a source of anticancer agents. J Ethanopharmacol 100:72–79CrossRefGoogle Scholar
  20. Creemers GJ, Bolis G, Gore M, Scarfone G, Lacave AJ, Guastalla JP, Despax R, Favalli G, Kreinberg R, Van Belle S, Hudson I, Verweij J, Ten Bokkel Huinink WW (1996) Topotecan, an active drug in the second-line treatment of epithelial ovarian cancer: results of a large European phase II study. J Clin Oncol 14:3056–3061PubMedCrossRefPubMedCentralGoogle Scholar
  21. Csuk R (2014) Betulinic acid and its derivatives: a patent review (2008–2013). Exp Opin Ther Pat 24:913–923CrossRefGoogle Scholar
  22. Darwiche N, El-Banna S, Gali-Muhtasib H (2007) Cell cycle modulatory and apoptotic effects of plant-derived anticancer drugs in clinical use or development. Expert Opin Drug Discov 2:361–379PubMedCrossRefPubMedCentralGoogle Scholar
  23. Dias DA, Urban S, Roessner U (2012) A historical overview of natural products in drug discovery. Metabolites 2:303–336PubMedPubMedCentralCrossRefGoogle Scholar
  24. Ehrlich M (2002) DNA methylation in cancer: too much, but also too little. Oncogene 21:5400–5413PubMedCrossRefPubMedCentralGoogle Scholar
  25. Ellis L, Atadja PW, Johnstone RW (2009) Epigenetics in cancer: targeting chromatin modifications. Mol Cancer Ther 8:1409–1420PubMedCrossRefPubMedCentralGoogle Scholar
  26. Esteller M (2005) DNA methylation and cancer therapy: new developments and expectations. Curr Opin Oncol 17:55–60PubMedCrossRefPubMedCentralGoogle Scholar
  27. Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8:286–298PubMedCrossRefPubMedCentralGoogle Scholar
  28. Fahey JW, Talalay P (1999) Antioxidant functions of sulforaphane: a potent inducer of phase II detoxication enzymes. Food Chem Toxicol 37:973–979PubMedCrossRefPubMedCentralGoogle Scholar
  29. Feinberg AP (2005) Cancer epigenetics is no Mickey mouse. Cancer Cell 8:267–268PubMedCrossRefPubMedCentralGoogle Scholar
  30. Fini L, Selgrad M, Fogliano V, Graziani G, Romano M, Hotchkiss E, Daoud YA, De Vol EB, Boland CR, Ricciardiello L (2007) Annurca apple polyphenols have potent demethylating activity and can reactivate silenced tumor suppressor genes in colorectal cancer cells. J Nutr 137:2622–2628PubMedCrossRefGoogle Scholar
  31. Foster DA, Yellen P, Xu L, Saqcena M (2010) Regulation of G1 cell cycle progression: distinguishing the restriction point from a nutrient-sensing cell growth checkpoint(s). Genes Cancer 1:1124–1131PubMedPubMedCentralCrossRefGoogle Scholar
  32. Fu S, Kurzrock R (2010) Development of curcumin as an epigenetic agent. Cancer Ghantous A, Gali-Muhtasib H, Vuorela H, Saliba NA, Darwiche N (2010) What made sesquiterpene lactones reach cancer clinical trials. Drug Discov Today 15:668–678Google Scholar
  33. Ganguly A, Yang H, Cabral F (2010) Paclitaxel-dependent cell lines reveal a novel drug activity. Mol Cancer Ther 9:2914–2923PubMedPubMedCentralCrossRefGoogle Scholar
  34. Ghantous A, Gali-Muhtasib H, Vuorela H, Saliba NA, Darwiche N (2010) What made sesquiterpene lactones reach cancer clinical trials. Drug Discov Today 15:668–678PubMedCrossRefPubMedCentralGoogle Scholar
  35. Ghantous A, Sinjab A, Herceg Z, Darwiche N (2013) Parthenolide: from plant shoots to cancer roots. Drug Discov Today 18:894–905CrossRefPubMedGoogle Scholar
  36. Gheorgheosu D, Duicu O, Dehelean C, Soica C, Muntean D (2014) Betulinic acid as a potent and complex antitumor phytochemical: a mini review. Anticancer Agents Med Chem 14:936–945PubMedCrossRefPubMedCentralGoogle Scholar
  37. Giacinti C, Giordano A (2006) RB and cell cycle progression. Oncogene 25:5220–5227PubMedCrossRefPubMedCentralGoogle Scholar
  38. Gibbs A, Schwartzman J, Deng V, Alumkal J (2009) Sulforaphane destabilizes the androgen receptor in prostate cancer cells by inactivating histone deacetylase 6. Proc Natl Acad Sci U S A 106:16663–16668PubMedPubMedCentralCrossRefGoogle Scholar
  39. Guil S, Esteller M (2009) DNA methylomes, histone codes and miRNAs: tying it all together. Int J Biochem Cell Biol 41:87–95PubMedCrossRefPubMedCentralGoogle Scholar
  40. Guzman M, Jordan C (2005) Feverfew: weeding out the root of leukaemia. Exp Opin Biol Ther 5:1147–1152CrossRefGoogle Scholar
  41. Hauser AT, Jung M (2008) Targeting epigenetic mechanisms: potential of natural products in cancer chemoprevention. Planta Med 74:1593–1601PubMedCrossRefPubMedCentralGoogle Scholar
  42. Ho E, Clarke JD, Dashwood RH (2009) Dietary sulforaphane, a histone deacetylase inhibitor for cancer prevention. J Nutr 139:2393–2396PubMedPubMedCentralCrossRefGoogle Scholar
  43. Huang M, Lu JJ, Huang MQ, Bao JL, Chen XP, Wang YT (2012) Terpenoids: natural products for cancer therapy. Exp Opin Invest Drugs 21:1801–1818CrossRefGoogle Scholar
  44. Ikezaki S, Nishikawa A, Furukawa F, Kudo K, Nakamura H, Tamura K, Mori H (2001) Chemopreventive effects of curcumin on glandular stomach carcinogenesis induced by N-methyl-N′-nitro-N-nitrosoguanidine and sodium chloride in rats. Anticancer Res 21:3407–3411PubMedPubMedCentralGoogle Scholar
  45. Jackson SJ, Singletary KW (2004) Sulforaphane inhibits human MCF-7 mammary cancer cell mitotic progression and tubulin polymerization. J Nutr 134:2229–2236PubMedCrossRefGoogle Scholar
  46. Jagadeesh S, Sinha S, Pal B, Bhattacharya S, Banerjee P (2007) Mahanine reverses an epigenetically silenced tumor suppressor gene RASSF1A in human prostate cancer cells. Biochem Biophys Res Commun 362:212–217PubMedCrossRefGoogle Scholar
  47. Jamison JR (2003) Clinical guide to nutrition and dietary supplements in disease management, 1st edn. Churchill Livingstone, LondonGoogle Scholar
  48. Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128:683–692PubMedPubMedCentralCrossRefGoogle Scholar
  49. Jordan MA (2002) Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Curr Med Chem Anticancer Agents 2:1–17PubMedCrossRefGoogle Scholar
  50. Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4:253–266CrossRefPubMedGoogle Scholar
  51. Khazir J, Mir BA, Pilcher L, Riley DL (2014) Role of plants in anticancer drug discovery. Phytochem Lett 7:173–181CrossRefGoogle Scholar
  52. King-Batoon A, Leszczynska JM, Klein CB (2008) Modulation of gene methylation by genistein or lycopene in breast cancer cells. Environ Mol Mutagen 49:36–45PubMedCrossRefGoogle Scholar
  53. Kreuger MR, Grootjans S, Biavatti MW, Vandenabeele P, D’Herde K (2012) Sesquiterpene lactones as drugs with multiple targets in cancer treatment: focus on parthenolide. Anticancer Drugs 23:883–896PubMedGoogle Scholar
  54. Krishnamurthi K (2000) Screening of natural products for anticancer and antidiabetic properties. Health Adm 20:69–75Google Scholar
  55. Lambert JD, Elias RJ (2010) The antioxidant and prooxidant activities of green tea polyphenols: a role in cancer prevention. Arch Biochem Biophys 501:65–72PubMedPubMedCentralCrossRefGoogle Scholar
  56. Lee J, Kim JH (2016) Kaempferol inhibits pancreatic cancer cell growth and migration through the blockade of EGFR-related pathway in vitro. PLoS One 11:e0155264PubMedPubMedCentralCrossRefGoogle Scholar
  57. Lee JS, Surh YJ (2005) Nrf2 as a novel molecular target for chemoprevention. Cancer Lett 224:171–184PubMedCrossRefPubMedCentralGoogle Scholar
  58. Lee BH, Yegnasubramanian S, Lin X, Nelson WG (2005) Procainamide is a specific inhibitor of DNA methyltransferase 1. J Biol Chem 280:40749–40756PubMedPubMedCentralCrossRefGoogle Scholar
  59. Li Y, Liu L, Andrews LG, Tollefsbol TO (2009) Genistein depletes telomerase activity through cross-talk between genetic and epigenetic mechanisms. Int J Cancer 125:286–296PubMedPubMedCentralCrossRefGoogle Scholar
  60. Li XL, Hu YJ, Wang H, Yu BQ, Yue HL (2012) Molecular spectroscopy evidence of berberine binding to DNA: comparative binding and thermodynamic profile of intercalation. Biomacromolecules 13:873–880PubMedCrossRefGoogle Scholar
  61. Lin JN, Lin VC, Rau KM, Shieh PC, Kuo DH, Shieh JC, Chen WJ, Tsai SC, Way TD (2010) Resveratrol modulates tumor cell proliferation and protein translation via SIRT1-dependent AMPK activation. J Agric Food Chem 58:1584–1592PubMedCrossRefPubMedCentralGoogle Scholar
  62. Liu RH (2004) Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr 134:3479–3485CrossRefGoogle Scholar
  63. Mahady GB, Pendland SL, Yun G, Lu ZZ (2002) Turmeric (Curcuma longa) and curcumin inhibit the growth of Helicobacter pylori, a group 1 carcinogen. Anticancer Res 22:4179–4181PubMedPubMedCentralGoogle Scholar
  64. Mai A, Altucci L (2009) Epi-drugs to fight cancer: from chemistry to cancer treatment, the road ahead. Int J Biochem Cell Biol 41:199–213PubMedCrossRefPubMedCentralGoogle Scholar
  65. McCallum C, Kwon S, Leavitt P, Shen DM, Liu W, Gurnett A (2007) Triptolide binds covalently to a 90 kDa nuclear protein. Role of epoxides in binding and activity. Immunobiology 212:549–556PubMedCrossRefGoogle Scholar
  66. Meyers R (2001) Encyclopedia of physical science and technology, 3rd edn. Academic, San DiegoGoogle Scholar
  67. Mi L, Xiao Z, Hood BL, Dakshanamurthy S, Wang X, Govind S, Conrads TP, Veenstra TD, Chung FL (2008) Covalent binding to tubulin by isothiocyanates. A mechanism of cell growth arrest and apoptosis. J Biol Chem 283:22136–22146PubMedPubMedCentralCrossRefGoogle Scholar
  68. Misiewicz I, Skupińska K, Kowalska E, Lubiński J, Kasprzycka-Guttman T (2004) Sulforaphane-mediated induction of a phase 2 detoxifying enzyme NAD(P)H:quinone reductase and apoptosis in human lymphoblastoid cells. Acta Biochim Pol 51:711–721PubMedGoogle Scholar
  69. Mittal A, Piyathilake C, Hara Y, Katiyar SK (2003) Exceptionally high protection of photocarcinogenesis by topical application of (-)-epigallocatechin-3-gallate in hydrophilic cream in SKH-1 hairless mouse model: relationship to inhibition of UVB-induced global DNA hypomethylation. Neoplasia 5:555–565PubMedPubMedCentralCrossRefGoogle Scholar
  70. Mohan A, Narayanan S, Sethuraman S, Krishnan UM (2014) Novel resveratrol and 5 fluorouracil coencapsulated in PEGylated nanoliposomes improve chemotherapeutic efficacy of combination against head and neck squamous cell carcinoma. Bio Med Res Intern 2014:424239Google Scholar
  71. Moriarty R, Naithani R, Surve B (2007) Organosulfur compounds in cancer chemoprevention. Mini Rev Med Chem 7:827–838PubMedCrossRefPubMedCentralGoogle Scholar
  72. Murugan R, Vinothini G, Hara Y, Nagini S (2009) Black tea polyphenols target matrix metalloproteinases, RECK, proangiogenic molecules and histone deacetylase in a rat hepatocarcinogenesis model. Anticancer Res 29:2301–2305PubMedPubMedCentralGoogle Scholar
  73. Myzak M, Karplus P, Chung F, Dashwood R (2004) A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase. Cancer Res 64:5767–5774PubMedCrossRefPubMedCentralGoogle Scholar
  74. Myzak M, Tong P, Dashwood W, Dashwood R, Ho E (2007) Sulforaphane retards the growth of human PC-3 xenografts and inhibits HDAC activity in human subjects. Exp Biol Med 232:227–234Google Scholar
  75. Nelson KM, Weiss GJ (2008) MicroRNAs and cancer: past, present, and potential future. Mol Cancer Ther 7:3655–3660PubMedCrossRefGoogle Scholar
  76. Parnaud G, Li P, Cassar G, Rouimi P, Tulliez J, Combaret L, Gamet-Payrastre L (2004) Mechanism of sulforaphane-induced cell cycle arrest and apoptosis in human colon cancer cells. Nutr Cancer 48:198–206PubMedCrossRefGoogle Scholar
  77. Phillips PA, Dudeja V, McCarroll JA, Borja-Cacho D, Dawra RK, Grizzle WE, Vickers SM, Saluja AK (2007) Triptolide induces pancreatic cancer cell death via inhibition of heat shock protein 70. Cancer Res 67:9407–9416PubMedCrossRefGoogle Scholar
  78. Potmeisel M, Pinedo H (1995) Camptothecins: new anticancer agents. CRC Press, Boca Raton, pp 149–150Google Scholar
  79. Prives C, Manley JL (2001) Why is p53 acetylated. Cell 107:815–818PubMedCrossRefGoogle Scholar
  80. Priyadarshini K, Aparajitha UK (2012) Paclitaxel against cancer: a short review. Med Chem 2:139–141Google Scholar
  81. Prota AE, Bargsten K, Zurwerra D, Field JJ, Díaz JF, Altmann KH, Steinmetz MO (2013) Molecular mechanism of action of microtubule-stabilizing anticancer agents. Science 339:587–590PubMedCrossRefPubMedCentralGoogle Scholar
  82. Quideau S, Deffieux D, Douat-Casassus C, Pouysegu L (2011) Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chem 50:586–621CrossRefGoogle Scholar
  83. Radhakrishnan EK, Bava SV, Narayanan SS, Nath LR, Thulasidasan AKT, Soniya EV et al (2014) 6-Gingerol induces caspase dependent apoptosis and prevents PMA- induced proliferation in colon cancer cells by inhibiting MAPK/AP-1 signaling. PLoS One 9:e104401PubMedPubMedCentralCrossRefGoogle Scholar
  84. Rao GV, Kumar S, Islam M, Saber EM (2008) Folk medicines for anticancer therapy-a current status. Cancer Ther 6:913–922Google Scholar
  85. Rowinsky EK, Onetto N, Canetta RM, Arbuck SG (1992) Taxol-the 1st of the texanes, an important new class of anti-tumor agents. Semin Oncol 19:646–662PubMedPubMedCentralGoogle Scholar
  86. Savel H (1966) The metaphase arresting plant alkaloids and cancer chemotherapy. Prog Exp Tumor Res 8:189–224PubMedCrossRefPubMedCentralGoogle Scholar
  87. Scalbert A, Manach C, Morand C, Remesy Jimenez L (2005) Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr 45:287–306PubMedCrossRefPubMedCentralGoogle Scholar
  88. Schneider-Stock R, Ghantous A, Bajbouj K, Saikali M, Darwiche N (2012) Epigenetic mechanisms of plant-derived anticancer drugs. Front Biosci 17:129–173CrossRefGoogle Scholar
  89. Segura-Pacheco B, Trejo-Becerril C, Perez-Cardenas E, Taja-Chayeb L, Mariscal I, Chavez A, Acuña C, Salazar AM, Lizano M, Dueñas-Gonzalez A (2003) Reactivation of tumor suppressor genes by the cardiovascular drugs hydralazine and procainamide and their potential use in cancer therapy. Clin Cancer Res 9:1596–1603PubMedPubMedCentralGoogle Scholar
  90. Selvi R, Pradhan BSK, Shandilya J, Das C, Sailaja BS, Shankar N, Gadad GSS, Reddy A, Dasgupta D, Kundu TK (2009) Sanguinarine interacts with chromatin, modulates epigenetic modifications, and transcription in the context of chromatin. Chem Biol 16:203–216CrossRefGoogle Scholar
  91. Seo HS, Jo JK, Ku JM, Choi HS, Choi YK et al (2015) Induction of caspase dependent extrinsic apoptosis through inhibition of signal transducer and activator of transcription 3 (STAT3) signaling in HER2-overexpressing BT-474 breast cancer cells. Biosci Rep 35:e00276PubMedPubMedCentralCrossRefGoogle Scholar
  92. Shankar S, Suthakar G, Srivastava RK (2007) Epigallocatechin-3-gallate inhibits cell cycle and induces apoptosis in pancreatic cancer. Front Biosci 12:5039–5051PubMedCrossRefPubMedCentralGoogle Scholar
  93. Shankar S, Ganapathy S, Hingorani SR, Srivastava RK (2008) EGCG inhibits growth, invasion, angiogenesis and metastasis of pancreatic cancer. Front Biosci 13:440–452PubMedCrossRefPubMedCentralGoogle Scholar
  94. Sharma S, Kelly TK, Jones PA (2010) Epigenetics in cancer. Carcinogenesis 31:27–36PubMedCrossRefPubMedCentralGoogle Scholar
  95. Shoeb M (2006) Anticancer agents from medicinal plants. Bangladesh J Pharmacol 1:35–41Google Scholar
  96. Shukla S, Mehta A (2015) Anticancer potential of medicinal plants and their phytochemicals: a review. Braz J Bot 38:199–210CrossRefGoogle Scholar
  97. Singh BN, Shankar S, Srivastava RK (2011) Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol 82:1807–1821PubMedPubMedCentralCrossRefGoogle Scholar
  98. Sparnins VL, Mott AW, Barany G, Wattenberg LW (1986) Effects of allyl methyl trisulfide on glutathione S-transferase activity and BP-induced neoplasia in the mouse. Nutr Cancer 8:211–215PubMedCrossRefPubMedCentralGoogle Scholar
  99. Sporn MB, Liby KT (2012) NRF2 and cancer: the good, the bad and the importance of context. Nat Rev Cancer 12:564–571PubMedCrossRefPubMedCentralGoogle Scholar
  100. Steinberg D (2004) Appraising aneuploidy as a cancer cause. The Sci 18:26–27Google Scholar
  101. Strauss BS (1992) The origin of point mutations in human tumor cells. Cancer Res 52:249–253PubMedPubMedCentralGoogle Scholar
  102. Sun Y, Xun K, Wang Y, Chen X (2009) A systematic review of the anticancer properties of berberine, a natural product from Chinese herbs. Anti-Cancer Drugs 20:757–769CrossRefPubMedGoogle Scholar
  103. Surh YJ (2003) Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3:768–780PubMedPubMedCentralCrossRefGoogle Scholar
  104. Thakore P, Mani RK, Singh J, Kavitha (2012) A brief review of plants having anticancer property. Int J Pharm Res Dev 3:129–136Google Scholar
  105. Thomasset SC, Berry DP, Garcea G, Marczylo T, Steward WP, Gescher AJ (2007) Dietary polyphenolic phytochemicals promising cancer chemopreventive agents in humans. A review of their clinical properties. Int J Cancer 3:451–458CrossRefGoogle Scholar
  106. Tillhon M, Guaman Ortiz LM, Lombardi P, Scovassi AI (2012) Berberine: new perspectives for old remedies. Biochem Pharmacol 84:1260–1267PubMedCrossRefPubMedCentralGoogle Scholar
  107. Toi M, Matsumoto T, Bando H (2001) Vascular endothelial growth factor: its prognostic, predictive, and therapeutic implications. Lancet Oncol 2:667–673PubMedCrossRefPubMedCentralGoogle Scholar
  108. Tome-Carneiro J, Larrosa M, Gonzalez-Sarrias A, Tomas-Barberan FA, Garcia-Conesa MT, Espin JC (2013) Resveratrol and clinical trials: the crossroad from in vitro studies to human evidence. Curr Pharm Des 19:6064–6093PubMedPubMedCentralCrossRefGoogle Scholar
  109. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, Varambally S, Cao X, Tchinda J, Kuefer R, Lee C, Montie JE, Shah RB, Pienta KJ, Rubin MA, Chinnaiyan AM (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310:644–648PubMedCrossRefPubMedCentralGoogle Scholar
  110. Tomlins SA, Laxman B, Varambally S, Cao X, Yu J, Helgeson BE, Cao Q, Prensner JR, Rubin MA, Shah RB, Mehra R, Chinnaiyan AM (2008) Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia 10:177–188PubMedPubMedCentralCrossRefGoogle Scholar
  111. Vallianou NG, Evangelopoulos A, Schizas N, Kazazis C (2015) Potential anticancer properties and mechanisms of action of curcumin. Anticancer Res 35:645–651PubMedGoogle Scholar
  112. Wang R, Zheng Y, Kim H, Xu X, Cao L, Lahusen T, Lee M, Xiao C, Vassilopoulos A, Chen W (2008) Interplay among BRCA1, SIRT1, and Survivin during BRCA1-associated tumorigenesis. Mol Cell 32:11–20PubMedPubMedCentralCrossRefGoogle Scholar
  113. Wang Y, Lu JJ, He L, Yu Q (2011) Triptolide (TPL) inhibits global transcription by inducing proteasome-dependent degradation of RNA polymerase II. PLoS One 6:e23993PubMedPubMedCentralCrossRefGoogle Scholar
  114. Xiao H, Wang H, Zhang X, Tu Z, Bulinski C, Khrapunovich-Baine M, Angeletti RH, Horwitz SB (2012) Structural evidence for cooperative microtubule stabilization by Taxol and the endogenous dynamics regulator MAP 4. ACS Chem Biol 7:744–752PubMedPubMedCentralCrossRefGoogle Scholar
  115. Xu T, Pang Q, Zhou D, Zhang A, Luo S, Wang Y, Yan X (2014) Proteomic investigation into betulinic acid-induced apoptosis of human cervical cancer HeLa cells. PLoS One 9:e105768PubMedPubMedCentralCrossRefGoogle Scholar
  116. Yang H, Dou QP (2010) Targeting apoptosis pathway with natural terpenoids: implications for treatment of breast and prostate cancer. Curr Drug Targets 11:733–744PubMedPubMedCentralCrossRefGoogle Scholar
  117. Yang S, Chen J, Guo Z, Xu XM, Wang L, Pei XF, Yang J, Underhill CB, Zhang L (2003) Triptolide inhibits the growth and metastasis of solid tumors. Mol Cancer Ther 2:65–72PubMedPubMedCentralGoogle Scholar
  118. Yang S, Wen H, Zhang G, Zhao S, Luo Y, Lu Q (2009) Triptolide evaluates DNA methylation level of matrix metalloproteinase 9 gene in human fibrosarcoma HT-1080 cells. China J Chin Mat Med 34:611Google Scholar
  119. Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, Mayo MW (2004) Modulation of NF-αB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 23:2369–2380PubMedPubMedCentralCrossRefGoogle Scholar
  120. Yuasa Y, Nagasaki H, Akiyama Y, Sakai H, Nakajima T, Ohkura Y, Takizawa T, Koike M, Tani M, Iwai T (2005) Relationship between CDX2 gene methylation and dietary factors in gastric cancer patients. Carcinogenesis 26:193–200PubMedCrossRefPubMedCentralGoogle Scholar
  121. Yuasa Y, Nagasaki H, Akiyama Y, Hashimoto Y, Takizawa T, Kojima K, Kawano T, Sugihara K, Imai K, Nakachi K (2009) DNA methylation status is inversely correlated with green tea intake and physical activity in gastric cancer patients. Int J Cancer 124:2677–2682PubMedCrossRefPubMedCentralGoogle Scholar
  122. Zhao F, Chen Y, Li R, Liu Y, Wen L, Zhang C (2010a) Triptolide alters histone H3K9 and H3K27 methylation state and induces G0/G1 arrest and caspase dependent apoptosis in multiple myeloma in vitro. Toxicology 267:70–79PubMedCrossRefPubMedCentralGoogle Scholar
  123. Zhao F, Zeng LL, Chen Y, Li R, Liu Y, Wen L, Cheng YQ, Zhang C (2010b) Effects of triptolide on histone acetylation and HDAC8 expression in multiple myeloma. Chin J Cancer Res 22:148–155CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Bilal Ahmad
    • 1
  • Mohd Irfan Naikoo
    • 1
  • Hassan Jaleel
    • 1
  • Asfia Shabbir
    • 1
  • Farha Rehman
    • 2
  • Yawar Sadiq
    • 1
  • M. Masroor Akhtar Khan
    • 1
  1. 1.Department of BotanyAligarh Muslim UniversityAligarhIndia
  2. 2.Department of BotanyMohammad Ali Jauhar UniversityRampurIndia

Personalised recommendations