Advertisement

Environment of the Anagen Follicle

  • Duane P. Harland
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1054)

Abstract

Hair follicles are part of the skin. Almost universally, follicles are described as an epithelium-derived tubular down growth into the skin’s dermis. Because follicles are complex structures, especially when in anagen phase and configured to actively grow fibres, it is easy to forget that they are part of a crowded environment within the skin. This chapter introduces some of the structures which surround the follicle as well as some of the peripheral parts of the follicle, including follicle groups, and the dermal sheath, vasculature, adipocytes, nerves and the arrector pili muscle.

Keywords

Hair follicle Skin Follicle groups Hair follicle vasculature Hair follicle lipids Hair follicle arrector pili muscle Hair follicle nerves 

References

  1. 1.
    Orwin, D. F. G. (1989). Variations in wool follicle morphology. In G. E. Rogers, K. A. Ward, P. J. Reiss, & M. C. Marshall (Eds.), The biology of wool and hair (pp. 227–241). London/New York: Chapman & Hall.Google Scholar
  2. 2.
    Ryder, M. L. (1973). Hair (1st edn., Studies in biology, 58 p). The Institute of Biology (Eds.). London: Edward Arnold.Google Scholar
  3. 3.
    Rogers, G. E. (2006). Biology of the wool follicle: An excursion into a unique tissue interaction system waiting to be re-discovered. Experimental Dermatology, 15(12), 931–949.CrossRefPubMedGoogle Scholar
  4. 4.
    Hardy, M. H. (1992). The secret life of the hair follicle. TIGs, 8(2), 55–61.CrossRefGoogle Scholar
  5. 5.
    Hardy, M. H., & Lyne, A. G. (1956). The pre-natal development of wool follicles in merino sheep. Australian Journal of Biological Sciences, 9(3), 423–441.Google Scholar
  6. 6.
    Bonnet, R. (1885). Über dia muskulatur der haut und der knäueldrüsen. Bayerisches ärztliches intelligenzblatt.Google Scholar
  7. 7.
    Chapman, R. E. (1965). The ovine arrector pili musculature and crimp formation in wool. In A. G. Lyne & B. F. Short (Eds.), Biology of the skin and hair growth (pp. 201–232). Sydney: Angus and Robertson.Google Scholar
  8. 8.
    Poblet, E., Ortega, F., & Jiménez, F. (2002). The arrector pili muscle and the follicular unit of the scalp: A microscopic anatomy study. Dermatologic Surgery, 28(9), 800–803.PubMedGoogle Scholar
  9. 9.
    Song, W.-C., et al. (2006). A new model for the morphology of the arrector pili muscle in the follicular unit based on three-dimensional reconstruction. Journal of Anatomy, 208(5), 643–648.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Yazdabadi, A., et al. (2008). The Ludwig pattern of androgenetic alopecia is due to a hierarchy of androgen sensitivity within follicular units that leads to selective miniaturization and a reduction in the number of terminal hairs per follicular unit. British Journal of Dermatology, 159(6), 1300–1302.CrossRefPubMedGoogle Scholar
  11. 11.
    Torkamani, N., et al. (2014). Destruction of the arrector pili muscle and fat infiltration in androgenic alopecia. British Journal of Dermatology, 170(6), 1291–1298.CrossRefPubMedGoogle Scholar
  12. 12.
    Neville, A. C. (Ed.). (1993). Biology of fibrous composites: Development beyond the cell membrane (1st ed.). New York: Cambridge University Press. 214.Google Scholar
  13. 13.
    Ito, M., & Sato, Y. (1990). Dynamic ultrastructural changes of the connective tissue sheath of human hair follicles during hair cycle. Archives of Dermatological Research, 282, 434–441.CrossRefPubMedGoogle Scholar
  14. 14.
    Ohyama, M., et al. (2010). The mesenchymal component of hair follicle neogenesis: Background, methods and molecular characterization. Experimental Dermatology, 19(2), 89–99.CrossRefPubMedGoogle Scholar
  15. 15.
    Yang, C.-C., & Cotsarelis, G. (2010). Review of hair follicle dermal cells. Journal of Dermatological Science, 57(1), 2–11.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Montagna, W. (1962). The structure and function of skin (2nd ed.). New York: Academic.Google Scholar
  17. 17.
    Holbrook, K. A., et al. (1989). Morphogenesis of the hair follicle during the ontogeny of human skin. In G. E. Rogers, P. J. Reis, K. A. Ward, & R. C. Marshall (Eds.), The biology of wool and hair (pp. 15–36). London/New York: Chapman & Hall.Google Scholar
  18. 18.
    Parakkal, P. F. (1966). The fine structure of the dermal papilla of the guinea pig hair follicle. Journal of Ultrastructure Research, 14, 133–142.CrossRefGoogle Scholar
  19. 19.
    Morioka, K. (2005). Hair follicle, differentiation under the electron microscope – An atlas (p. 152). Tokyo: Springer.Google Scholar
  20. 20.
    Ryder, M. L. (1956). The blood supply of the wool follicle. W.I.R.A. Bulletin, 18, 142–147.Google Scholar
  21. 21.
    Orwin, D. F. G. (1970). A polysaccharide-containing cell coat on keratinizing cells of the Romney wool follicle. Australian Journal of Biological Science, 23, 623–635.CrossRefGoogle Scholar
  22. 22.
    Orwin, D. F. G. (1979). The cytology and cytochemistry of the wool follicle. International Review of Cytology, 60, 331–374.CrossRefPubMedGoogle Scholar
  23. 23.
    Zouboulis, C. C., et al. (2007). Sexual hormones in human skin. Hormone and Metabolism Research, 39, 85–95.CrossRefGoogle Scholar
  24. 24.
    Hibberts, N. A., Howell, A. E., & Randall, V. A. (1998). Balding hair follicle dermal papilla cells contain higher levels of androgen receptors than those from non-balding scalp. Journal of Endocrinology, 156(1), 59–65.CrossRefPubMedGoogle Scholar
  25. 25.
    Orwin, D. F. (1971). Cell differentiation in the lower outer sheath of the Romney wool follicle: A companion cell layer. Australian Journal of Biological Science, 24(5), 989–999.CrossRefGoogle Scholar
  26. 26.
    Yano, K., Brown, L. F., & Detmar, M. (2001). Control of hair growth and follicle size by VEGF-mediated angiogenesis. The Journal of Clinical Investigation, 107(4), 409–417.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lyne, A. G., & Hollis, D. E. (1968). The skin of the sheep: A comparison of body regions. Australian Journal of Biological Science, 21(3), 499–527.CrossRefGoogle Scholar
  28. 28.
    Klauer, G. J., et al. (2001). Vibrissae-more than just hairs! Journal of Morphology, 248(3), 248–249.Google Scholar
  29. 29.
    Chernova, O. F. (2006). Evolutionary aspects of hair polymorphism. Biology Bulletin, 33(1), 43–52.CrossRefGoogle Scholar
  30. 30.
    Montagna, W., & Parakkal, P. F. (1974). The structure and function of skin (3rd ed.). New York: Academic.Google Scholar
  31. 31.
    Fritsch, G. (1897). Über die entstehung der rassenmerkmale des menschlichen kopfhaares. KorrespBl.dtsch.Ges.Anthrop, 28.Google Scholar
  32. 32.
    Pinkus, H. (1958). Embryology of hair. In W. Montagna & R. A. Ellis (Eds.), The biology of hair growth (pp. 1–32). New York: Academic.Google Scholar
  33. 33.
    Akiyama, M., et al. (1995). Characterization of hair follicle bulge in human fetal skin: The human fetal bulge is a pool of undifferentiated keratinocytes. Journal of Investigative Dermatology, 105(6), 844–850.CrossRefPubMedGoogle Scholar
  34. 34.
    Ohyama, M. (2007). Hair follicle bulge: A fascinating reservoir of epithelial stem cells. Journal of Dermatological Science, 46(2), 81–89.CrossRefPubMedGoogle Scholar
  35. 35.
    Fujiwara, H., et al. (2011). The basement membrane of hair follicle stem cells is a muscle cell niche. Cell, 144(4), 577–589.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Paus, R., et al. (1999). A comprehensive guide for the recognition and classification of distinct stages of hair follicle morphogenesis. Journal of Investigative Dermatology, 113, 523–532.CrossRefPubMedGoogle Scholar
  37. 37.
    Auber, L. (1951). The anatomy of follicles producing wool-fibres, with special reference to keratinization. Transactions of the Royal Society of Edinburgh, 62, 191–254.CrossRefGoogle Scholar
  38. 38.
    Cotsarelis, G., Sun, T., & Lavker, R. M. (1990). Label-retaining cells reside in the bulge area of pilosebaceous unit: Implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell, 61, 1329–1337.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ohyama, M., et al. (2006). Characterization and isolation of stem cell-enriched human hair follicle bulge cells. Journal of Clinical Investigation, 116(1), 249–260.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Alonso, L., & Fuchs, E. (2003). Stem cells of the skin epithelium. Proceedings of the National Academy of Sciences of the United States of America, 100(SUPPL. 1), 11830–11835.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Ito, M., et al. (2004). Hair follicle stem cells in the lower bulge form the secondary germ, a biochemically distinct but functionally equivalent progenitor cell population, at the termination of catagen. Differentiation, 72(9–10), 548–557.CrossRefPubMedGoogle Scholar
  42. 42.
    Lyle, S., et al. (1998). The C8/144B monoclonal antibody recognizes cytokeratin 15 and defines the location of human hair follicle stem cells. Journal of Cell Science, 111(21), 3179–3188.PubMedGoogle Scholar
  43. 43.
    Morris, R. J., & Potten, C. S. (1999). Highly persistent label-retaining cells in the hair follicles of mice and their fate following induction of anagen. Journal of Investigative Dermatology, 112, 470–475.CrossRefPubMedGoogle Scholar
  44. 44.
    Cotsarelis, G. (2006). Epithelial stem cells: A folliculocentric view. Journal of Investigative Dermatology, 126(7), 1459–1468.CrossRefPubMedGoogle Scholar
  45. 45.
    Oshima, H., et al. (2001). Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell, 104(2), 233–245.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.AgResearch Ltd.LincolnNew Zealand

Personalised recommendations