Advertisement

Diversity of Trichocyte Keratins and Keratin Associated Proteins

  • Jeffrey E. Plowman
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1054)

Abstract

Wool and hair fibres are primarily composed of proteins of which the keratins and keratin associated proteins (KAPs) are the major component. Considerable diversity is known to exist within these two groups of proteins. In the case of the keratins two major families are known, of which there are 11 members in the acidic Type I family and 7 members in the neutral-basic Type II family. The KAPs are even more diverse than the keratins, with 35 families being known to exist when the KAPs found in monotremes, marsupials and other mammalian species are taken into consideration. Human hair and wool are known to have 88 and 73 KAPs respectively, though this number rises for wool when polymorphism within KAP families is included.

Keywords

High sulfur proteins Ultra-high sulfur proteins High glycine-tyrosine proteins 

References

  1. 1.
    Shorland, F. B., & Gray, J. M. (1970). The preparation of nutritious protein from wool. British Journal of Nutrition, 24, 717.CrossRefPubMedGoogle Scholar
  2. 2.
    Gillespie, J. M., & Goldsmith, L. A. (1983). The structural proteins of hair: Isolation, characterization, and regulation of biosynthesis. In L. A. Goldsmith (Ed.), Biochemistry and physiology of the skin (pp. 475–510). Oxford: Oxford University Press.Google Scholar
  3. 3.
    Goddard, D. R., & Michaelis, L. (1934). A study on keratin. Journal of Biological Chemistry, 106, 605–614.Google Scholar
  4. 4.
    Crewther, W. G., & Lennox, F. G. (1975). Wool research in the division of protein chemistry, CSIRO. Proceedings of the Royal Society of New South Wales, 108(3 &4), 95–110.Google Scholar
  5. 5.
    Crewther, W. G., et al. (1980). The microfibrillar proteins of α-keratin. In D. A. D. Parry & L. K. Creamer (Eds.), Fibrous proteins: Scientific, industrial and medical aspects (pp. 151–159). London: Academic Press.Google Scholar
  6. 6.
    Powell, B. C. (1996). The keratin proteins and genes of wool and hair. Wool Technology and Sheep Breeding, 44(2), 100–118.Google Scholar
  7. 7.
    Powell, B. C., & Rogers, G. E. (1997). The role of keratin proteins and their genes in the growth, structure and properties of hair. In P. Jolles, H. Zahn, & H. Hoecker (Eds.), Formation and structure of human hair (pp. 59–148). Basel: Birkhäuser Verlag.CrossRefGoogle Scholar
  8. 8.
    Moll, R., Franke, W. W., & Schiller, D. L. (1982). The catalog of human cytokeratins: Patterns of expression in normal epithelia, tumors and cultured cells. Cell, 31, 11–24.CrossRefPubMedGoogle Scholar
  9. 9.
    Heid, H. W., Werner, E., & Franke, W. W. (1986). The complement of native α-keratin polypeptides of hair-forming cells: A subset of eight polypeptides that differ from epithelial cytokeratins. Differentiation, 32, 101–119.CrossRefPubMedGoogle Scholar
  10. 10.
    Rogers, M. A., et al. (1998). Characterization of a 190-kilobase pair domain of human type I hair keratin genes. Journal of Biological Chemistry, 273(41), 26683–26691.CrossRefPubMedGoogle Scholar
  11. 11.
    Rogers, M. A., et al. (2000). Characterization of a 300 kbp region of human DNA containing the type II hair keratin gene domain. Journal of Investigative Dermatology, 114(3), 464–472.CrossRefPubMedGoogle Scholar
  12. 12.
    Langbein, L., et al. (1999). The catalog of human hair keratins. I. Expression of the nine type I members in the hair follicle. Journal of Biological Chemistry, 274(28), 19874–19884.CrossRefPubMedGoogle Scholar
  13. 13.
    Plowman, J. E., et al. (2006). Wool keratins – The challenge ahead. Proceedings of the New Zealand Society of Animal Production, 66, 133–139.Google Scholar
  14. 14.
    Schweizer, J., et al. (2006). New consensus nomenclature for mammalian keratins. Journal of Cell Biology, 174(2), 169–174.CrossRefPubMedGoogle Scholar
  15. 15.
    Gillespie, J. M., & Broad, A. (1972). Ultra-high sulphur proteins in the hairs of the Artiodactyla. Australian Journal of Biological Science, 25, 139–145.Google Scholar
  16. 16.
    Stein, W. H., & Moore, S. (1948). Chromatography of amino acids on starch columns; separation of phenylalanine, leucine, isoleucine, methionine, tyrosine and valine. Journal of Biological Chemistry, 176, 337–365.PubMedGoogle Scholar
  17. 17.
    Harrap, B. S., & Gillespie, J. M. (1963). A further study on the extraction of reduced proteins from wool. Australian Journal of Biological Science, 16, 542–557.CrossRefGoogle Scholar
  18. 18.
    Crewther, W. G. (1975). Primary structure and chemical properties of wool. In Proceedings of the 5th International Wool Textile Research conference. Aachen, Germany.Google Scholar
  19. 19.
    Lindley, H., & Elleman, T. C. (1972). The preparation and properties of a group of proteins from the high-sulphur fraction of wool. Biochemical Journal, 128, 859–867.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Swart, L. S., Joubert, F. J., & Strydom, A. J. C. (1969). The apparent microheterogeneous nature of the high-sulfur proteins of à-keratins. Textile Research Journal, 39, 273–279.CrossRefGoogle Scholar
  21. 21.
    Haylett, T., Swart, L. S., & Parris, D. (1971). Studies on the high-sulphur proteins of reduced merino wool. Amino acid sequence of protein SCMKB-IIIB 3. Biochemical Journal, 123(2), 191–200.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Haylett, T., & Swart, L. S. (1969). Studies on the high-sulfur proteins of reduced Merino wool. Part III. The amino-acid sequence of protein SCMKB-IIIB2. Textile Research Journal, 39, 917.CrossRefGoogle Scholar
  23. 23.
    Swart, L. S., & Haylett, T. (1971). Studies on the high-sulphur proteins of reduced merino wool. Amino acid sequence of protein SCMKB-IIIB 4. Biochemical Journal, 123(2), 201–210.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Gillespie, J. M., & Darskus, R. L. (1971). Relation between the tyrosine content of various wools and their content of a class of proteins rich in tyrosine and glycine. Australian Journal of Biological Science, 24, 1189–1197.CrossRefGoogle Scholar
  25. 25.
    Gillespie, J. M. (1991). The structural proteins of hair: isolation, characterisation and regulation of biosynthesis. In L. A. Goldsmith (Ed.), Physiology, biochemistry and molecular biology of the skin (Vol. 1, 2nd ed., pp. 625–659). New York: Oxford University Press.Google Scholar
  26. 26.
    Powell, B. C., & Beltrame, J. S. (1994). Characterization of a hair (wool) keratin intermediate filament gene domain. Journal of Investigative Dermatology, 102(2), 171–177.CrossRefPubMedGoogle Scholar
  27. 27.
    Fratini, A., Powell, B. C., & Rogers, G. E. (1993). Sequence, expression, and evolutionary conservation of a gene encoding a glycine/tyrosine-rich keratin-associated protein of hair. Journal of Biological Chemistry, 268(6), 4511–4518.PubMedGoogle Scholar
  28. 28.
    MacKinnon, P. J., Powell, B. C., & Rogers, G. E. (1990). Structure and expression of genes for a class of cysteine-rich proteins of the cuticle layers of differentiating wool and hair follicles. Journal of Cell Biology, 111(6), 2587–2600.CrossRefPubMedGoogle Scholar
  29. 29.
    Jenkins, B. J., & Powell, B. C. (1994). Differential expression of genes encoding a cysteine-rich keratin family in the hair cuticle. Journal of Investigative Dermatology, 103(3), 310–317.CrossRefPubMedGoogle Scholar
  30. 30.
    Fratini, A., et al. (1994). Dietary cysteine regulates the levels of mRNAs encoding a family of cysteine-rich proteins of wool. Journal of Investigative Dermatology, 102(2), 178–185.CrossRefPubMedGoogle Scholar
  31. 31.
    Powell, B. C., Arthur, J. R., & Nesci, A. (1995). Characterisation of a gene encoding a cysteine-rich keratin associated protein synthesised late in rabbit hair follicle differentiation. Differentiation, 58, 227–232.CrossRefPubMedGoogle Scholar
  32. 32.
    Gong, H., et al. (2012). An updated nomenclature for keratin-associated proteins (KAPs). International Journal of Biological Sciences, 8(2), 258–264.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Rogers, M. A., & Schweizer, J. (2005). Human KAP genes, only the half of it? Extensive polymorphisms in hair keratin-associated protein genes. Journal of Investigative Dermatology, 124, vii–vix.CrossRefPubMedGoogle Scholar
  34. 34.
    Rogers, M. A., et al. (2006). Human hair keratin-associated proteins (KAPs). International Review of Cytology, 251, 209–263.CrossRefPubMedGoogle Scholar
  35. 35.
    Itenge-Mweza, T. O., et al. (2007). Polymorphism of the KAP1.1, KAP1.3 and KRT.1.2 genes in merino sheep. Molecular and Cellular Probes, 21(5–6), 338–342.CrossRefPubMedGoogle Scholar
  36. 36.
    Gong, H., Zhou, H., & Hickford, J. G. (2010). Polymorphism of the ovine keratin-associated-protein 1-4 (KRTAP1-4) gene. Molecular Biology Reports, 37, 3377–3380.CrossRefPubMedGoogle Scholar
  37. 37.
    Gong, H., et al. (2011). Identification of the ovine keratin-associated protein KAP1-2 gene (KRTAP1-2). Experimental Dermatology, 20, 815–819.CrossRefPubMedGoogle Scholar
  38. 38.
    Gong, H., Zhou, H., & Hickford, J. G. (2011). Diversity of the glycine/tyrosine-rich keratin-associated protein 6 gene (KAP6) family in sheep. Molecular Biology Reports, 38(1), 31–35.CrossRefPubMedGoogle Scholar
  39. 39.
    Gong, H., et al. (2011). Identification of the ovine KAP11-1 gene (KRTAP11-1) and genetic variation in its coding sequence. Molecular Biology Reports, 38(8), 5429–5433.CrossRefPubMedGoogle Scholar
  40. 40.
    Gong, H., et al. (2011). Search for variation in the ovine KAP7-1 and KAP8-1 genes using PCR-SSCP. DNA and Cell Biology, 31(3), 367–370.CrossRefPubMedGoogle Scholar
  41. 41.
    Shimomura, Y., et al. (2002). Polymorphisms in the human high sulfur hair keratin-associated protein 1, KAP1, gene family. Journal of Biological Chemistry, 277(47), 45493–45501.CrossRefPubMedGoogle Scholar
  42. 42.
    Wu, D.-D., Irwin, D. M., & Zhang, Y.-P. (2008). Molecular evolution of the keratin associated protein gene family in mammals, role in the evolution of mammalian hair. BMC Evolutionary Biology, 25(8), 241–255.CrossRefGoogle Scholar
  43. 43.
    Langbein, L., et al. (2007). Novel type I hair keratins K39 and K40 are the last to be expressed in differentiation of the hair: Completion of the human hair keratin catalogue. Journal of Investigative Dermatology, 127, 1532–1535.CrossRefPubMedGoogle Scholar
  44. 44.
    Yu, Z., et al. (2011). Annotations of sheep keratin intermediate filament genes and their patterns of expression. Experimental Dermatology, 20(7), 582–588.CrossRefPubMedGoogle Scholar
  45. 45.
    Langbein, L., et al. (2010). The keratins of the human beard hair medulla: The riddle in the middle. Journal of Investigative Dermatology, 130(1), 55–73.CrossRefPubMedGoogle Scholar
  46. 46.
    Deb-Choudhury, S., et al. (2010). Electrophoretic mapping of highly homologous keratins: A novel marker peptide approach. Electrophoresis, 31(17), 2894–2902.CrossRefPubMedGoogle Scholar
  47. 47.
    Langbein, L., et al. (2001). The catalog of human hair keratins. II. Expression of the six type II members in the hair follicle and the combined catalog of human type I and II keratins. Journal of Biological Chemistry, 276(37), 35123–35132.CrossRefPubMedGoogle Scholar
  48. 48.
    Elleman, T. C. (1972). The amino acid sequence of protein SCMK-B2A from the high-sulphur fraction of wool keratin. Biochemical Journal, 130(3), 833–845.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Elleman, T. C. (1972). The amino acid sequence of protein SCMK-B2C from the high-sulphur fraction of wool keratin. Biochemcal Journal, 128, 1229–1239.CrossRefGoogle Scholar
  50. 50.
    Elleman, T. C., & Dopheide, T. A. (1972). The sequence of SCMK-B2B, a high-sulfur protein from wool keratin. Journal of Biological Chemistry, 247(12), 3900–3909.PubMedGoogle Scholar
  51. 51.
    Powell, B. C., et al. (1983). Mammalian keratin gene families: Organisation of genes coding for the B2 high-sulphur proteins of sheep wool. Nucleic Acids Research, 11(16), 5327–5346.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Rogers, G. R., Hickford, J. G., & Bickerstaffe, R. (1994). Polymorphism in two genes for B2 high sulfur proteins of wool. Animal Genetics, 25(6), 407–415.CrossRefPubMedGoogle Scholar
  53. 53.
    Rogers, M. A., et al. (2001). Characterization of a cluster of human high/ultrahigh sulfur keratin-associated protein genes embedded in the type I keratin gene domain on chromosome 17q12-21. Journal of Biological Chemistry, 276(22), 19440–19451.CrossRefPubMedGoogle Scholar
  54. 54.
    Flanagan, L. M., Plowman, J. E., & Bryson, W. G. (2002). The high sulphur proteins of wool: Towards an understanding of sheep breed diversity. Proteomics, 2(9), 1240–1246.CrossRefPubMedGoogle Scholar
  55. 55.
    Swart, L. S., & Haylett, T. (1973). Studies on the high-sulphur proteins of reduced merino wool. Amino acid sequence of protein SCMKB-IIIA3. Biochemical Journal, 133(4), 641–654.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Fujikawa, H., et al. (2012). Characterization of the human hair keratin-associated protein 2 (KRTAP2) gene family. Journal of Investigative Dermatology, 132(7), 1806–1813.CrossRefPubMedGoogle Scholar
  57. 57.
    Frenkel, M. J., et al. (1989). The keratin BIIIB gene family: Isolation of cDNA clones and structure of a gene and a related pseudogene. Genomics, 4, 182–191.CrossRefPubMedGoogle Scholar
  58. 58.
    Yu, Z., et al. (2009). Expression patterns of keratin intermediate filament and keratin associated protein genes in wool follicles. Differentiation, 77(3), 307–316.CrossRefPubMedGoogle Scholar
  59. 59.
    Rogers, M. A., et al. (2002). Characterization of a first domain of human high glycine-tyrosine and high sulfur keratin-associated protein (KAP) genes on chromosome 21q22.1. Journal of Biological Chemistry, 277(50), 48993–49002.CrossRefPubMedGoogle Scholar
  60. 60.
    Parry, D. A. D., et al. (2006). Human hair keratin-associated proteins: Sequence regularities and structural implications. Journal of Structural Biology, 155(2), 361–369.CrossRefPubMedGoogle Scholar
  61. 61.
    Shimomura, Y., et al. (2010). Mutations in the keratin 85 (KRT85/hHb5) gene underlie pure hair and nail ectodermal dysplasia. Journal of Investigative Dermatology, 130, 892–895.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.AgResearch Ltd.LincolnNew Zealand

Personalised recommendations