Advertisement

Bronchial Asthma: Is Asthma Inherited?

  • Nobuyuki Hizawa
Chapter
Part of the Respiratory Disease Series: Diagnostic Tools and Disease Managements book series (RDSDTDM)

Abstract

Asthma runs strongly in families and has a heritability rate of up to 70%. Genetic studies offer a structured means for understanding the causes of asthma and for identifying targets of treatment for the syndrome. As with studies of other common complex diseases, genetic studies of asthma have led to considerable advances in the understanding of this disease. Genome-wide association studies have greatly advanced the identification of the most important genes predisposing individuals to asthma. Several genes act in pathways that communicate the presence of epithelial damage to the adaptive immune system; identification of these genes has provided a new focus for the development of effective therapies. However, these loci explain only a small proportion of the heritability of the disease because the phenotypic heterogeneity of asthma greatly complicates genetic analysis. A specific phenotype is likely to be more closely related to a specific pathogenetic mechanism, and focusing on a particular phenotype may increase the power of genetic studies and consequently lead to a better understanding of an endotype defined by a distinct functional or pathobiological mechanism. Genetic predisposition to the dysregulation of particular pathways may further help to define subgroups of asthma. In the end, this approach may lead to diagnosis for patients based, in part, on their genetic makeup and to new therapeutic prospects. In addition, further work is necessary to understand the biological consequences of the known susceptibility variants; the most immediate challenge in this field is the systematic analysis of the precise functions of these genes in the pathogenesis of asthma. Detailed functional dissection of the roles of these genes in asthma will point the way to new therapies for the disease.

Keywords

Asthma Endotype GWAS TSLP ORMDL3 CDHR3 HCG22 

References

  1. 1.
    Daniels SE, Bhattacharrya S, James A, et al. A genome-wide search for quantitative trait loci underlying asthma. Nature. 1996;383(6597):247–50.CrossRefPubMedGoogle Scholar
  2. 2.
    Duffy DL, Martin NG, Battistutta D, Hopper JL, Mathews JD. Genetics of asthma and hay fever in Australian twins. Am Rev Respir Dis. 1990;142:1351–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Ober C, Yao TC. The genetics of asthma and allergic disease: a 21st century perspective. Immunol Rev. 2011;242:10–30.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Busse WW, Lemanske RF Jr. Asthma. N Engl J Med. 2001;344:350–62.CrossRefPubMedGoogle Scholar
  5. 5.
    Carr TF, Bleecker E. Asthma heterogeneity and severity. World Allergy Organ J. 2016;9(1):41. eCollection 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wenzel S. Severe asthma: from characteristics to phenotypes to endotypes. Clin Exp Allergy. 2012;42:650–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Manolio TA. Genomewide association studies and assessment of the risk of disease. N Engl J Med. 2010;363:166–76.CrossRefPubMedGoogle Scholar
  8. 8.
    McCarthy MI, Abecasis GR, Cardon LR, et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet. 2008;9:356–69.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Weiss ST, Raby BA, Rogers A. Asthma genetics and genomics 2009. Curr Opin Genet Dev. 2009;19:279–82.CrossRefPubMedGoogle Scholar
  10. 10.
    Holloway JW, Yang IA, Holgate ST. Genetics of allergic disease. J Allergy Clin Immunol. 2010;125(suppl 2):S81–94.CrossRefPubMedGoogle Scholar
  11. 11.
    Moffatt MF, Kabesch M, Liang L, et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature. 2007;448(7152):470–3.CrossRefPubMedGoogle Scholar
  12. 12.
    Dixon AL, Liang L, Moffatt MF, et al. A genome-wide association study of global gene expression. Nat Genet. 2007;39:1202.CrossRefPubMedGoogle Scholar
  13. 13.
    Bouzigon E, Corda E, Aschard H, et al. Effect of 17q21 variants and smoking exposure in early-onset asthma. N Engl J Med. 2008;359:1985.CrossRefPubMedGoogle Scholar
  14. 14.
    Moffatt MF, Gut IG, Demenais F, et al. A large-scale, consortium-based genomewide association study of asthma. N Engl J Med. 2010;363:1211–21.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hirota T, Harada M, Sakashita M, et al. Genetic polymorphism regulating ORM1-like 3 (Saccharomyces cerevisiae) expression is associated with childhood atopic asthma in a Japanese population. J Allergy Clin Immunol. 2008;121:769.CrossRefPubMedGoogle Scholar
  16. 16.
    Wu H, Romieu I, Sienra-Monge JJ, et al. Genetic variation in ORM1-like 3 (ORMDL3) and gasdermin-like (GSDML) and childhood asthma. Allergy. 2009;64:629.CrossRefPubMedGoogle Scholar
  17. 17.
    Torgerson DG, Ampleford EJ, Chiu GY, et al. Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations. Nat Genet. 2011;43:887–92.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gudbjartsson DF, Bjornsdottir US, Halapi E, et al. Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction. Nat Genet. 2009;41:342–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Myers RA, Himes BE, Gignoux CR, et al. Further replication studies of the EVE Consortium meta-analysis identifies 2 asthma risk loci in European Americans. J Allergy Clin Immunol. 2012;130:1294.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hsu CL, Neilsen CV, Bryce PJ. IL-33 is produced by mast cells and regulates IgE-dependent inflammation. PLoS One. 2010;5:e11944.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Préfontaine D, Lajoie-Kadoch S, Foley S, et al. Increased expression of IL-33 in severe asthma: evidence of expression by airway smooth muscle cells. J Immunol. 2009;183:5094.CrossRefPubMedGoogle Scholar
  22. 22.
    Préfontaine D, Nadigel J, Chouiali F, et al. Increased IL-33 expression by epithelial cells in bronchial asthma. J Allergy Clin Immunol. 2010;125:752.CrossRefPubMedGoogle Scholar
  23. 23.
    Ferreira MA, Matheson MC, Duffy DL, et al, for the Australian Asthma Genetics Consortium. Identification of IL6R and chromosome 11q13.5 as risk loci for asthma. Lancet. 2011;378:1006–14.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Sears MR, Greene JM, Willan AR, et al. A longitudinal, population-based, cohort study of childhood asthma followed to adulthood. N Engl J Med. 2003;349:1414–22.CrossRefPubMedGoogle Scholar
  25. 25.
    Hirschhorn JN. Genomewide association studies--illuminating biologic pathways. N Engl J Med. 2009;360(17):1699–701.CrossRefPubMedGoogle Scholar
  26. 26.
    Barreto-Luis A, Corrales A, Acosta-Herrera M, et al. A pathway-based association study reveals variants from Wnt signaling genes contributing to asthma susceptibility. Clin Exp Allergy. 2017.  https://doi.org/10.1111/cea.12883].
  27. 27.
    Yatagai Y, Sakamoto T, Masuko H, et al. Genome-wide association study for levels of total serum IgE identifies HLA-C in a Japanese population. PLoS One. 2013;8(12):e80941.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Weinmayr G, Weiland SK, Bjorksten B, et al. Atopic sensitization and the international variation of asthma symptom prevalence in children. Am J Respir Crit Care Med. 2007;176:565–74.CrossRefPubMedGoogle Scholar
  29. 29.
    Palmer CN, Irvine AD, Terron-Kwiatkowski A, et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet. 2006;38:441–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Walley AJ, Chavanas S, Moffatt MF, et al. Gene polymorphism in Netherton and common atopic disease. Nat Genet. 2001;29:175–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Holgate ST. Epithelium dysfunction in asthma. J Allergy Clin Immunol. 2007;120(6):1233–44.CrossRefPubMedGoogle Scholar
  32. 32.
    Bønnelykke K, Sleiman P, Nielsen K, et al. A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations. Nat Genet. 2014;46:51–5.CrossRefPubMedGoogle Scholar
  33. 33.
    Moore WC, Meyers DA, Wenzel SE, et al. Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am J Respir Crit Care Med. 2010;181:315–23.CrossRefPubMedGoogle Scholar
  34. 34.
    Haldar P, Pavord ID, Shaw DE, et al. Cluster analysis and clinical asthma phenotypes. Am J Respir Crit Care Med. 2008;178:218–24.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Wenzel SE. Asthma: defining of the persistent adult phenotypes. Lancet. 2006;368:804–13.CrossRefPubMedGoogle Scholar
  36. 36.
    Diette GB, Krishnan JA, Dominici F, et al. Asthma in older patients: factors associated with hospitalization. Arch Intern Med. 2002;162:1123–32.CrossRefPubMedGoogle Scholar
  37. 37.
    Kaneko Y, Masuko H, Sakamoto T, et al. Asthma phenotypes in Japanese adults - their associations with the CCL5 and ADRB2 genotypes. Allergol Int. 2013;62(1):113–21.CrossRefPubMedGoogle Scholar
  38. 38.
    Hizawa N, Yamaguchi E, Konno S, et al. A functional polymorphism in the RANTES gene promoter is associated with the development of late-onset asthma. Am J Respir Crit Care Med. 2002;166:686–90.CrossRefPubMedGoogle Scholar
  39. 39.
    Hizawa N. Beta-2 adrenergic receptor genetic polymorphisms and asthma. J Clin Pharm Ther. 2009;34(6):631–43.CrossRefPubMedGoogle Scholar
  40. 40.
    Summerhill E, Leavitt SA, Gidley H, et al. beta(2)-adrenergic receptor Arg16/Arg16 genotype is associated with reduced lung function, but not with asthma, in the Hutterites. Am J Respir Crit Care Med. 2000;162(2 Pt 1):599–602.CrossRefPubMedGoogle Scholar
  41. 41.
    Hall IP, Blakey JD, Al Balushi KA, et al. Beta2-adrenoceptor polymorphisms and asthma from childhood to middle age in the British 1958 birth cohort: a genetic association study. Lancet. 2006;368(9537):771–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Zhang G, Hayden CM, Khoo SK, et al. Beta2-Adrenoceptor polymorphisms and asthma phenotypes: interactions with passive smoking. Eur Respir J. 2007;30(1):48–55.CrossRefPubMedGoogle Scholar
  43. 43.
    Hirota T, Takahashi A, Kubo M, et al. Genome-wide association study identifies three new susceptibility loci for adult asthma in the Japanese population. Nat Genet. 2011;43:893–6.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Licona-Limón P, Kim LK, Palm NW, Flavell RA. TH2, allergy and group 2 innate lymphoid cells. Nat Immunol. 2013;14(6):536–42.CrossRefPubMedGoogle Scholar
  45. 45.
    Gauvreau GM, O’Byrne PM, Boulet LP, et al. Effects of an anti-TSLP antibody on allergen-induced asthmatic responses. N Engl J Med. 2014;370:2102.CrossRefPubMedGoogle Scholar
  46. 46.
    Noguchi E, Sakamoto H, Hirota T, et al. Genome-wide association study identifies HLA-DP as a susceptibility gene for pediatric asthma in Asian populations. PLoS Genet. 2011;7(7):e1002170.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Chan PY, Carrera Silva EA, De Kouchkovsky D, et al. The TAM family receptor tyrosine kinase TYRO3 is a negative regulator of type 2 immunity. Science. 2016;352(6281):99–103.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Bisgaard H, Bønnelykke K, Sleiman PM, et al. Chromosome 17q21 gene variants are associated with asthma and exacerbations but not atopy in early childhood. Am J Respir Crit Care Med. 2009;179(3):179–85.CrossRefPubMedGoogle Scholar
  49. 49.
    Çalışkan M, Bochkov YA, Kreiner-Møller E, et al. Rhinovirus wheezing illness and genetic risk of childhood-onset asthma. N Engl J Med. 2013;368:1398–407.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Cantero-Recasens G, Fandos C, Rubio-Moscardo F, Valverde MA, Vicente R, et al. The asthma-associated ORMDL3 gene product regulates endoplasmic reticulum-mediated calcium signaling and cellular stress. Hum Mol Genet. 2010;19:111–21.CrossRefPubMedGoogle Scholar
  51. 51.
    Liu YP, Rajamanikham V, Baron M, et al. Association of ORMDL3 with rhinovirus-induced endoplasmic reticulum stress and type I Interferon responses in human leucocytes. Clin Exp Allergy. 2017;47(3):371–82.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Bochkov YA, Watters K, Ashraf S, et al. Cadherin-related family member 3, a childhood asthma susceptibility gene product, mediates rhinovirus C binding and replication. Proc Natl Acad Sci U S A. 2015;112(17):5485–90.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Yatagai Y, Sakamoto T, Yamada H, et al. Genomewide association study identifies HAS2 as a novel susceptibility gene for adult asthma in a Japanese population. Clin Exp Allergy. 2014;44(11):1327–34.CrossRefPubMedGoogle Scholar
  54. 54.
    Scheibner KA, Lutz MA, Boodoo S, Fenton MJ, Powell JD, Horton MR. Hyaluronan fragments act as an endogenous danger signal by engaging TLR2. J Immunol. 2006;177:1272–81.CrossRefPubMedGoogle Scholar
  55. 55.
    Hilty M, Burke C, Pedro H, et al. Disordered microbial communities in asthmatic airways. PLoS One. 2010;5:e8578.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Sethi S, Maloney J, Grove L, et al. Airway inflammation and bronchial bacterial colonization in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2006;173:991–8.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Desai H, Eschberger K, Wrona C, et al. Bacterial colonization increases daily symptoms in patients with chronic obstructive pulmonary disease. Ann Am Thorac Soc. 2014;11:303–9.CrossRefPubMedGoogle Scholar
  58. 58.
    Zhang Q, Illing R, Hui CK, Downey K, et al. Bacteria in sputum of stable severe asthma and increased airway wall thickness. Respir Res. 2012;13:35.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Bisgaard H, Hermansen MN, Buchvald F, et al. Childhood asthma after bacterial colonization of the airway in neonates. N Engl J Med. 2007;357:1487–95.CrossRefPubMedGoogle Scholar
  60. 60.
    Green RH, Brightling CE, Woltmann G, Parker D, Wardlaw AJ, Pavord ID. Analysis of induced sputum in adults with asthma: identification of subgroup with isolated sputum neutrophilia and poor response to inhaled corticosteroids. Thorax. 2002;57:875–9.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Isada A, Konno S, Hizawa N, et al. A functional polymorphism (-603A --> G) in the tissue factor gene promoter is associated with adult-onset asthma. J Hum Genet. 2010;55:167–74.CrossRefPubMedGoogle Scholar
  62. 62.
    Taniguchi N, Konno S, Hattori T, et al. The CC16 A38G polymorphism is associated with asymptomatic airway hyper-responsiveness and development of late-onset asthma. Ann Allergy Asthma Immunol. 2013;111:376–81.CrossRefPubMedGoogle Scholar
  63. 63.
    Taniguchi N, Konno S, Isada A, et al. Association of the CAT-262C>T polymorphism with asthma in smokers and the nonemphysematous phenotype of chronic obstructive pulmonary disease. Ann Allergy Asthma Immunol. 2014;113:31–6.CrossRefPubMedGoogle Scholar
  64. 64.
    Yatagai Y, Hirota T, Sakamoto T, et al. Variants near the HLA complex group 22 gene confer increased susceptibility to late-onset asthma in Japanese populations. J Allergy Clin Immunol. 2016;138(1):281. pii: S0091-6749(16)00024-5.CrossRefPubMedGoogle Scholar
  65. 65.
    Hijikata M, Matsushita I, Tanaka G, et al. Molecular cloning of two novel mucin-like genes in the disease-susceptibility locus for diffuse panbronchiolitis. Hum Genet. 2011;129:117–28.CrossRefPubMedGoogle Scholar
  66. 66.
    Ober C, Tan Z, Sun Y, et al. Effect of variation in CHI3L1 on serum YKL-40 level, risk of asthma, and lung function. N Engl J Med. 2008;358:1682.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Gomez JL, Crisafi GM, Holm CT, et al. Genetic variation in chitinase 3-like 1 (CHI3L1) contributes to asthma severity and airway expression of YKL-40. J Allergy Clin Immunol. 2015;136:51.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Żurawska-Płaksej E, Ługowska A, Hetmańczyk K, et al. Neutrophils as a source of chitinases and chitinase-like proteins in type 2 diabetes. PLoS One. 2015;10(10):e0141730.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Hinks TSC, Brown T, Lau LCK, et al. Multidimensional endotyping in patients with severe asthma reveals inflammatory heterogeneity in matrix metalloproteinases and chitinase 3–like protein 1. J Allergy Clin Immunol. 2016 Jul;138(1):61–75.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Ege MJ, Mayer M, Normand AC, et al. Exposure to environmental microorganisms and childhood asthma. N Engl J Med. 2011;364(8):701–9.CrossRefGoogle Scholar
  71. 71.
    Nagai H, Shishido H, Yoneda R, Yamaguchi E, Tamura A, Kurashima A. Long-term low-dose administration of erythromycin to patients with diffuse panbronchiolitis. Respiration. 1991;58(3-4):145–9.CrossRefPubMedGoogle Scholar
  72. 72.
    Brusselle GG, VanderStichele C, Jordens P, et al. Azithromycin for prevention of exacerbations in severe asthma (AZISAST): a multicentre randomised double-blind placebo-controlled trial. Thorax. 2013;68:322–9.CrossRefPubMedGoogle Scholar
  73. 73.
    Simpson JL, Powell H, Boyle MJ, Scott RJ, Gibson PG. Clarithromycin targets neutrophilic airway inflammation in refractory asthma. Am J Respir Crit Care Med. 2008;177(2):148–55.CrossRefPubMedGoogle Scholar
  74. 74.
    Spagnolo P, Fabbri LM, Bush A. Long-term macrolide treatment for chronic respiratory disease. Eur Respir J. 2013;42(1):239–51.CrossRefPubMedGoogle Scholar
  75. 75.
    Serisier D. Risks of population antimicrobial resistance associated with chronic macrolide use for inflammatory airway diseases. Lancet Respir Med. 2013;1:262–74.CrossRefPubMedGoogle Scholar
  76. 76.
    Sibila O, Garcia-Bellmunt L, Giner J, et al. Identification of airway bacterial colonization by an electronic nose in Chronic Obstructive Pulmonary Disease. Respir Med. 2014;108(11):1608–14.CrossRefPubMedGoogle Scholar
  77. 77.
    Barker DJ, Winter PD, Osmond C, et al. Weight in infancy and death from ischemic heart disease. Lancet. 1989;2:577–80.CrossRefPubMedGoogle Scholar
  78. 78.
    Sharma S, Chhabra D, Kho AT, Hayden LP, Tantisira KG, Weiss ST. The genomic origins of asthma. Thorax. 2014;69(5):481–7.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Haland G, Carlsen KC, Sandvik L, et al. Reduced lung function at birth and the risk of asthma at 10 years of age. N Engl J Med. 2006;355:1682–9.CrossRefPubMedGoogle Scholar
  80. 80.
    Stocks J, Hislop A, Sonnappa S. Early lung development: lifelong effect on respiratory health and disease. Lancet Respir Med. 2013;1(9):728–42.CrossRefPubMedGoogle Scholar
  81. 81.
    Masuko H, Sakamoto T, Kaneko Y, et al. Lower FEV1 in non-COPD, nonasthmatic subjects: association with smoking, annual decline in FEV1, total IgE levels, and TSLP genotypes. Int J Chron Obstruct Pulmon Dis. 2011;6:181–9.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Hancock DB, Eijgelsheim M, Wilk JB, et al. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function. Nat Genet. 2010;42(1):45–52.CrossRefPubMedGoogle Scholar
  83. 83.
    Repapi E, Sayers I, Wain LV, et al. Genome-wide association study identifies five loci associated with lung function. Nat Genet. 2010;42(1):36–44.CrossRefPubMedGoogle Scholar
  84. 84.
    Soler AM, Loth DW, Wain LV, et al. Genome-wide association and large-scale follow up identifies 16 new loci influencing lung function. Nat Genet. 2011;43(11):1082–90.CrossRefGoogle Scholar
  85. 85.
    Yamada H, Yatagai Y, Masuko H, et al. Heritability of pulmonary function estimated from genome-wide SNPs in healthy Japanese adults. Respir Investig. 2015;53(2):60–7.CrossRefPubMedGoogle Scholar
  86. 86.
    Yamada H, Masuko H, Yatagai Y, et al. Role of lung function genes in the development of asthma. PLoS One. 2016;11(1):e0145832.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Fitzpatrick AM, Teague WG, Meyers DA, et al. Heterogeneity of severe asthma in childhood: confirmation by cluster analysis of children in the National Institutes of Health/National Heart, Lung, and Blood Institute Severe Asthma Research Program. J Allergy Clin Immunol. 2011;127(2):382–9.CrossRefPubMedGoogle Scholar
  88. 88.
    Lodrup Carlsen KC, Mowinckel P, Hovland V, Haland G, Riiser A, Carlsen KH. Lung function trajectories from birth through puberty reflect asthma phenotypes with allergic comorbidity. J Allergy Clin Immunol. 2014;134(4):917–23.CrossRefPubMedGoogle Scholar
  89. 89.
    Kreiner-Møller E, Bisgaard H, Bønnelykke K. Prenatal and postnatal genetic influence on lung function development. J Allergy Clin Immunol. 2014;134(5):1036–42.CrossRefPubMedGoogle Scholar
  90. 90.
    Gauderman WJ, Urman R, Avol E, et al. Association of improved air quality with lung development in children. N Engl J Med. 2015;372(10):905–13.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Modena BD, Bleecker ER, Busse WW, et al. Gene expression correlated to severe asthma characteristics reveals heterogeneous mechanisms of severe disease. Am J Respir Crit Care Med. 2017;195(11):1449.  https://doi.org/10.1164/rccm.201607-1407OC.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Pulmonary Medicine, Faculty of MedicineUniversity of TsukubaTsukubaJapan

Personalised recommendations