Advertisement

Approaches to Understanding the Genetic Basis of Complex Diseases: Overview—What Is the Rationale for the Genome-Wide Approach to Understand Complex Diseases, Its Application and Limitations

  • Mayumi Tamari
  • Tomomitsu Hirota
Chapter
Part of the Respiratory Disease Series: Diagnostic Tools and Disease Managements book series (RDSDTDM)

Abstract

Pulmonary diseases are complex disorders caused by a number of environmental and genetic factors. Recent advances in technologies and study designs have revealed the genetic components of common diseases. Genetic mapping is an unbiased method to comprehensively identify genes and biological pathways involved in diseases or traits. Genome-wide association studies (GWASs) have convincingly identified disease-associated loci. Most of the associated variants identified by GWASs are located in noncoding regions, and the functional link between those disease-associated variants and clinical phenotypes remains unclear. Recent progress in next-generation sequencing (NGS) technologies has improved the functional annotation of the human genome and highlighted the importance of noncoding regions. Epigenetic studies, transcriptome analyses, and characterization of cis-regulatory regions have revealed a wide variety of molecular phenotypes: RNA expression and stability, transcription factor binding, DNA methylation, histone modifications, and protein levels in various cell types and tissues. Recent genome editing technology and pluripotent stem cells are also helpful to assess the functional effects of genetic risk variants in disease-relevant cell types. Interdisciplinary research to elucidate the relationships between risk variants and molecular phenotypes in the pathologically relevant cell types is necessary to identify the targets of the risk loci and improve our mechanistic understanding of diseases.

Keywords

Genome-wide association study Genetic variants Noncoding region Disease-relevant cell types 

References

  1. 1.
    Lander ES. Initial impact of the sequencing of the human genome. Nature. 2011;470:187–97.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean GA. 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491:56–65.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    D A, Daly MJ, Lander ES. Genetic mapping in human disease. Science. 2008;322:881–8.CrossRefGoogle Scholar
  5. 5.
    Manolio TA. Genomewide association studies and assessment of the risk of disease. N Engl J Med. 2010;363:166–76.CrossRefPubMedGoogle Scholar
  6. 6.
    Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, Manolio TA. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A. 2009;106:9362–7.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Cirulli ET, Goldstein DB. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet. 2010;11:415–25.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zhang X, Bailey SD, Lupien M. Laying a solid foundation for Manhattan—‘setting the functional basis for the post-GWAS era’. Trends Genet. 2014;30:140–9.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bush WS, Moore JH. Chapter 11: Genome-wide association studies. PLoS Comput Biol. 2012;8:e1002822.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Marchini J, Howie B. Genotype imputation for genome-wide association studies. Nat Rev Genet. 2010;11:499–511.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38:904–9.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Morris AP. Transethnic meta-analysis of genomewide association studies. Genet Epidemiol. 2011;35:809–22.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Li YR, Keating BJ. Trans-ethnic genome-wide association studies: advantages and challenges of mapping in diverse populations. Genome Med. 2014;6:91.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Raj T, Kuchroo M, Replogle JM, Raychaudhuri S, Stranger BE, De Jager PL. Common risk alleles for inflammatory diseases are targets of recent positive selection. Am J Hum Genet. 2013;92:517–29.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zhernakova A, Elbers CC, Ferwerda B, Romanos J, Trynka G, Dubois PC, et al. Evolutionary and functional analysis of celiac risk loci reveals SH2B3 as a protective factor against bacterial infection. Am J Hum Genet. 2010;86:970–7.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Manolio TA. Bringing genome-wide association findings into clinical use. Nat Rev Genet. 2013;14:549–58.CrossRefPubMedGoogle Scholar
  17. 17.
    Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet. 2010;11:446–50.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Bush WS, Oetjens MT, Crawford DC. Unravelling the human genome-phenome relationship using phenome-wide association studies. Nat Rev Genet. 2016;17:129–45.CrossRefPubMedGoogle Scholar
  19. 19.
    Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17:333–51.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP. Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet. 2014 Feb;15(2):121–32.CrossRefPubMedGoogle Scholar
  21. 21.
    Lee S, Abecasis GR, Boehnke M, Lin X. Rare-variant association analysis: study designs and statistical tests. Am J Hum Genet. 2014;95:5–23.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Dickson SP, Wang K, Krantz I, Hakonarson H, Goldstein DB. Rare variants create synthetic genome-wide associations. PLoS Biol. 2010;8:e1000294.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Auer PL, Lettre G. Rare variant association studies: considerations, challenges and opportunities. Genome Med. 2015;7:16.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Torgerson DG, Capurso D, Mathias RA, Graves PE, Hernandez RD, Beaty TH, et al. Resequencing candidate genes implicates rare variants in asthma susceptibility. Am J Hum Genet. 2012;90:273–81.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Mathelier A, Shi W, Wasserman WW. Identification of altered cis-regulatory elements in human disease. Trends Genet. 2015;31:67–76.CrossRefPubMedGoogle Scholar
  26. 26.
    Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012;337:1190–5.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Fenouil R, Cauchy P, Koch F, Descostes N, Cabeza JZ, Innocenti C, et al. CpG islands and GC content dictate nucleosome depletion in a transcription-independent manner at mammalian promoters. Genome Res. 2012;22:2399–408.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Alexander RP, Fang G, Rozowsky J, Snyder M, Gerstein MB. Annotating non-coding regions of the genome. Nat Rev Genet. 2010;11:559–71.CrossRefPubMedGoogle Scholar
  29. 29.
    Furey TS. ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat Rev Genet. 2012;13:840–52.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518:317–30.CrossRefPubMedCentralGoogle Scholar
  31. 31.
    Seumois G, Chavez L, Gerasimova A, Lienhard M, Omran N, Kalinke L, et al. Epigenomic analysis of primary human T cells reveals enhancers associated with TH2 memory cell differentiation and asthma susceptibility. Nat Immunol. 2014;15:777–88.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Schübeler D. Function and information content of DNA methylation. Nature. 2015;517:321–6.CrossRefPubMedGoogle Scholar
  33. 33.
    Liang L, Willis-Owen SA, Laprise C, Wong KC, Davies GA, Hudson TJ, et al. An epigenome-wide association study of total serum immunoglobulin E concentration. Nature. 2015;520:670–4.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Price AL, Spencer CC, Donnelly P. Progress and promise in understanding the genetic basis of common diseases. Proc Biol Sci. 2015;282:20151684.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.CrossRefGoogle Scholar
  36. 36.
    Lee TI, Young RA. Transcriptional regulation and its misregulation in disease. Cell. 2013;152:1237–51.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Battle A, Montgomery SB. Determining causality and consequence of expression quantitative trait loci. Hum Genet. 2014;133:727–35.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Consortium GTE. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013;45:580–5.CrossRefGoogle Scholar
  39. 39.
    Li YI, van de Geijn B, Raj A, Knowles DA, Petti AA, Golan D, et al. RNA splicing is a primary link between genetic variation and disease. Science. 2016;352:600–4.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Lee MN, Ye C, Villani AC, Raj T, Li W, Eisenhaure TM, et al. Common genetic variants modulate pathogen-sensing responses in human dendritic cells. Science. 2014;343:1246980.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Fairfax BP, Humburg P, Makino S, Naranbhai V, Wong D, Lau E, et al. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression. Science. 2014;343:1246949.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Li W, Notani D, Rosenfeld MG. Enhancers as non-coding RNA transcription units: recent insights and future perspectives. Nat Rev Genet. 2016;17:207–23.CrossRefPubMedGoogle Scholar
  43. 43.
    Hon CC, Ramilowski JA, Harshbarger J, Bertin N, Rackham OJ, Gough J, et al. An atlas of human long non-coding RNAs with accurate 5′ ends. Nature. 2017;543(7644):199.CrossRefPubMedGoogle Scholar
  44. 44.
    Stergachis AB, Haugen E, Shafer A, Fu W, Vernot B, Reynolds A, et al. Exonic transcription factor binding directs codon choice and affects protein evolution. Science. 2013;342:1367–72.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Gregory AP, Dendrou CA, Attfield KE, Haghikia A, Xifara DK, Butter F, et al. TNF receptor 1 genetic risk mirrors outcome of anti-TNF therapy in multiple sclerosis. Nature. 2012;488:508–11.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Farh KK, Marson A, Zhu J, Kleinewietfeld M, Housley WJ, Beik S, et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature. 2015;518:337–43.CrossRefPubMedGoogle Scholar
  47. 47.
    Gamazon ER, Wheeler HE, Shah KP, Mozaffari SV, Aquino-Michaels K, Carroll RJ, et al. A gene-based association method for mapping traits using reference transcriptome data. Nat Genet. 2015;47:1091–8.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Ferreira MA, Jansen R, Willemsen G, Penninx B, Bain LM, Vicente CT, et al. Gene-based analysis of regulatory variants identifies 4 putative novel asthma risk genes related to nucleotide synthesis and signaling. J Allergy Clin Immunol. 2017;139(4):1148.CrossRefPubMedGoogle Scholar
  49. 49.
    Netea MG, Joosten LA, Li Y, Kumar V, Oosting M, Smeekens S, et al. Understanding human immune function using the resources from the Human Functional Genomics Project. Nat Med. 2016;22:831–3.CrossRefPubMedGoogle Scholar
  50. 50.
    Chen L, Ge B, Casale FP, Vasquez L, Kwan T, Garrido-Martín D, et al. Genetic drivers of epigenetic and transcriptional variation in human immune cells. Cell. 2016;167:1398–414.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Lander ES. The Heroes of CRISPR. Cell. 2016;164:18–28.CrossRefPubMedGoogle Scholar
  52. 52.
    Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-André V, Sigova AA, et al. Super-enhancers in the control of cell identity and disease. Cell. 2013;155:934–47.CrossRefPubMedGoogle Scholar
  53. 53.
    Vahedi G, Kanno Y, Furumoto Y, Jiang K, Parker SC, Erdos MR, et al. Super-enhancers delineate disease-associated regulatory nodes in T cells. Nature. 2015;520:558–62.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K, et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature. 2014;506:376–81.CrossRefPubMedGoogle Scholar
  55. 55.
    Wain LV, Shrine N, Artigas MS, Erzurumluoglu AM, Noyvert B, Bossini-Castillo L, et al. Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets. Nat Genet. 2017;49:416–25.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Core Research Facilities for Basic Science (Molecular Genetics), Research Center for Medical ScienceThe Jikei University School of MedicineTokyoJapan
  2. 2.Laboratory for Respiratory and Allergic Diseases, Center for Integrative Medical SciencesInstitute of Physical and Chemical Research (RIKEN)YokohamaJapan

Personalised recommendations