Advertisement

Application of High-Throughput Technologies in Personal Genomics: How Is the Progress in Personal Genome Service?

  • Kaoru Mogushi
  • Yasuhiro Murakawa
  • Hideya Kawaji
Chapter
Part of the Respiratory Disease Series: Diagnostic Tools and Disease Managements book series (RDSDTDM)

Abstract

The advent of high-throughput profiling technologies, in particular next-generation sequencing, has revolutionized our genomic studies and provided unprecedented insights into the human diseases. The use of genetic testing in the clinical settings has grown substantially and has now entered medical practice around the world. Here we provide an overview of recent advances in various high-throughput methods for genomic and functional genomic analyses. Next we review recent findings in genomics, ranging from single nucleotide polymorphisms associated with respiratory diseases and genomic alterations in lung cancers to aberrant gene expressions in lung diseases. Finally, we summarize the current status of clinical sequencing efforts and further describe challenges in the clinical implementation of personal genomic medicine. We anticipate increase in the use of clinical sequencing, which require sufficient resource of computation to interpret large genomic datasets in a clinical laboratory. It is also crucial to extend existing electronic medical record systems so that we can interact with genomic data and make full use of personal genomic information. Furthermore, standardization of genomic data is also necessary for the efficient exchange of patients’ genomes between hospitals.

Keywords

Next-generation sequencing Personal genomics Clinical sequencing 

References

  1. 1.
    Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17(6):333–51.  https://doi.org/10.1038/nrg.2016.49.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Krueger F, Kreck B, Franke A, Andrews SR. DNA methylome analysis using short bisulfite sequencing data. Nat Methods. 2012;9(2):145–51.  https://doi.org/10.1038/nmeth.1828.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Zentner GE, Henikoff S. High-resolution digital profiling of the epigenome. Nat Rev Genet. 2014;15(12):814–27.  https://doi.org/10.1038/nrg3798.CrossRefPubMedGoogle Scholar
  4. 4.
    Furey TS. ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat Rev Genet. 2012;13(12):840–52.  https://doi.org/10.1038/nrg3306.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gu H, Smith ZD, Bock C, Boyle P, Gnirke A, Meissner A. Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat Protoc. 2011;6(4):468–81.  https://doi.org/10.1038/nprot.2010.190.CrossRefPubMedGoogle Scholar
  6. 6.
    Jin W, Tang Q, Wan M, Cui K, Zhang Y, Ren G, et al. Genome-wide detection of DNase I hypersensitive sites in single cells and FFPE tissue samples. Nature. 2015;528(7580):142–6.  https://doi.org/10.1038/nature15740. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Cejas P, Li L, O'Neill NK, Duarte M, Rao P, Bowden M, et al. Chromatin immunoprecipitation from fixed clinical tissues reveals tumor-specific enhancer profiles. Nat Med. 2016;22(6):685–91.  https://doi.org/10.1038/nm.4085.CrossRefPubMedGoogle Scholar
  8. 8.
    Consortium F, the RP, ClST, Forrest AR, Kawaji H, Rehli M, et al. A promoter-level mammalian expression atlas. Nature. 2014;507(7493):462–70.  https://doi.org/10.1038/nature13182. CrossRefGoogle Scholar
  9. 9.
    Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, et al. An atlas of active enhancers across human cell types and tissues. Nature. 2014;507(7493):455–61.  https://doi.org/10.1038/nature12787.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Schmitt AD, Hu M, Ren B. Genome-wide mapping and analysis of chromosome architecture. Nat Rev Mol Cell Biol. 2016;17(12):743–55.  https://doi.org/10.1038/nrm.2016.104.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Beagrie RA, Scialdone A, Schueler M, Kraemer DC, Chotalia M, Xie SQ, et al. Complex multi-enhancer contacts captured by genome architecture mapping. Nature. 2017;543(7646):519–24.  https://doi.org/10.1038/nature21411.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Prakadan SM, Shalek AK, Weitz DA. Scaling by shrinking: empowering single-cell 'omics' with microfluidic devices. Nat Rev Genet. 2017;18(6):345–61.  https://doi.org/10.1038/nrg.2017.15.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Gawad C, Koh W, Quake SR. Single-cell genome sequencing: current state of the science. Nat Rev Genet. 2016;17(3):175–88.  https://doi.org/10.1038/nrg.2015.16.CrossRefPubMedGoogle Scholar
  14. 14.
    Clark SJ, Lee HJ, Smallwood SA, Kelsey G, Reik W. Single-cell epigenomics: powerful new methods for understanding gene regulation and cell identity. Genome Biol. 2016;17:72.  https://doi.org/10.1186/s13059-016-0944-x.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M, et al. Comparative analysis of single-cell RNA sequencing methods. Mol Cell. 2017;65(4):631–43. e4.  https://doi.org/10.1016/j.molcel.2017.01.023.CrossRefPubMedGoogle Scholar
  16. 16.
    Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, et al. The NHGRI GWAS catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 2014;42(Database issue):D1001–6.  https://doi.org/10.1093/nar/gkt1229.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Li MJ, Wang P, Liu X, Lim EL, Wang Z, Yeager M, et al. GWASdb: a database for human genetic variants identified by genome-wide association studies. Nucleic Acids Res. 2012;40(Database issue):D1047–54.  https://doi.org/10.1093/nar/gkr1182.CrossRefPubMedGoogle Scholar
  18. 18.
    Landrum MJ, Lee JM, Benson M, Brown G, Chao C, Chitipiralla S, et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 2016;44(D1):D862–8.  https://doi.org/10.1093/nar/gkv1222.CrossRefPubMedGoogle Scholar
  19. 19.
    Grossman RL, Heath AP, Ferretti V, Varmus HE, Lowy DR, Kibbe WA, et al. Toward a shared vision for cancer genomic data. N Engl J Med. 2016;375(12):1109–12.  https://doi.org/10.1056/NEJMp1607591.CrossRefPubMedGoogle Scholar
  20. 20.
    Forbes SA, Beare D, Bindal N, Bamford S, Ward S, Cole CG, et al. COSMIC: high-resolution cancer genetics using the catalogue of somatic mutations in cancer. Curr Protoc Hum Genet. 2016;91:10 1 1–1 37.  https://doi.org/10.1002/cphg.21.CrossRefGoogle Scholar
  21. 21.
    Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483(7391):603–7.  https://doi.org/10.1038/nature11003.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Genomes Project C, Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, et al. A map of human genome variation from population-scale sequencing. Nature. 2010;467(7319):1061–73.  https://doi.org/10.1038/nature09534.CrossRefGoogle Scholar
  23. 23.
    Gudbjartsson DF, Helgason H, Gudjonsson SA, Zink F, Oddson A, Gylfason A, et al. Large-scale whole-genome sequencing of the Icelandic population. Nat Genet. 2015;47(5):435–44.  https://doi.org/10.1038/ng.3247.CrossRefPubMedGoogle Scholar
  24. 24.
    Bujold D, Morais DA, Gauthier C, Cote C, Caron M, Kwan T, et al. The international human Epigenome consortium data portal. Cell Syst. 2016;3(5):496–9. e2.  https://doi.org/10.1016/j.cels.2016.10.019.CrossRefPubMedGoogle Scholar
  25. 25.
    Fernandez JM, de la Torre V, Richardson D, Royo R, Puiggros M, Moncunill V, et al. The BLUEPRINT data analysis portal. Cell Syst. 2016;3(5):491–5. e5.  https://doi.org/10.1016/j.cels.2016.10.021.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Roadmap Epigenomics C, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, et al. Integrative analysis of 111 reference human epigenomes. Nature 2015;518(7539):317–330. doi: https://doi.org/10.1038/nature14248.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hon CC, Ramilowski JA, Harshbarger J, Bertin N, Rackham OJ, Gough J, et al. An atlas of human long non-coding RNAs with accurate 5′ ends. Nature. 2017;543(7644):199–204.  https://doi.org/10.1038/nature21374.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Stoller JK, Aboussouan LS. Alpha1-antitrypsin deficiency. Lancet. 2005;365(9478):2225–36.  https://doi.org/10.1016/S0140-6736(05)66781-5.CrossRefPubMedGoogle Scholar
  29. 29.
    Cheng SL, Yu CJ, Chen CJ, Yang PC. Genetic polymorphism of epoxide hydrolase and glutathione S-transferase in COPD. Eur Respir J. 2004;23(6):818–24.CrossRefPubMedGoogle Scholar
  30. 30.
    Smith CA, Harrison DJ. Association between polymorphism in gene for microsomal epoxide hydrolase and susceptibility to emphysema. Lancet. 1997;350(9078):630–3.  https://doi.org/10.1016/S0140-6736(96)08061-0.CrossRefPubMedGoogle Scholar
  31. 31.
    Hung RJ, McKay JD, Gaborieau V, Boffetta P, Hashibe M, Zaridze D, et al. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature. 2008;452(7187):633–7.  https://doi.org/10.1038/nature06885.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Pillai SG, Ge D, Zhu G, Kong X, Shianna KV, Need AC, et al. A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci. PLoS Genet. 2009;5(3):e1000421.  https://doi.org/10.1371/journal.pgen.1000421.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hobbs BD, de Jong K, Lamontagne M, Bosse Y, Shrine N, Artigas MS, et al. Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis. Nat Genet. 2017;49(3):426–32.  https://doi.org/10.1038/ng.3752.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Bell DW, Gore I, Okimoto RA, Godin-Heymann N, Sordella R, Mulloy R, et al. Inherited susceptibility to lung cancer may be associated with the T790M drug resistance mutation in EGFR. Nat Genet. 2005;37(12):1315–6.  https://doi.org/10.1038/ng1671.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Shiraishi K, Kunitoh H, Daigo Y, Takahashi A, Goto K, Sakamoto H, et al. A genome-wide association study identifies two new susceptibility loci for lung adenocarcinoma in the Japanese population. Nat Genet. 2012;44(8):900–3.  https://doi.org/10.1038/ng.2353.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ober C, Yao TC. The genetics of asthma and allergic disease: a 21st century perspective. Immunol Rev. 2011;242(1):10–30.  https://doi.org/10.1111/j.1600-065X.2011.01029.x.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Torgerson DG, Ampleford EJ, Chiu GY, Gauderman WJ, Gignoux CR, Graves PE, et al. Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations. Nat Genet. 2011;43(9):887–92.  https://doi.org/10.1038/ng.888.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hirota T, Takahashi A, Kubo M, Tsunoda T, Tomita K, Doi S, et al. Genome-wide association study identifies three new susceptibility loci for adult asthma in the Japanese population. Nat Genet. 2011;43(9):893–6.  https://doi.org/10.1038/ng.887. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ferreira MA, Matheson MC, Tang CS, Granell R, Ang W, Hui J, et al. Genome-wide association analysis identifies 11 risk variants associated with the asthma with hay fever phenotype. J Allergy Clin Immunol. 2014;133(6):1564–71.  https://doi.org/10.1016/j.jaci.2013.10.030.CrossRefPubMedGoogle Scholar
  40. 40.
    Wang Y, Kuan PJ, Xing C, Cronkhite JT, Torres F, Rosenblatt RL, et al. Genetic defects in surfactant protein A2 are associated with pulmonary fibrosis and lung cancer. Am J Hum Genet. 2009;84(1):52–9.  https://doi.org/10.1016/j.ajhg.2008.11.010.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Nogee LM, Dunbar AE 3rd, Wert SE, Askin F, Hamvas A, Whitsett JA. A mutation in the surfactant protein C gene associated with familial interstitial lung disease. N Engl J Med. 2001;344(8):573–9.  https://doi.org/10.1056/NEJM200102223440805.CrossRefPubMedGoogle Scholar
  42. 42.
    Armanios MY, Chen JJ, Cogan JD, Alder JK, Ingersoll RG, Markin C, et al. Telomerase mutations in families with idiopathic pulmonary fibrosis. N Engl J Med. 2007;356(13):1317–26.  https://doi.org/10.1056/NEJMoa066157.CrossRefPubMedGoogle Scholar
  43. 43.
    Kropski JA, Lawson WE, Young LR, Blackwell TS. Genetic studies provide clues on the pathogenesis of idiopathic pulmonary fibrosis. Dis Model Mech. 2013;6(1):9–17.  https://doi.org/10.1242/dmm.010736.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Noth I, Zhang Y, Ma SF, Flores C, Barber M, Huang Y, et al. Genetic variants associated with idiopathic pulmonary fibrosis susceptibility and mortality: a genome-wide association study. Lancet Respir Med. 2013;1(4):309–17.  https://doi.org/10.1016/S2213-2600(13)70045-6.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Mushiroda T, Wattanapokayakit S, Takahashi A, Nukiwa T, Kudoh S, Ogura T, et al. A genome-wide association study identifies an association of a common variant in TERT with susceptibility to idiopathic pulmonary fibrosis. J Med Genet. 2008;45(10):654–6.  https://doi.org/10.1136/jmg.2008.057356.CrossRefPubMedGoogle Scholar
  46. 46.
    Govindan R, Ding L, Griffith M, Subramanian J, Dees ND, Kanchi KL, et al. Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell. 2012;150(6):1121–34.  https://doi.org/10.1016/j.cell.2012.08.024.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    George J, Lim JS, Jang SJ, Cun Y, Ozretic L, Kong G, et al. Comprehensive genomic profiles of small cell lung cancer. Nature. 2015;524(7563):47–53.  https://doi.org/10.1038/nature14664.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448(7153):561–6.  https://doi.org/10.1038/nature05945.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Awad MM, Shaw ATALK. Inhibitors in non-small cell lung cancer: crizotinib and beyond. Clin Adv Hematol Oncol. 2014;12(7):429–39.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Fernandez-Cuesta L, Sun R, Menon R, George J, Lorenz S, Meza-Zepeda LA, et al. Identification of novel fusion genes in lung cancer using breakpoint assembly of transcriptome sequencing data. Genome Biol. 2015;16:7.  https://doi.org/10.1186/s13059-014-0558-0.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Kumar S, Vo AD, Qin F, Li H. Comparative assessment of methods for the fusion transcripts detection from RNA-Seq data. Sci Rep. 2016;6:21597.  https://doi.org/10.1038/srep21597.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Takamochi K, Ohmiya H, Itoh M, Mogushi K, Saito T, Hara K, et al. Novel biomarkers that assist in accurate discrimination of squamous cell carcinoma from adenocarcinoma of the lung. BMC Cancer. 2016;16(1):760.  https://doi.org/10.1186/s12885-016-2792-1. CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Bowser MJ, Duffy-Hynes E, Mahanta LM, Rehm HL, Raby BA, Funke BH. Integrating genetics into subspecialty care: The PulmoGene Test - comprehensive testing for hereditary causes of lung disease. Immunologic and genetic biomarkers of inflammatory lung disease American Thoracic Society International Conference, 16–21 May 2014, San Diego, CA, USA, A2175.Google Scholar
  54. 54.
    McCarty CA, Chisholm RL, Chute CG, Kullo IJ, Jarvik GP, Larson EB, et al. The eMERGE network: a consortium of biorepositories linked to electronic medical records data for conducting genomic studies. BMC Med Genet. 2011;4:13.  https://doi.org/10.1186/1755-8794-4-13.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Kaoru Mogushi
    • 1
    • 2
  • Yasuhiro Murakawa
    • 3
    • 4
  • Hideya Kawaji
    • 2
    • 3
  1. 1.Intractable Disease Research CenterJuntendo University Graduate School of MedicineTokyoJapan
  2. 2.Preventive Medicine and Applied Genomics UnitRIKEN Center for Integrative Medical SciencesYokohamaJapan
  3. 3.RIKEN Preventive Medicine and Diagnosis Innovation ProgramYokohamaJapan
  4. 4.RIKEN-HMC Clinical Omics UnitRiken Baton Zone ProgramYokohamaJapan

Personalised recommendations