Advertisement

Mycobacterial Infection: TB and NTM—What Are the Roles of Genetic Factors in the Pathogenesis of Mycobacterial Infection?

Chapter
Part of the Respiratory Disease Series: Diagnostic Tools and Disease Managements book series (RDSDTDM)

Abstract

Human lung infections due to Mycobacterium tuberculosis have had a major impact on society. Nontuberculous mycobacterial infections have recently increased especially in developed countries and now being more prevalent than tuberculosis. Severe mycobacterial disease is mostly confined to patients who are immunocompromised either by acquired or inherited causes. Genetic aberrations in pathways critical for host defense against mycobacteria—which involve functional interleukin 12/interferon γ and the integrity of macrophages that modulate T lymphocytes—can lead to disseminated and fatal mycobacterial disease ranging from early-onset systemic infection to adult-onset localized disease, with clinical outcome dependent on the extent to which host genes are depleted and the pattern of inheritance. In addition, polymorphisms in genes encoding receptors and cytokines involved in innate immunity and host defense against mycobacteria are linked to mycobacterial disease susceptibility. The elucidation of genetic factors underlying mycobacterial disease can reveal the contribution of specific genes to immunological processes essential for the pathogenesis and control of mycobacterial infections in humans.

Keywords

Mycobacteria Tuberculosis Gene MSMD Polymorphism 

References

  1. 1.
    Dye C. Global epidemiology of tuberculosis. Lancet. 2006;367(9514):938–40.CrossRefGoogle Scholar
  2. 2.
    Namkoong H, et al. Epidemiology of pulmonary nontuberculous mycobacterial disease, Japan(1). Emerg Infect Dis. 2016;22(6):1116–7.CrossRefGoogle Scholar
  3. 3.
    Vinnard C, et al. Deaths related to nontuberculous mycobacterial infections in the United States, 1999–2014. Ann Am Thorac Soc. 2016;13(11):1951–5.CrossRefGoogle Scholar
  4. 4.
    Jouanguy E, et al. Interferon-gamma-receptor deficiency in an infant with fatal bacille Calmette-Guerin infection. N Engl J Med. 1996;335(26):1956–61.CrossRefGoogle Scholar
  5. 5.
    Newport MJ, et al. A mutation in the interferon-gamma-receptor gene and susceptibility to mycobacterial infection. N Engl J Med. 1996;335(26):1941–9.CrossRefGoogle Scholar
  6. 6.
    Dorman SE, et al. Clinical features of dominant and recessive interferon gamma receptor 1 deficiencies. Lancet. 2004;364(9451):2113–21.CrossRefGoogle Scholar
  7. 7.
    Marazzi MG, et al. Disseminated Mycobacterium scrofulaceum infection in a child with interferon-gamma receptor 1 deficiency. Int J Infect Dis. 2010;14(2):e167–70.CrossRefGoogle Scholar
  8. 8.
    Pierre-Audigier C, et al. Fatal disseminated Mycobacterium smegmatis infection in a child with inherited interferon gamma receptor deficiency. Clin Infect Dis. 1997;24(5):982–4.CrossRefGoogle Scholar
  9. 9.
    Koscielniak E, et al. Disseminated Mycobacterium peregrinum infection in a child with complete interferon-gamma receptor-1 deficiency. Pediatr Infect Dis J. 2003;22(4):378–80.PubMedGoogle Scholar
  10. 10.
    de Vor IC, et al. Deletion of the entire interferon-gamma receptor 1 gene causing complete deficiency in three related patients. J Clin Immunol. 2016;36(3):195–203.CrossRefGoogle Scholar
  11. 11.
    Bustamante J, et al. Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-gamma immunity. Semin Immunol. 2014;26(6):454–70.CrossRefGoogle Scholar
  12. 12.
    Dorman SE, et al. Viral infections in interferon-gamma receptor deficiency. J Pediatr. 1999;135(5):640–3.CrossRefGoogle Scholar
  13. 13.
    Wu UI, Holland SM. Host susceptibility to non-tuberculous mycobacterial infections. Lancet Infect Dis. 2015;15(8):968–80.CrossRefGoogle Scholar
  14. 14.
    Roesler J, et al. Listeria monocytogenes and recurrent mycobacterial infections in a child with complete interferon-gamma-receptor (IFNgammaR1) deficiency: mutational analysis and evaluation of therapeutic options. Exp Hematol. 1999;27(9):1368–74.CrossRefGoogle Scholar
  15. 15.
    Jouanguy E, et al. In a novel form of IFN-gamma receptor 1 deficiency, cell surface receptors fail to bind IFN-gamma. J Clin Invest. 2000;105(10):1429–36.CrossRefGoogle Scholar
  16. 16.
    Roesler J, et al. Hematopoietic stem cell transplantation for complete IFN-gamma receptor 1 deficiency: a multi-institutional survey. J Pediatr. 2004;145(6):806–12.CrossRefGoogle Scholar
  17. 17.
    Chantrain CF, et al. Successful hematopoietic stem cell transplantation in a child with active disseminated Mycobacterium fortuitum infection and interferon-gamma receptor 1 deficiency. Bone Marrow Transplant. 2006;38(1):75–6.CrossRefGoogle Scholar
  18. 18.
    Reuter U, et al. Correction of complete interferon-gamma receptor 1 deficiency by bone marrow transplantation. Blood. 2002;100(12):4234–5.CrossRefGoogle Scholar
  19. 19.
    Martinez-Barricarte R, et al. Mycobacterium simiae infection in two unrelated patients with different forms of inherited IFN-gammaR2 deficiency. J Clin Immunol. 2014;34(8):904–9.CrossRefGoogle Scholar
  20. 20.
    Sologuren I, et al. Partial recessive IFN-gammaR1 deficiency: genetic, immunological and clinical features of 14 patients from 11 kindreds. Hum Mol Genet. 2011;20(8):1509–23.CrossRefGoogle Scholar
  21. 21.
    Vinh DC, et al. Refractory disseminated coccidioidomycosis and mycobacteriosis in interferon-gamma receptor 1 deficiency. Clin Infect Dis. 2009;49(6):e62–5.CrossRefGoogle Scholar
  22. 22.
    Zerbe CS, Holland SM. Disseminated histoplasmosis in persons with interferon-gamma receptor 1 deficiency. Clin Infect Dis. 2005;41(4):e38–41.CrossRefGoogle Scholar
  23. 23.
    Roesler J, et al. Meningoencephalitis caused by varicella-zoster virus reactivation in a child with dominant partial interferon-gamma receptor-1 deficiency. Pediatr Infect Dis J. 2011;30(3):265–6.CrossRefGoogle Scholar
  24. 24.
    de Beaucoudrey L, et al. Revisiting human IL-12Rbeta1 deficiency: a survey of 141 patients from 30 countries. Medicine (Baltimore). 2010;89(6):381–402.CrossRefGoogle Scholar
  25. 25.
    Tabarsi P, et al. Lethal tuberculosis in a previously healthy adult with IL-12 receptor deficiency. J Clin Immunol. 2011;31(4):537–9.CrossRefGoogle Scholar
  26. 26.
    Ouederni M, et al. Clinical features of Candidiasis in patients with inherited interleukin 12 receptor beta1 deficiency. Clin Infect Dis. 2014;58(2):204–13.CrossRefGoogle Scholar
  27. 27.
    Alangari AA, et al. Treatment of disseminated mycobacterial infection with high-dose IFN-gamma in a patient with IL-12Rbeta1 deficiency. Clin Dev Immunol. 2011;2011:691956.CrossRefGoogle Scholar
  28. 28.
    Holland SM. Immunotherapy of mycobacterial infections. Semin Respir Infect. 2001;16(1):47–59.CrossRefGoogle Scholar
  29. 29.
    Altare F, et al. Inherited interleukin 12 deficiency in a child with bacille Calmette-Guerin and Salmonella enteritidis disseminated infection. J Clin Invest. 1998;102(12):2035–40.CrossRefGoogle Scholar
  30. 30.
    Prando C, et al. Inherited IL-12p40 deficiency: genetic, immunologic, and clinical features of 49 patients from 30 kindreds. Medicine (Baltimore). 2013;92(2):109–22.CrossRefGoogle Scholar
  31. 31.
    MacLennan C, et al. Interleukin (IL)-12 and IL-23 are key cytokines for immunity against Salmonella in humans. J Infect Dis. 2004;190(10):1755–7.CrossRefGoogle Scholar
  32. 32.
    Liu L, et al. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med. 2011;208(8):1635–48.CrossRefGoogle Scholar
  33. 33.
    Kumar N, et al. Gain-of-function signal transducer and activator of transcription 1 (STAT1) mutation-related primary immunodeficiency is associated with disseminated mucormycosis. J Allergy Clin Immunol. 2014;134(1):236–9.CrossRefGoogle Scholar
  34. 34.
    Dupuis S, et al. Impaired response to interferon-alpha/beta and lethal viral disease in human STAT1 deficiency. Nat Genet. 2003;33(3):388–91.CrossRefGoogle Scholar
  35. 35.
    Chapgier A, et al. A partial form of recessive STAT1 deficiency in humans. J Clin Invest. 2009;119(6):1502–14.CrossRefGoogle Scholar
  36. 36.
    Dupuis S, et al. Impairment of mycobacterial but not viral immunity by a germline human STAT1 mutation. Science. 2001;293(5528):300–3.CrossRefGoogle Scholar
  37. 37.
    Uzel G, et al. Dominant gain-of-function STAT1 mutations in FOXP3 wild-type immune dysregulation-polyendocrinopathy-enteropathy-X-linked-like syndrome. J Allergy Clin Immunol. 2013;131(6):1611–23.CrossRefGoogle Scholar
  38. 38.
    Salem S, Gros P. Genetic determinants of susceptibility to Mycobacterial infections: IRF8, a new kid on the block. Adv Exp Med Biol. 2013;783:45–80.CrossRefGoogle Scholar
  39. 39.
    Hambleton S, et al. IRF8 mutations and human dendritic-cell immunodeficiency. N Engl J Med. 2011;365(2):127–38.CrossRefGoogle Scholar
  40. 40.
    Fan JB, Zhang DE. ISG15 regulates IFN-gamma immunity in human mycobacterial disease. Cell Res. 2013;23(2):173–5.CrossRefGoogle Scholar
  41. 41.
    Zhang X, et al. Human intracellular ISG15 prevents interferon-alpha/beta over-amplification and auto-inflammation. Nature. 2015;517(7532):89–93.CrossRefGoogle Scholar
  42. 42.
    Salt BH, et al. IKBKG (nuclear factor-kappa B essential modulator) mutation can be associated with opportunistic infection without impairing Toll-like receptor function. J Allergy Clin Immunol. 2008;121(4):976–82.CrossRefGoogle Scholar
  43. 43.
    Filipe-Santos O, et al. Inborn errors of IL-12/23- and IFN-gamma-mediated immunity: molecular, cellular, and clinical features. Semin Immunol. 2006;18(6):347–61.CrossRefGoogle Scholar
  44. 44.
    Courtois G. The NF-kappaB signaling pathway in human genetic diseases. Cell Mol Life Sci. 2005;62(15):1682–91.CrossRefGoogle Scholar
  45. 45.
    Doffinger R, et al. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet. 2001;27(3):277–85.CrossRefGoogle Scholar
  46. 46.
    Bustamante J, et al. Germline CYBB mutations that selectively affect macrophages in kindreds with X-linked predisposition to tuberculous mycobacterial disease. Nat Immunol. 2011;12(3):213–21.CrossRefGoogle Scholar
  47. 47.
    Haverkamp MH, van de Vosse E, van Dissel JT. Nontuberculous mycobacterial infections in children with inborn errors of the immune system. J Infect. 2014;68(Suppl 1):S134–50.CrossRefGoogle Scholar
  48. 48.
    Hsu AP, et al. Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome. Blood. 2011;118(10):2653–5.CrossRefGoogle Scholar
  49. 49.
    Spinner MA, et al. GATA2 deficiency: a protean disorder of hematopoiesis, lymphatics, and immunity. Blood. 2013;123(6):809–21.CrossRefGoogle Scholar
  50. 50.
    Cuellar-Rodriguez J, et al. Successful allogeneic hematopoietic stem cell transplantation for GATA2 deficiency. Blood. 2011;118(13):3715–20.CrossRefGoogle Scholar
  51. 51.
    Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11(5):373–84.CrossRefGoogle Scholar
  52. 52.
    Jo EK. Mycobacterial interaction with innate receptors: TLRs, C-type lectins, and NLRs. Curr Opin Infect Dis. 2008;21(3):279–86.CrossRefGoogle Scholar
  53. 53.
    Azad AK, Sadee W, Schlesinger LS. Innate immune gene polymorphisms in tuberculosis. Infect Immun. 2012;80(10):3343–59.CrossRefGoogle Scholar
  54. 54.
    Quesniaux VJ, et al. Toll-like receptor 2 (TLR2)-dependent-positive and TLR2-independent-negative regulation of proinflammatory cytokines by mycobacterial lipomannans. J Immunol. 2004;172(7):4425–34.CrossRefGoogle Scholar
  55. 55.
    Ben-Ali M, et al. Toll-like receptor 2 Arg677Trp polymorphism is associated with susceptibility to tuberculosis in Tunisian patients. Clin Diagn Lab Immunol. 2004;11(3):625–6.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Dalgic N, et al. Arg753Gln polymorphism of the human Toll-like receptor 2 gene from infection to disease in pediatric tuberculosis. Hum Immunol. 2011;72(5):440–5.CrossRefGoogle Scholar
  57. 57.
    Thuong NT, et al. A polymorphism in human TLR2 is associated with increased susceptibility to tuberculous meningitis. Genes Immun. 2007;8(5):422–8.CrossRefGoogle Scholar
  58. 58.
    Ferwerda B, et al. The toll-like receptor 4 Asp299Gly variant and tuberculosis susceptibility in HIV-infected patients in Tanzania. AIDS. 2007;21(10):1375–7.CrossRefGoogle Scholar
  59. 59.
    Pulido I, et al. The TLR4 ASP299GLY polymorphism is a risk factor for active tuberculosis in Caucasian HIV-infected patients. Curr HIV Res. 2010;8(3):253–8.CrossRefGoogle Scholar
  60. 60.
    Velez DR, et al. Variants in toll-like receptors 2 and 9 influence susceptibility to pulmonary tuberculosis in Caucasians, African-Americans, and West Africans. Hum Genet. 2010;127(1):65–73.CrossRefGoogle Scholar
  61. 61.
    Davila S, et al. Genetic association and expression studies indicate a role of toll-like receptor 8 in pulmonary tuberculosis. PLoS Genet. 2008;4(10):e1000218.CrossRefGoogle Scholar
  62. 62.
    Sun Q, et al. Toll-like receptor polymorphisms and tuberculosis susceptibility: a comprehensive meta-analysis. J Huazhong Univ Sci Technolog Med Sci. 2015;35(2):157–68.CrossRefGoogle Scholar
  63. 63.
    Hawn TR, et al. A polymorphism in Toll-interleukin 1 receptor domain containing adaptor protein is associated with susceptibility to meningeal tuberculosis. J Infect Dis. 2006;194(8):1127–34.CrossRefGoogle Scholar
  64. 64.
    Fol M, et al. Immune response gene polymorphisms in tuberculosis. Acta Biochim Pol. 2015;62(4):633–40.CrossRefGoogle Scholar
  65. 65.
    Lee HK, et al. Double-stranded RNA-mediated TLR3 activation is enhanced by CD14. Immunity. 2006;24(2):153–63.CrossRefGoogle Scholar
  66. 66.
    Yuan Q, et al. The association between C-159T polymorphism in CD14 gene and susceptibility to tuberculosis: a meta-analysis. Mol Biol Rep. 2014;41(11):7623–9.CrossRefGoogle Scholar
  67. 67.
    Takahashi K, Ezekowitz RA. The role of the mannose-binding lectin in innate immunity. Clin Infect Dis. 2005;41(Suppl 7):S440–4.CrossRefGoogle Scholar
  68. 68.
    Yim JJ, Selvaraj P. Genetic susceptibility in tuberculosis. Respirology. 2010;15(2):241–56.CrossRefGoogle Scholar
  69. 69.
    Haataja R, Hallman M. Surfactant proteins as genetic determinants of multifactorial pulmonary diseases. Ann Med. 2002;34(5):324–33.CrossRefGoogle Scholar
  70. 70.
    Floros J, et al. Surfactant protein genetic marker alleles identify a subgroup of tuberculosis in a Mexican population. J Infect Dis. 2000;182(5):1473–8.CrossRefGoogle Scholar
  71. 71.
    Boily-Larouche G, et al. DC-SIGN and DC-SIGNR genetic diversity among different ethnic populations: potential implications for pathogen recognition and disease susceptibility. Hum Immunol. 2007;68(6):523–30.CrossRefGoogle Scholar
  72. 72.
    Zhang X, et al. The novel human MRC1 gene polymorphisms are associated with susceptibility to pulmonary tuberculosis in Chinese Uygur and Kazak populations. Mol Biol Rep. 2013;40(8):5073–83.CrossRefGoogle Scholar
  73. 73.
    Alter A, et al. Genetic and functional analysis of common MRC1 exon 7 polymorphisms in leprosy susceptibility. Hum Genet. 2010;127(3):337–48.CrossRefGoogle Scholar
  74. 74.
    Cooke GS, et al. Polymorphism within the interferon-gamma/receptor complex is associated with pulmonary tuberculosis. Am J Respir Crit Care Med. 2006;174(3):339–43.CrossRefGoogle Scholar
  75. 75.
    Shibasaki M, et al. An influence of Interferon-gamma gene polymorphisms on treatment response to tuberculosis in Japanese population. J Infect. 2009;58(6):467–9.CrossRefGoogle Scholar
  76. 76.
    Moller M, et al. A functional haplotype in the 3′untranslated region of TNFRSF1B is associated with tuberculosis in two African populations. Am J Respir Crit Care Med. 2010;181(4):388–93.CrossRefGoogle Scholar
  77. 77.
    Akahoshi M, et al. Influence of interleukin-12 receptor beta1 polymorphisms on tuberculosis. Hum Genet. 2003;112(3):237–43.PubMedGoogle Scholar
  78. 78.
    Liu G, et al. Association between IL12B polymorphisms and tuberculosis risk: a meta-analysis. Infect Genet Evol. 2013;21:401–7.CrossRefGoogle Scholar
  79. 79.
    Ganachari M, et al. Host gene-encoded severe lung TB: from genes to the potential pathways. Genes Immun. 2012;13(8):605–20.CrossRefGoogle Scholar
  80. 80.
    Sun YP, Cai QS. Vitamin D receptor FokI gene polymorphism and tuberculosis susceptibility: a meta-analysis. Genet Mol Res. 2015;14(2):6156–63.CrossRefGoogle Scholar
  81. 81.
    Bellamy R, et al. Tuberculosis and chronic hepatitis B virus infection in Africans and variation in the vitamin D receptor gene. J Infect Dis. 1999;179(3):721–4.CrossRefGoogle Scholar
  82. 82.
    Bornman L, et al. Vitamin D receptor polymorphisms and susceptibility to tuberculosis in West Africa: a case-control and family study. J Infect Dis. 2004;190(9):1631–41.CrossRefGoogle Scholar
  83. 83.
    Tong X, et al. Polymorphisms in HLA-DRB1 gene and the risk of tuberculosis: a meta-analysis of 31 studies. Lung. 2015;193(2):309–18.CrossRefGoogle Scholar
  84. 84.
    Goldfeld AE, et al. Association of an HLA-DQ allele with clinical tuberculosis. JAMA. 1998;279(3):226–8.CrossRefGoogle Scholar
  85. 85.
    Goldfeld AE. Genetic susceptibility to pulmonary tuberculosis in Cambodia. Tuberculosis (Edinb). 2004;84(1–2):76–81.CrossRefGoogle Scholar
  86. 86.
    Bothamley GH, et al. Association of tuberculosis and M. tuberculosis-specific antibody levels with HLA. J Infect Dis. 1989;159(3):549–55.CrossRefGoogle Scholar
  87. 87.
    Kettaneh A, et al. Human leukocyte antigens and susceptibility to tuberculosis: a meta-analysis of case-control studies. Int J Tuberc Lung Dis. 2006;10(7):717–25.PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Respiratory MedicineNagasaki University HospitalNagasakiJapan

Personalised recommendations