Skip to main content

Multiscale Simulation of Bioreactor Design and In Vitro Conditions

  • Chapter
  • First Online:
Multiscale Mechanobiology in Tissue Engineering

Part of the book series: Frontiers of Biomechanics ((FB,volume 3))

  • 767 Accesses

Abstract

Tissue grafts obtained from tissue engineering techniques can be developed with the application of cells in a scaffold within a bioreactor. In this chapter we present a multiscale method to simulate a bioreactor design that can adapt to the personalized tissue sought. It includes personalization of the bioreactor design but also personalization of the in vitro conditions. As the research area is going further and the computational possibilities as well, tools must be developed to design patient’s cell-specific pair of scaffold and bioreactor, as a virtual physiological human cell tool.

Thanks to a parametric geometry and a computational fluid dynamics model, we are able to design bioreactor chambers relying on the nearest boundary conditions in the bones to apply it to the bone substitute where cells have been seeded. First of all, considering an existing bioreactor chamber, we can design an optimized scaffold knowing the boundary conditions that the bioreactor chamber will impose. On the other hand, knowing the scaffold geometry used, a bioreactor chamber will be designed to reach appropriate environmental conditions at the cell scale.

It allowed testing two different bioreactor geometries showing no major interest within the simulation, but regarding the experimental process, the bubble traps presence is compulsory to avoid cell death. On the other hand, two scaffold geometries were tested highlighting a major difference regarding the local fluid flow within the scaffold pores and therefore on the cell development. Moreover, experimental analyses are required to correctly compare the simulation and improve the strength of the optimization process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Baldit A, Campos A, Brunelli M, Perrault C, Lacroix D (2014) Multi-scale modeling in tissue engineering: a virtual physiological approach. Proceeding virtual physiological human conference

    Google Scholar 

  • Barreto S, Clausen CH, Perrault CM, Fletcher DA, Lacroix D (2013) A multi-structural single cell model of force-induced interactions of cytoskeletal components. Biomaterials 26:6119–6126

    Article  Google Scholar 

  • Beebe DJ, Mensing GA, Walker GM (2002) Physics and applications of microfluidics in biology. Annu Rev Biomed Eng 4:261–286

    Article  Google Scholar 

  • Campos MA, Lacroix D (2015) The inter-sample structural variability of regular tissue-engineered scaffolds significantly affects the micromechanical local cell environment. Interface Focus 5(2):20140097–20140097

    Article  Google Scholar 

  • Chabiniok R, Wang VY, Hadjicharalambous M, Asner L, Lee J, Sermesant M, Kuhl E, Young AA, Moireau P, Nash MP, Chapelle D, Nordsletten DA (2016) Multiphysics and multiscale modelling, data–model fusion and integration of organ physiology in the clinic: ventricular cardiac mechanics. Interface Focus 6(2)

    Article  Google Scholar 

  • Geuzaine C, Remacle J-F (2009) Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Methods Eng 79(11):1309–1331

    Article  Google Scholar 

  • Kausar H, Kishore RN (2013) Bone tissue engineering. Int J Pharm Pharm Sci 75:118

    Google Scholar 

  • Khayyeri H, Barreto S, Lacroix D (2015) Primary cilia mechanics affects cell mechanosensation: a computational study. J Theor Biol 379:38–46

    Article  Google Scholar 

  • Tanaka SM (1999) A new mechanical stimulator for cultured bone cells using piezoelectric actuator. J Biomech 32(4):427–430

    Article  Google Scholar 

  • Thorpe SD, Nagel T, Carroll SF, Kelly DJ (2013) Modulating gradients in regulatory signals within mesenchymal stem cell seeded hydrogels: a novel strategy to engineer zonal articular cartilage. PLoS One 8(4):e60764

    Article  Google Scholar 

  • Yu H-S, Kim J-J, Kim H-W, Lewis MP, Wall I (2016) Impact of mechanical stretch on the cell behaviors of bone and surrounding tissues. J Tissue Eng 7:1

    Article  Google Scholar 

  • Zhang Z-Y, Teoh SH, Teo EY, Chong MSK, Shin CW, Tien FT, Choolani M a, Chan JKY (2010) A comparison of bioreactors for culture of fetal mesenchymal stem cells for bone tissue engineering. Biomaterials 31(33):8684–8695

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien Lacroix .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baldit, A., Brunelli, M., Campos Marin, A., Lacroix, D. (2019). Multiscale Simulation of Bioreactor Design and In Vitro Conditions. In: Multiscale Mechanobiology in Tissue Engineering. Frontiers of Biomechanics, vol 3. Springer, Singapore. https://doi.org/10.1007/978-981-10-8075-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8075-3_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8074-6

  • Online ISBN: 978-981-10-8075-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics