Advertisement

Fabrication of Nanodevices Using Nanoparticles Synthesized in Cage-Shaped Proteins

  • Ichiro Yamashita
Chapter

Abstract

Fabrication of nanostructures by biomolecules, termed the “bio nano process (BNP),” has been proposed, and the process utilizes the biotemplated biomineralization of inorganic materials and self-assembly. NP synthesis by genetically modified cage-shaped proteins, ferritin, and DNA-binding protein from starved cells, Dps, is the most basic part of the BNP. The BNP can produce homogenous NPs inside cage-shaped protein. NP growth is limited by the protein shell and the same size NP can be produced. The surrounding protein shells deliver/array the accommodated NPs at designated positions through the interaction of the protein and inorganic material surface. Even a single NP placement to a nanodisk on a substrate is possible. In such placement and arraying, aptamer and electrostatic interactions play the important roles. Obtained NP arrays are proved to be able to fabricate key components of nanoelectronic devices through the integration of top-down and bottom-up technology. The BNP can also produce three-dimensional bioconjugate of cage-shaped proteins and CNTs. This new material has a quantum effect and high thermal insulation by the protein shell. The measurement of thermoelectric properties confirmed that this bioconjugate is a new type of thermoelectric materials.

References

  1. Allen M, Willits D, Young M, Douglas T (2003) Constrained synthesis of cobalt oxide nanomaterials in the 12-subunit protein cage from Listeria innocua. Inorg Chem 42:6300–6305CrossRefGoogle Scholar
  2. Ban T, Uenuma M, Migita S, Okamoto N, Ishikawa Y, Yamashita I, Uraoka Y (2015) Ultra-short channel junctionless transistor with a one-dimensional nanodot array floating gate. Appl Phys Lett 106:253104CrossRefGoogle Scholar
  3. Bozzi M, Mignogna G, Stefanini S, Barra D, Longhi C, Valenti P, Chiancone E (1997) A novel non-heme iron- binding ferritin related to the dna- binding proteins of the dps family in Listeria innocua. J Biol Chem 272:3259–3326CrossRefGoogle Scholar
  4. Brown S (1997) Metal-recognition by repeating poly peptides. Nat Biotechnol 15:269–272CrossRefGoogle Scholar
  5. Clegg GA, Fitton JE, Harrison PM, Treffry A (1980) Ferritin: molecular structure and iron storage mechanisms. Prog Biophys Mol Biol 36:56–86PubMedGoogle Scholar
  6. Douglas T, Stark VT (2000) Nanophase cobalt oxihydroxide mineral synthesized within the protein cage of ferritin. Inorg Chem 39:1828–1830CrossRefGoogle Scholar
  7. Douglas T, Dickson DPE, Betteridge S, Charnock J, Garner CD, Mann S (1995) Synthesis and structure of an iron(III) sulfide-ferritin bioinorganic nanocomposite. Science 269:54–57CrossRefGoogle Scholar
  8. Gallois B, d’Estaintot BL, Michaux MA, Dautant A, Granier T, Précigoux G, Soruco JA, Roland F, Chavas-Alba O, Herbas A, Crichton RR (1997) X-ray structure of recombinant horse l-chain apoferritin at 2.0 Å resolution: implications for stability and function. J Biol Inorg Chem 2(360–367)CrossRefGoogle Scholar
  9. Harrison M, Arosio P (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochem Biophys Acta 1275:161–203PubMedGoogle Scholar
  10. Harrison PM, Andrews SC, Artymuik PJ, Ford GC, Guest JR, Hirzmann J, Lawson DM, Livingstone JC, Smith JMA, Treffry A, Yewdall SJ (1991) Probing structure-function relations in ferritin and bacterioferritin. Adv Inorg Chem 36:449–486CrossRefGoogle Scholar
  11. Ito M, Okamoto N, Abe R, Kojima H, Matsubara R, Yamashita I, Nakamura M (2014) Enhancement of thermoelectric properties of carbon nanotube composites by inserting biomolecules at nanotube junctions. Appl Phys Express 7:065102CrossRefGoogle Scholar
  12. Iwahori K, Yamashita I (2007) Fabrication of CdS nanoparticles in the bio-template, apoferritin cavity by a slow chemical reaction system. J Phys 61:492–496Google Scholar
  13. Iwahori K, Yamashita I (2008) Size-controlled one-pot synthesis of fluorescent cadmium sulfide semiconductor nanoparticles in an apoferritin cavity. Nanotechnology 19:495601CrossRefGoogle Scholar
  14. Iwahori K, Yoshizawa K, Muraoka M, Yamashita I (2005) Fabrication of ZnSe nanoparticles in the apoferritin cavity by designing a slow chemical reaction system. Inorg Chem 44:6393–6400CrossRefGoogle Scholar
  15. Iwahori K, Enomoto T, Furusho H, Miura A, Nishio K, Mishima Y, Yamashita I (2007) Cadmium sulfide nanoparticle synthesis in Dps protein from Listeria innocua. Chem Mater 19(13):3105–3111CrossRefGoogle Scholar
  16. Iwahori K, Furusho H, Yamashita I (2009) Characterization of ZnS compound semiconductor nano-particle in an protein cage, apoferritin, ICMAT 2009 & IUMRS-ICA 2009, Singapore, June 28–July 3, 2009Google Scholar
  17. Jeong G-H, Yamazaki A, Suzuki S, Yoshimura H, Kobayashi Y, Homma Y (2005) Cobalt-filled Apoferritin for suspended single-walled carbon nanotube growth with narrow diameter distribution. J Am Chem Soc 127(23):823CrossRefGoogle Scholar
  18. Kamitake H, Uenuma M, Okamoto N, Horita M, Ishikawa Y, Yamashita I, Uraoka Y (2015) Floating gate memory with charge storage dots array formed by Dps protein modified with site-specific binding peptides. Nanotechnology 26:195201CrossRefGoogle Scholar
  19. Kase D, Kulp JL, Yudasaka M, Evans JS, Iijima S, Shiba K (2004) Affinity selection of peptide phage libraries against single-wall carbon nanohorns identifies a peptide aptamer with conformational variability. Langmuir 20(20):8939–8941CrossRefGoogle Scholar
  20. Kim YLW, Zhang Y, Rolandi M, Wang D, Dai H (2001) Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. J Phys Chem B 105(46):11424–11431CrossRefGoogle Scholar
  21. Kobayashi M, Kumagai S, Zheng B, Uraoka Y, Douglas T, Yamashita I (2011) A water-soluble carbon nanotube network conjugated by nanoparticles with defined nanometre gaps. Chem Commun 47:3475–3477CrossRefGoogle Scholar
  22. Kornelius Z (2012) Dps biomineralizing proteins: multifunctional architects of nature. Biochem J 445:297–311CrossRefGoogle Scholar
  23. Kramer RM, Sowards LA, Pender MJ, Stone MO, Naik RR (2005) Constrained iron catalysts for single-walled carbon nanotube growth. Langmuir 21(18):8466–8470CrossRefGoogle Scholar
  24. Kumagai S, Ono T, Yoshii S, Kadotani A, Tsukamoto R, Nishio K, Okuda M, Yamashita I (2010) Position-controlled vertical growths of individual carbon nanotubes using a cage-shaped protein. Appl Phys Express 3:015101CrossRefGoogle Scholar
  25. Kumagai S, Okamoto N, Kobayashi M, Yamashita I (2012) Characterisation of a carbon nanotube random network conjugated by semiconductor nanoparticles with defined nanometre-scaled gaps. Micro Nano Lett 7(8):753–756CrossRefGoogle Scholar
  26. Lawson DM, Artymiuk PJ, Yewdall SJ, Smith JMA, Livingstone JC, Treffry A, Luzzago A, Levi S, Arosio P, Cesareni G, Thomas CD, Shaw WV, Harrison PM (1991) Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts. Nature 349(541–544)CrossRefGoogle Scholar
  27. Levi S, Luzzago A, Cesareni G, Cozzi A, Franceschinelli F, Albertini A, Arosio P (1988) Mechanism of ferritin iron uptake: activity of the H-chain and deletion mapping of the ferro-oxidase site. A study of iron uptake and ferro-oxidase activity of human liver, recombinant H-chain ferritins, and of two H-chain deletion mutants. J Biol Chem 263(18086–18092)Google Scholar
  28. Mann S (1993) Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature 365:499–505CrossRefGoogle Scholar
  29. Massover WH (1993) Ultrastructure of ferritin and apoferritin – a review. Micron 24:389–437CrossRefGoogle Scholar
  30. Matsukawa N, Nishio K, Sano K, Shiba K, Yamashita I (2009) Hexagonal close-packed array formed by selective adsorption onto hexagonal patterns. Langmuir 25(6):3327–3330CrossRefGoogle Scholar
  31. Meldrum FC, Wade VJ, Nimmo DL, Heywood BR, Mann S (1991) Synthesis of inorganic nanophase materials in supramolecular protein cages. Nature 349:684–687CrossRefGoogle Scholar
  32. Meldrum FC, Heywood BR, Mann S (1992) Magnetoferritin: in vitro synthesis of a novel magnetic protein. Science 257:522–523CrossRefGoogle Scholar
  33. Meldrum FC, Douglas T, Levi S, Arosio P, Mann S (1995) Reconstitution of manganese oxide cores in horse spleen and recombinant ferritins. J Inorg Biochem 58:59–68CrossRefGoogle Scholar
  34. Miura A, Hikono T, Matsumura T, Yano H, Hatayama H, Uraoka Y, Fuyuki T, Yoshii S, Yamashita I (2006) Floating nanodot gate memory devices based in biomineralized inorganic nanodot array as a storage node. Jpn J Appl Phys 45:L1–L3CrossRefGoogle Scholar
  35. Miura A, Tsukamoto R, Yoshii S, Yamashita I, Uraoka Y, Fuyuki T (2008) Non-volatile flash memory with discrete bionanodot floating gate assembled by protein template. Nanotechnology 19:255201CrossRefGoogle Scholar
  36. Okuda M, Iwahori K, Yamashita I, Yoshimura H (2003) Fabrication of nickel and chromium nanoparticles using the protein cage of apoferritin. Biotechnol Bioeng 84:187–193CrossRefGoogle Scholar
  37. Okuda M, Suzumoto Y, Iwahori K, Kang S, Uchida M, Douglas T, Yamashita I (2010) Bio-templated CdSe nanoparticle synthesis in a cage shaped protein, Listeria-Dps, and their two dimensional ordered array self-assembly. Chem Commun 46:8797–8799CrossRefGoogle Scholar
  38. Sano K, Sasaki H, Shiba K (2005a) Specificity and biomineralization activities of Ti-binding peptide-1 (TBP-1). Langmuir 21:3090–3095CrossRefGoogle Scholar
  39. Sano KK, Ajima K, Iwahori M, Yudasaka S, Iijima I, Yamashita S, Shiba K (2005b) Endowing a ferritin-like cage protein with high affinity and selectivity for certain inorganic materials. Small 1(8–9):826–832CrossRefGoogle Scholar
  40. Su M, Stefanini S, Chiancone E, Chasteen ND (2005) The so-called Listeria innocua ferritin is a Dps protein. Iron incorporation, detoxification, and DNA protection properties. Biochemistry 44(15):5572–5578CrossRefGoogle Scholar
  41. Sugano K, Matsumoto R, Tsutsui R, Kishihara H, Matsuzuka N, Yamashita I, Uraoka Isono YY (2016) Fabrication and characterization of a CNT forest integrated micromechanical resonator for a rarefied gas analyzer in a medium vacuum atmosphere. J Micromech Microeng 26:075010CrossRefGoogle Scholar
  42. Takagi D, Yamazaki A, Otsuka Y, Yoshimura H, Kobayashi Y, Homma Y (2007) Gold-filled apo-ferritin for investigation of single-walled carbon nanotube growth on substrate. Chem Phys Lett 445:213–216CrossRefGoogle Scholar
  43. Takahashi T, Kuyucak S (2003) Functional properties of threefold and fourfold channels in ferritin deduced from electrostatic calculations. Biophys J 84(4):2256–2263CrossRefGoogle Scholar
  44. Tsukamoto R, Iwahori K, Muraoka M, Yamashita MI (2005) Synthesis of Co3O4 nanoparticles using the cage-shaped protein, apoferritin. Bull Chem Soc Jpn 78(11):2075–2081CrossRefGoogle Scholar
  45. Tsukamoto R, Igarashi M, Samukawa S, Yamashita I (2012) Fast two-dimensional ferritin crystal formation realized by mutant ferritin and poly(ethylene glycol) modified SiO2 substrate. Appl Phys Express 5:065201CrossRefGoogle Scholar
  46. Wong KKW, Mann S (1996) Biomimetic synthesis of cadmium sulfide-ferritin nanocompsites. Adv Mater 8:928–932CrossRefGoogle Scholar
  47. Yamada K, Yoshii S, Kumagai S, Miura A, Uraoka Y, Fuyuki T, Yamashita I (2007) Effects of dot density and dot size on charge injection characteristics in nanodot array produced by protein supramolecules. Jpn J Appl Phys 46:7549–7553CrossRefGoogle Scholar
  48. Yamashita I (2000) Fabrication of a two-dimensional array of nano-particles using ferritin molecule. Thin Solid Films 393:12–18CrossRefGoogle Scholar
  49. Yamashita I, Hayashi J, Hara M (2004) Bio-template synthesis of uniform CdSe nanoparticles using cage-shaped protein, apoferritin. Chem Lett 33(9):1158–1159CrossRefGoogle Scholar
  50. Yamashita I, Kirimura H, Okuda M, Nishio K, Sano K, Shiba K, Hayashi T, Hara M, Mishima Y (2006) Selective nanoscale positioning of ferritin and nanoparticles by means of target-specific peptides. Small 2(10):1148–1152CrossRefGoogle Scholar
  51. Yoshii S, Kumagai S, Nishio K, Kadotani A, Yamashita I (2009) Electrostatic self-aligned placement of single nanodots by protein supramolecules. Appl Phys Lett 95:133702CrossRefGoogle Scholar
  52. Yoshizawa K, Mishima Y, Park S-Y, Heddle JG, Tame JRH, Iwahori K, Kobayashi M, Yamashita I (2007) Effect of N-terminal residues on the structural stability of recombinant horse L-chain apoferritin in an acidic environment. J Biochem 142:707–713CrossRefGoogle Scholar
  53. Zheng B, Yamashita I, Uenuma M, Iwahori K, Kobayashi1 M, Uraoka1 Y (2010) Site-directed delivery of ferritin-encapsulated gold nanoparticles. Nanotechnol 21:045305CrossRefGoogle Scholar
  54. Zheng B, Zettsu N, Fukuta M, Uenuma M, Hashimoto T, Gamo K, Uraoka Y, Yamashita I, Watanabe H (2011) Versatile protein-based bifunctional nano-systems (encapsulation and directed assembly) selective nanoscale positioning of gold nanoparticle-viral protein hybrids. Chem Phys Lett 506:76–80CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Panasonic Science Research Alliance laboratories, Graduate School of EngineeringOsaka UniversitySuitaJapan
  2. 2.Graduate School of Materials ScienceNara Institute of Science and Technology (NAIST)IkomaJapan

Personalised recommendations