Advertisement

Conserving Biodiversity of a Potent Anticancer Plant, Catharanthus roseus Through In Vitro Biotechnological Intercessions: Substantial Progress and Imminent Prospects

  • Umme Salma
  • Suprabuddha Kundu
  • Saikat Gantait
Chapter

Abstract

In vitro interventions are exceedingly advantageous for large-scale propagation and conservation of plant biodiversity, involving endangered plant species as well as elite genotypes that produce commercial products. The importance of Catharanthus roseus in the treatment of several kinds of cancers such as skin cancer, breast cancer, lymph cancer, leukemia, and Hodgkin’s disease warrants persistent attention for the biotechnological improvement of this plant. Therefore, the present chapter provides an overview of the state of knowledge on the current use of biotechnological tools applied on propagation, genetic enhancement and conservation of C. roseus besides its implications to improve the plant in the future. Explants from this clonally propagated species can be easily harvested under field conditions using in vitro approaches. In vitro micropropagation methods affirm the accelerated duplication of disease-free material. Medium-term conservation can be attained by slow growth of plant material leading to the increased time interval between subsequent cultures. Synthetic seeds are also considered for short- to mid-term conservation and germplasm exchange. For long-term conservation, cryopreservation (in liquid nitrogen at −196 °C) permits storing of C. roseus germplasms for extended periods exclusive of any clonal variation. Besides micropropagation and conservation, the enhancement of secondary metabolites through hairy root culture and cell suspension culture and the use of molecular markers to detect somaclonal variation in C. roseus are also highlighted in this chapter.

Keywords

Conservation Cryopreservation Micropropagation Secondary metabolites Synthetic seed 

Notes

Acknowledgments

We acknowledge the e-library assistance from Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, India. We further are thankful to the anonymous reviewers and the editors of this chapter for their critical comments and suggestions on the manuscript.

References

  1. Ajaib M, Khan ZUD, Khan N, Wahab M (2010) Ethnobotanical studies on useful shrubs of district Kotli, Azad Jammu & Kashmir, Pakistan. Pak J Bot 42:1407–1415Google Scholar
  2. Alam P, Khan ZA, Abdin MZ, Khan JA, Ahmad P, Elkholy SF, Sharaf-Eldin MA (2017) Efficient regeneration and improved sonication-assisted Agrobacterium transformation (SAAT) method for Catharanthus roseus. 3Biotech 7:26Google Scholar
  3. Al-Oubaidi HK, Mohammed-Ameen AS (2014) Effect of benzyladenine on multiplication of Catharanthus roseus L. in vitro. World J Pharm Pharm Sci 3:2101–2107Google Scholar
  4. Aslam J, Mujib A, Nasim SA, Sharma MP (2009) Screening of vincristine yield in ex vitro and in vitro somatic embryos derived plantlets of Catharanthus roseus L. (G) Don. Sci Hortic 119:325–329CrossRefGoogle Scholar
  5. Aslam J, Khan SH, Siddiqui ZH, Fatima Z, Maqsood M, Bhat MA, Nasim SA, Ilah A, Ahmad IZ, Khan SA, Mujib A, Sharma MP (2010) Catharanthus roseus (L.) G. Don. An important drug: it’s applications and production. Pharm Glob 4:1–16Google Scholar
  6. Babulova A, Machova J, Nosalova V (2003) Protective action of vinpocetine against experimentally induced gastric damage in rats. Arzneim Forsch 43:981–985Google Scholar
  7. Bakrudeen AAA, Subha Shanthi G, Gouthaman T, Kavitha MS, Rao MV (2011) In vitro micropropagation of Catharanthus roseus – an anticancer medicinal plant. Acta Bot Hung 53:197–209CrossRefGoogle Scholar
  8. Bakrudeen AAA, Subha Shanthi G, Gouthaman T, Kavitha MS, Rao MV, Tahal RM (2013) In vitro propagation, rooting and acclimatization of Catharanthus roseus (White variety)- a green economy conservation. Trans Malaysian Soc Plant Physiol 21:198–202Google Scholar
  9. Batra J, Dutta A, Singh D, Kumar S, Sen J (2004) Growth and terpenoid indole alkaloid production in Catharanthus roseus hairy root clones in relation to left and right termini-linked Ri T-DNA gene integration. Plant Cell Rep 23:148–154CrossRefPubMedGoogle Scholar
  10. Begum F, Rao SSSN, Rao K, Devi YP, Giri A, Giri CC (2009) Increased vincristine production from Agrobacterium tumefaciens C58 induced shooty teratomas of Catharanthus roseus G. Don. Nat Prod Lett 23:973–981CrossRefGoogle Scholar
  11. Blakeslee A, Avery A (1937) Methods of inducing doubling of chromosomes in plants by treatment with colchicine. J Hered 28:393–411CrossRefGoogle Scholar
  12. Canel C, Lopes-Cardoso MI, Whitmer S, van der Fits L, Pasquali G, van der Heijden R, Hoge JHC, Verpoorte R (1998) Effects of over-expression of strictosidine synthase and tryptophan decarboxylase on alkaloid production by cell cultures of Catharanthus roseus. Planta 205:414–419CrossRefPubMedGoogle Scholar
  13. Chattopadhyay RR (1994) A comparative evaluation of some blood sugar lowering agents of plant origin. J Ethnopharmacol 67:367–372CrossRefGoogle Scholar
  14. Chattopadhyay SP, Das PK (1990) Evaluation of Vinca rosea for the treatment of warts. Indian J Dermatol Venereol Leprol 56:107–108Google Scholar
  15. Chattopadhyay RR, Sarkar SK, Ganguli S (1991) Hypoglycemic and antihyperglycemic effect of leaves of Vinca rosea Linn. Indian J Physiol Pharmacol 35:145–151PubMedGoogle Scholar
  16. Chattopadhyay RR, Banerjee RN, Sarkar SK, Ganguly S, Basu TK (1992) Antiinflammatory and acute toxicity studies with the leaves of Vinca rosea L. in experimental animals. Indian J Physiol Pharmacol 36:291–292PubMedGoogle Scholar
  17. Chen TH, Kartha KK, Constabel F, Gusta LV (1984) Freezing characteristics of cultured Catharanthus roseus (L). G. Don cells treated with dimethylsulfoxide and sorbitol in relation to cryopreservation. Plant Physiol 75:720–725CrossRefPubMedPubMedCentralGoogle Scholar
  18. Chopra IC, Jamwal KS, Chopra CL, Nair CPN, Pillay PP (1959) Preliminary pharmacological investigations of total alkaloids of Lochnera rosea (Rattonjot). Indian J Med Res 47:39–46PubMedGoogle Scholar
  19. Collu G, Unverab N, Peltenburg-Loomana AMG, Heijdena RVD, Verpoorte R, Memelink J (2001) Geraniol 10-hydroxylase1, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis. FEBS Lett 508:215–220CrossRefPubMedGoogle Scholar
  20. Cononer RA, Litz RE (1978) In vitro propagation of Catharanthus roseus. Hortic Sci 13:241–242Google Scholar
  21. Dhandapani M, Kim DH, Hong SB (2008) Efficient plant regeneration via somatic embryogenesis and organogenesis from the explants of Catharanthus roseus. In Vitro Cell Dev Biol Plant 44:18–25CrossRefGoogle Scholar
  22. El-Sayed A, Cordell GA (1981) Catharanthamine, a new antitumor bisindole alkaloid from Catharanthus roseus. J Nat Prod 11:289–293CrossRefGoogle Scholar
  23. Farnsworth NR (1961) The pharmacognosy of the periwinkles: Vinca and Catharanthus. Lloydia 24:105–138Google Scholar
  24. Fatima S, Mujib A, Nasim SA, Siddiqui ZH (2009) Cryopreservation of embryogenic cell suspensions of Catharanthus roseus L. (G) Don. Plant Cell Tissue Organ Cult 98:1–9CrossRefGoogle Scholar
  25. Furmanowa M, Oledzka H, Jozefowicz J, Pietrosiuk A (1994) Catharanthus roseus (L.) G. Don – plant regeneration and alkaloids content. Acta Soc Bot Pol 63:179–184CrossRefGoogle Scholar
  26. Gantait S, Kundu S, Ali MN (2015b) Influence of encapsulating agent and matrix levels on synseed production of Bacopa monnieri (L.) Pennell. Med Plants 7:182–187Google Scholar
  27. Gantait S, Kundu S, Ali N, Sahu NC (2015a) Synthetic seed production of medicinal plants: a review on influence of explants, encapsulation agent and matrix. Acta Physiol Plant 37:1–12CrossRefGoogle Scholar
  28. Gantait S, Kundu S, Das PK (2016a) Acacia: an exclusive survey on in vitro propagation. J Saudi Soc Agric Sci (Online).  https://doi.org/10.1016/j.jssas.2016.03.004
  29. Gantait S, Kundu S, Wani SH, Das PK (2016b) Cryopreservation of forest tree seeds: a mini-review. J Forest Environ Sci 32:311–322CrossRefGoogle Scholar
  30. Gantait S, Kundu S, Yeasmin L, Ali MN (2017) Impact of differential levels of sodium alginate, calcium chloride and basal media on germination frequency of genetically true artificial seeds of Rauvolfia serpentina (L.) Benth. ex Kurz. J Appl Res Med Aromat Plants 4:75–81Google Scholar
  31. Griffiths M, Huxley AJ (1992) The New Royal Horticultural Society dictionary of gardening, vol 4. MacMillan/Stockton Press, LondonGoogle Scholar
  32. Guillon S, Tremouillaux-Guiller J, Pati PK, Rideau M, Gantet P (2006) Hairy root research: recent scenario and exciting prospects. Curr Opin Plant Biol 9:341–346CrossRefPubMedGoogle Scholar
  33. Guirimand G, Burlat V, Oudin A, Lanoue A, Pierre BS, Courdavault V (2009) Optimization of the transient transformation of Catharanthus roseus cells by particle bombardment and its application to the subcellular localization of hydroxymethylbutenyl 4-diphosphate synthase and geraniol 10-hydroxylase. Plant Cell Rep 28:1215–1234CrossRefPubMedGoogle Scholar
  34. Gupta A, Vats SK, Brij L (1998) How cheap can a medicinal plant species be. Curr Sci 74:555–556Google Scholar
  35. Halliwell B (2012) Free radicals and antioxidants: updating a personal view. Nutr Rev 70:257–265CrossRefPubMedGoogle Scholar
  36. Harbage JF (2001) Micropropagation of Echinacea angustifolia, E. pallida, and E. purpurea from stem and seed explants. Hort Sci 36:360–364Google Scholar
  37. Harnischfeger G (2000) Proposed guidelines for commercial collection of medicinal plant material. J Herb Spice Med Plant 7:43–50CrossRefGoogle Scholar
  38. Hasezawa S, Nagata T, Syono K (1981) Transformation of Vinca protoplasts mediated by Agrobacterium spheroplasts. Mol Gen Genet 182:206–210CrossRefGoogle Scholar
  39. He L, Yang L, Tan R, Zhao S, Hu Z (2011) Enhancement of vindoline production in suspension culture of the Catharanthus roseus cell line C20 hi by light and methyl jasmonate elicitation. Anal Sci 27:1243–1248CrossRefPubMedGoogle Scholar
  40. Hilliou F, Christou P, Leech MJ (1999) Development of an efficient transformation system for Catharanthus roseus cell cultures using particle bombardment. Plant Sci 140:179–188CrossRefGoogle Scholar
  41. Hong SB, Hughes EH, Shanks JV, San KY, Gibson S (2003) Role of the non-mevalonate pathway in indole alkaloid production by Catharanthus roseus hairy roots. Biotechnol Prog 19:1105–1108CrossRefPubMedGoogle Scholar
  42. Hosseini HR, Chehrazi M, Sorestani MM, Nabati D, Ahmadi KS (2013) Autotetraploidy induction and seed quality comparison between diploid and tetraploid Madagascar periwinkle (Catharanthus roseus cv. Rosea) seedlings. Int J Agron Plant Prod 4:212–216Google Scholar
  43. Hughes EH, Hong SB, Shanks JV, San KY, Gibson SI (2002) Characterization of an inducible promoter system in Catharanthus roseus hairy roots. Biotechnol Prog 18:1183–1186CrossRefPubMedGoogle Scholar
  44. Hughes EH, Hong SB, Gibson SI, Shanks JV, San KY (2004a) Expression of a feedback-resistant anthranilate synthase in Catharanthus roseus hairy roots provides evidence for tight regulation of terpenoid indole alkaloid levels. Biotechnol Bioeng 86:718–727CrossRefPubMedGoogle Scholar
  45. Hughes EH, Hong SB, Gibson SI, Shanks JV, San KY (2004b) Metabolic engineering of the indole pathway in Catharanthus roseus hairy roots and increased accumulation of tryptamine and serpentine. Metabolic Eng 6:268–276CrossRefGoogle Scholar
  46. Katsumata R, Ozaki A, Oka T, Furuya A (1984) Protoplast transformation of glutamate-producing bacteria with plasmid DNA. J Bacteriol 159:306–311PubMedPubMedCentralGoogle Scholar
  47. Kaya N, Aki C (2013) Effect of plant growth regulators on in vitro biomass changing in Catharanthus roseus (L) G Don. Ann Biol Res 4:164–168Google Scholar
  48. Kohlmunzer S, Tomczyk B (1967) Investigation of leaf alkaloids of Vinca minor L. Part I. Dissert Pharm 19:213–221Google Scholar
  49. Kulkarni RN, Ravindra NS (1988) Resistance to Pythium aphanidermatum in diploids and induced autotetraploids of Catharanthus roseus. Planta Med 54:356–359CrossRefPubMedGoogle Scholar
  50. Kumar A, Prakash K, Sinha RK, Kumar N (2013) In vitro plant propagation of Catharanthus roseus and assessment of genetic fidelity of micropropagated plants by RAPD marker assay. Appl Biochem Biotechnol 169:894–900CrossRefPubMedGoogle Scholar
  51. Li CY, Leopold AL, Sander GW, Shanks JV, Zhao L, Gibson SI (2013) The ORCA2 transcription factor plays a key role in regulation of the terpenoid indole alkaloid pathway. BMC Plant Biol 13:155CrossRefPubMedPubMedCentralGoogle Scholar
  52. Maqsood M, Mujib A, Siddiqui ZH (2012) Synthetic seed development and conversion to plantlet in Catharanthus roseus (L.) G. Don. Biotechnology 11:37–43CrossRefGoogle Scholar
  53. Mehta J, Upadhyay D, Paras P, Ansari R, Rathore S, Tiwari S (2013) Multiple shoots regeneration of (anticancer plant) Catharanthus roseus – an important medicinal plant. Am J PharmTech Res 3:785–793Google Scholar
  54. Memelink J, Verpoorte R, Kijne JW (2001) ORC Anisation of jasmonate responsive gene expression in alkaloid metabolism. Trends Plant Sci 6:212–219CrossRefPubMedGoogle Scholar
  55. Misawa M (1976) Production of natural substances by plant cell cultures described in Japanese patents. In: Barz W, Reinhard E, Zenk MH (eds) Plant tissue culture its bio-technological application. Proceedings of the 1st international congress on medicinal plant research, section B, University of Munich, Germany, Springer-Verlag, Berlin, Heidelberg, pp 17–26Google Scholar
  56. Morgan JA, Shanks JV (1999) Inhibitor studies of tabersonine metabolism in C. roseus hairy roots. Phytochemistry 51:61–68CrossRefPubMedGoogle Scholar
  57. Mujib A, Ali M, Isah T (2014) Somatic embryo mediated mass production of Catharanthus roseus in culture vessel (bioreactor)–a comparative study. Saudi J Biol Sci 21:442–449CrossRefPubMedPubMedCentralGoogle Scholar
  58. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  59. Mustafa NR, Kim HK, Choi YH, Verpoorte R (2009) Metabolic changes of salicylic acid-elicited Catharanthus roseus cell suspension cultures monitored by NMR-based metabolomics. Biotechnol Lett 31:1967–1974CrossRefPubMedPubMedCentralGoogle Scholar
  60. Namdeo A, Patil S, Fulzele DP (2002) Influence of fungal elicitors on production of ajmalicine by cell cultures of Catharanthus roseus. Biotechnol Prog 18:159–162CrossRefPubMedGoogle Scholar
  61. Nilanthi D, Chen XL, Zhao FC, Yang YS, Wu H (2009) Induction of tetraploids from petiole explants through colchicine treatment in Echinacea purpurea L. J Biomed Biotechnol 2009:343485.  https://doi.org/10.1155/2009/343485 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87CrossRefPubMedGoogle Scholar
  63. Okada K, Haseza S, Syono K, Nagata T (1985) Further evidence for the transformation of Vinca rosea protoplasts by Agrobacterium tumefaciens spheroplasts. Plant Cell Rep 4:133–136CrossRefPubMedGoogle Scholar
  64. Palazón J, Cusidó RM, Gonzalo J, Bonfill M, Morales C, Piñol MT (1998) Relation between the amount of rolC gene product and indole alkaloid accumulation in Catharanthus roseus transformed root cultures. J Plant Physiol 153:712–718CrossRefGoogle Scholar
  65. Pan Q, Wang Q, Yuan F, Xing S, Zhao J, Choi YH, Verpoorte R, Tian Y, Wang G, Tang K (2012) Overexpression of ORCA3 and G10H in Catharanthus roseus plants regulated alkaloid biosynthesis and metabolism revealed by NMR-metabolomics. PLoS One 7:e43038.  https://doi.org/10.1371/journal.pone.0043038 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Pandiangan D, Tilaar W, Nainggolan N (2013) Morphological changes of cell in relation to increased catharanthine content of Catharanthus roseus cell aggregate cultures after tryptophan treatment. Int J Basic Appl Sci 13:45–51Google Scholar
  67. Pati PK, Kaur J, Singh P (2011) A liquid culture system for shoot proliferation and analysis of pharmaceutically active constituents of Catharanthus roseus (L.) G. Don. Plant Cell Tissue Organ Cult 105:299–307CrossRefGoogle Scholar
  68. Patil PJ, Ghosh JS (2010) Antimicrobial activity of Catharanthus roseus – a detailed study. Br J Pharmacol Toxicol 1:40–44Google Scholar
  69. Rahmatzadeh S, Khara J, Kazemitabar SK (2014) The study of in vitro regeneration and growth parameters in Catharanthus roseus L. under application of tryptophan. J Sci Kharazmi Univ 14:249–260Google Scholar
  70. Rai A, Smita SS, Singh AK, Shanker K, Nagegowda DA (2013) Heteromeric and homomeric geranyl diphosphate synthases from Catharanthus roseus and their role in monoterpene indole alkaloid biosynthesis. Mol Plant 6:1531–1549CrossRefPubMedGoogle Scholar
  71. Rajora RK, Sharma NK, Sharma V (2013) Effect of plant growth regulators on micropropagation of Catharanthus Roseus. Int J Adv Biotechnol 4:986–993Google Scholar
  72. Ruiz-Díez B (2002) Strategies for the transformation of filamentous fungi. J Appl Microbiol 92:189–195CrossRefPubMedGoogle Scholar
  73. Salma U, Kundu S, Mandal N (2017) Artificial polyploidy in medicinal plants: advancement in the last two decades and impending prospects. J Crop Sci Biotechnol 20:9–19CrossRefGoogle Scholar
  74. Samuelsson G (1999) Drugs of natural origin. A textbook of pharmacognosy, 4th edn. Swedish Pharmaceutical Press, Stockholm, pp 484–487Google Scholar
  75. Sandhya M, Deepti L, Bhakti D, Ravindra M, Pranay S, Gauri A, Bansod I, Asmit H (2016) Effect of growth regulator combination on in-vitro regeneration of Catharanthus roseus. Int J Life Sci 6:1–4Google Scholar
  76. Sanford JC, Klein TM, Wold ED, Allen N (1987) Delivery of substances into cells and tissue using a particle bombardment process. J Plant Sci Technol 5:27–37Google Scholar
  77. Shukla AK, Shasany AK, Verma RK, Gupta MM, Mathur AK, Khanuja SP (2010) Influence of cellular differentiation and elicitation on intermediate and late steps of terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Protoplasma 242:35–47CrossRefPubMedGoogle Scholar
  78. Siddiqui ZH, Mujib A, Maqsood M (2011) Liquid overlaying improves somatic embryogenesis in Catharanthus roseus. Plant Cell Tissue Organ Cult 104:247–256CrossRefGoogle Scholar
  79. Singh VP, Jagdev RSD (1996) Ajmalicine (raubacine); a medicinally important alkaloid from Catharanthus roseus (Vinca rosea). In: Handa SS, Kaul MK (eds) In supplement to cultivation and utilization of medicinal plants. RRL, Jammu, pp 199–206Google Scholar
  80. Singh RP, Sharad S, Kapur S (2004) Free radicals and oxidative stress in neurodegenerative diseases: relevance of dietary antioxidants. J Indian Acad Clin Med 5:218–225Google Scholar
  81. Singh R, Kharb P, Rani K (2011) Rapid micropropagation and callus induction of Catharanthus roseus in vitro using different explants. World J Agr Sci 7:699–704Google Scholar
  82. Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, de Pamphilis CW, Wall PK, Soltis PS (2009) Polyploidy and angiosperm diversification. Am J Bot 96:336–348CrossRefPubMedGoogle Scholar
  83. Srivastava T, Das S, Sopory SK, Srivastava PS (2009) A reliable protocol for transformation of Catharanthus roseus through Agrobacterium tumefaciens. Physiol Mol Biol Plant 15:93–98CrossRefGoogle Scholar
  84. Swanberg A, Dai W (2008) Plant regeneration of periwinkle (Catharanthus roseus) via organogenesis. HortScience 43:832–836Google Scholar
  85. Swanston-Flatt SK, Day C, Flatt PR, Gould BJ, Bailey CJ (1989) Glycaemia effects of traditional European plant treatments for diabetes studies in normal and streptozotocin diabetic mice. Diabetes Res 10:69–73PubMedGoogle Scholar
  86. Taha HS, El-Bahr MK, Seif-El-Nasr MM (2008) In vitro studies on Egyptian Catharanthus Roseus (L.) G. Don.: I Calli production, direct shootlets regeneration and alkaloids determination. J Appl Sci Res 4:1017–1022Google Scholar
  87. van der Fits L, Memelink J (1997) Comparison of the activities of CaMV 35S and FMV 34S promoter derivatives in Catharanthus roseus cells transiently and stably transformed by particle bombardment. Plant Mol Biol 33:943–946CrossRefPubMedGoogle Scholar
  88. van der Fits L, Deakin EA, Hoge JHC, Memelink J (2000) The ternary transformation system: constitutive virG on a compatible plasmid dramatically increases Agrobacterium-mediated plant transformation. Plant Mol Biol 43:495–502CrossRefPubMedGoogle Scholar
  89. van der Fits L, Memelink J (2000) ORCA3, a jasmonate responsive transcriptional regulator of plant primary and secondary metabolism. Science 289:295–297CrossRefPubMedGoogle Scholar
  90. Vasil IK, Vasil V (1980) Clonal propagation. In: International review of cytology. Suppl. II. Academic, New York, pp 145–173Google Scholar
  91. Verma P, Mathur AK (2011) Agrobacterium tumefaciens mediated transgenic plant production via direct shoot bud organogenesis from pre-plasmolyzed leaf explants of Catharanthus roseus. Biotechnol Lett 33:1053–1060CrossRefPubMedGoogle Scholar
  92. Verma P, Mathur AK, Shanker K (2012) Growth, alkaloid production, rol genes integration, bioreactor up-scaling and plant regeneration studies in hairy root lines of Catharanthus roseus. Plant Biosyst 146:27–40CrossRefGoogle Scholar
  93. Verma P, Sharma A, Khan SA, Shanker K, Mathur AK (2015) Over-expression of Catharanthus roseus tryptophan decarboxylase and strictosidine synthase in rol gene integrated transgenic cell suspensions of Vinca minor. Protoplasma 252:373–381CrossRefPubMedGoogle Scholar
  94. Wang HM, To KY (2004) Agrobacterium-mediated transformation in the high value medicinal plant Echinacea purpurea. Plant Sci 166:1087–1096CrossRefGoogle Scholar
  95. WCMC (1992) Global biodiversity status of earth’s living resources. Chapman & Hall, LondonGoogle Scholar
  96. Whitmer S, van der Heijden R, Verpoorte R (2002) Effect of precursor feeding on alkaloid accumulation by a tryptophan decarboxylase over-expressing transgenic cell line T22 of Catharanthus roseus. J Biotechnol 96:193–203CrossRefPubMedGoogle Scholar
  97. Whitmer S, Canel C, van der Heijden R, Verpoorte R (2003) Long-term instability of alkaloid production by stably transformed cell lines of Catharanthus roseus. Plant Cell Tissue Organ Cult 74:73–80CrossRefGoogle Scholar
  98. Xing SH, Guo XB, Wang Q, Pan QF, Tian YS, Liu P, Zhao JY, Wang GF, Sun XF, Tang KX (2011) Induction and flow cytometry identification of tetraploids from seed-derived explants through colchicine treatments in Catharanthus roseus (L.) G. Don. J Biomed Biotechnol 2011:793198.  https://doi.org/10.1155/2011/793198 CrossRefGoogle Scholar
  99. Yang Z, Patra B, Li R, Pattanaik S, Yuan L (2013) Promoter analysis reveals cis-regulatory motifs associated with the expression of the WRKY transcription factor CrWRKY1 in Catharanthus roseus. Planta 238:1039–1049CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Umme Salma
    • 1
  • Suprabuddha Kundu
    • 1
  • Saikat Gantait
    • 2
    • 3
  1. 1.Department of Agricultural Biotechnology, Faculty of AgricultureBidhan Chandra Krishi ViswavidyalayaNadiaIndia
  2. 2.All India Coordinated Research Project on Groundnut, Directorate of ResearchBidhan Chandra Krishi ViswavidyalayaKalyani, NadiaIndia
  3. 3.Department of Genetics and Plant Breeding, Faculty of AgricultureBidhan Chandra Krishi ViswavidyalayaNadiaIndia

Personalised recommendations