Therapeutic Potential of Cardiac Glycosides Against Cancer

  • Mohd Mutalip Siti-SyarifahEmail author
  • Yunos Nurhanan-Murni


Cardiac glycosides represent a group of naturally derived compounds isolated from several plants and animal species. It is generally used in the treatment of cardiac congestion and various types of cardiac arrhythmias. The compounds of the cardiac glycoside group have been well characterised in inhibiting Na+/K+-ATPase pump and are responsible for the Na+, K+ and Ca2+ ion level exchange that resulted in the ionotropic activity that is useful for the treatment of various heart conditions. The therapeutic effect of cardiac glycosides as anticancer agents was revealed in the eighth century; however, the mechanisms of action by cardiac glycosides remain largely unknown. The aim of this chapter is to discuss the chemical structure, mechanisms of actions and other issues pertaining to the use of cardiac glycosides as potential anticancer agents.


Cancer Cardiac glycosides Natural products Plants Therapeutics 


  1. Barry W, Hasin Y, Smith T (1985) Sodium pump inhibition, enhanced calcium influx via sodium-calcium exchange, and positive inotropic response in cultured heart cells. Circ Res 56:231–241CrossRefPubMedGoogle Scholar
  2. Braunwald E (1985) Effects of digitalis on the normal and the failing heart. J Am Coll Cardiol 5:A51–A59CrossRefGoogle Scholar
  3. Calderón-Montaño JM, Burgos-Morón E, Orta ML, Maldonado-Navas D, García-Domínguez I, López-Lázaro M (2014) Evaluating the cancer therapeutic potential of cardiac glycosides. Biomed Res Int 2014:794930. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chanvorachote P, Pongrakhananon V (2013) Ouabain down regulates Mcl-1 and sensitizes lung cancer cells to TRAIL-induced apoptosis. Am J Phys 304:263–272CrossRefGoogle Scholar
  5. Daut J (1983) Inhibition of the sodium pump in guinea-pig ventricular muscle by dihydro-ouabain: effects of external potassium and sodium. J Physiol 339:643–662CrossRefPubMedPubMedCentralGoogle Scholar
  6. De S, Banerjee S, Babu MN, Lakhmi MB, Babu TMS (2016) Review on cardiac glycosides in cancer research and cancer therapy. Indo Am J Pharma Res 6:5391–5400Google Scholar
  7. Elbaz HA, Stueckle TA, Tse W, Rojanasakul Y, Dinu CZ (2012) Digitoxin and its analogs as novel cancer therapeutics. Exp Hematol Oncol 1:1–10CrossRefGoogle Scholar
  8. Frese S, Frese-Schaper M, Andres AC, Miescher D, Zumkehr B, Schmid RA (2006) Cardiac glycosides initiate Apo2L/TRAIL-induced apoptosis in non-small cell lung cancer cells by up-regulating of death receptor 4 and 5. Cancer Res 66:5867–5874CrossRefPubMedGoogle Scholar
  9. Gan N, Chen G, Zhang W, Zhou J (2012) Oleanen induces apoptosis of cervical cancer cells by up-regulation of Bim. Int J Gynecol Cancer 22:38–42CrossRefPubMedGoogle Scholar
  10. Gupta RS, Chopra A, Stetsko DK (1986) Cellular basis for the species differences in sensitivity to cardiac glycosides (Digitalis). J Cell Physiol 127:197–206CrossRefPubMedGoogle Scholar
  11. Hauptman PJ, Kelly RA (1999) Digitalis. Circulation 99:1365–1270CrossRefGoogle Scholar
  12. Haux J, Klepp O, Spigset O, Tretli S (2001) Digitoxin medication and cancer; case control and internal dose-response studies. BioMed Cent 1:11–16Google Scholar
  13. Kang J, Lee M (2009) Overview of therapeutic drug monitoring. Korean. J Int Med 24:1–10Google Scholar
  14. Kaplan JH (2002) Biochemistry of Na+/K+-ATPase. Annu Rev Biochem 71:511–535CrossRefPubMedGoogle Scholar
  15. Kokate CK, Purohit AP, Gokhale SB (2008) Drugs containing glycosides. In: Kokate CP (ed) Pharmacognosy. Nirali Prakashan, PuneGoogle Scholar
  16. Kometiani P, Liu L, Askari A (2005) Digitalis-Induced Signaling by Na+/K+-ATPase in human breast cancer cells. Mol Pharmacol 67:929–936CrossRefPubMedGoogle Scholar
  17. Křen V, Martínková L (2001) Glycosides in medicine: the role of glycosidic residue in biological activity. Curr Med Chem 8:1303–1328CrossRefPubMedGoogle Scholar
  18. Laphookhieo S, Cheenpracha S, Karalai C, Chantrapromma S, Rat-a-Pa Y, Ponglimanont C, Chantrapromma K (2004) Cytotoxic cardenolide glycoside from the seeds of Cerbera odollam. Phytochemistry 65:507–510CrossRefPubMedGoogle Scholar
  19. López-Lázaro M (2007) Digitoxin as an anticancer agent with selectivity for cancer cells: possible mechanisms involved. Exp Opin Ther Targets 11:1043–4053CrossRefGoogle Scholar
  20. López-Lázaro M, Pastor N, Azrak SS, Ayuso MJ, Austin CA, Cortes F (2005) Digitoxin inhibits the growth of cancer cell lines at concentrations commonly found in cardiac patients. J Nat Prod 68:1642–1645CrossRefPubMedGoogle Scholar
  21. López-Lázaro M, Pastor N, Azrak SS, Ayuso MJ, Cortes F, Austin CA (2006) Digitoxin, at concentrations commonly found in the plasma of cardiac patients, antagonizes etoposide and idarubicin activity in K562 leukemia cells. Leukemia Res 30:895–898CrossRefGoogle Scholar
  22. Mijatovic T, Mathieu V, Gaussin J, Néve ND, Ribaucour F, Quaquebeke EV, Dumont P, Darro F, Kiss R (2006) Cardenolide-induced lysosomal membrane permeabilization demonstrates therapeutic benefits in experimental human non-small cell lung cancers. Neoplasia 8:402–412CrossRefPubMedPubMedCentralGoogle Scholar
  23. Mijatovic T, Quaquebeke EV, Delest B, Debeir O, Darro F, Kiss R (2007) Cardiotonic steroids on the road to anti-cancer therapy. Biochim Biophys Acta 1776:32–57PubMedGoogle Scholar
  24. Newman RA, Yang P, Pawlus AD, Block KI (2008) Cardiac glycosides as novel cancer therapeutic agents. Mol Interven 8:36–49CrossRefGoogle Scholar
  25. Nilubol N, Zhang L, Shen M, Zhang Y, He M, Austin CP, Kebebew E (2012) Four clinically utilized drugs were identified and validated for treatment of adenocortical cancer using quantitative high-throughput screening. J Transl Med 10:1–15CrossRefGoogle Scholar
  26. Olej B, dos Santos NF, Leal L, Rumjanek VM (1998) Ouabain induces apoptosis on PHA-activated lymphocytes. Biosci Rep 18:1–7CrossRefPubMedGoogle Scholar
  27. Prassas I, Diamandis EP (2008) Novel therapeutic applications of cardiac glycosides. Nat Rev Drug Discov 7:926–935CrossRefPubMedGoogle Scholar
  28. Prassas I, Karagiannis GS, Batruch I (2011) Digitoxin-induced cytotoxicity in cancer cells is mediated through distinct kinase and interferon signaling networks. Mol Cancer Ther 10:2083–2093CrossRefPubMedGoogle Scholar
  29. Raghavendra PB, Sreenivasan Y, Ramesh GT, Manna SK (2007) Cardiac glycosides induced cell death via FasL by activating calcineurin and NF-AT, but apoptosis initially proceeds through activation of caspases. Apoptosis 12:307–318CrossRefPubMedPubMedCentralGoogle Scholar
  30. Scheiner-Bobis G (2002) The sodium pump. Its molecular properties and mechanics of ion transport. Eur J Biochem 269:2424–2433CrossRefPubMedGoogle Scholar
  31. Siti Syarifah MM, Nurhanan MY, Abdul-Rahman PSA, Muhd Haffiz J, Asiah O, Mohd Ilham A (2014) Mechanisms of action of 17βH-neriifolin on its anticancer effects in SKOV-3 ovarian cancer cell line Anticancer Res 34: 4141–4152Google Scholar
  32. Steyn PS, Heerden FRV (1998) Bufadienolides of plant and animal origin. Nat Prod Rep 15:397–413CrossRefPubMedGoogle Scholar
  33. Therien AG, Blostein R (2000) Mechanisms of sodium pump regulation. Am J Phys 279:541–567CrossRefGoogle Scholar
  34. Verheye-Dua F, Böhm L (1998) Na+,K+-ATPase inhibitor, ouabain accentuates irradiation damage in human tumour cell lines. Radiation Oncol Intervent 6:109–119CrossRefGoogle Scholar
  35. Xiao AY, Wei L, Xia S, Rothman S, SP Y (2002) Ionic mechanism of ouabain-induced concurrent apoptosis and necrosis in individual cultured cortical neurons. J Neurosci 22:1350–1362CrossRefPubMedGoogle Scholar
  36. Xie Z, Cai T (2003) Na+-K+-ATPase-mediated signal transduction from protein interaction to cellular function. Mol Intervent 3:157–168CrossRefGoogle Scholar
  37. Yeh JY, Hunag WJ, Kan SF, Wang PS (2001) Inhibitory effects of digitalis on the proliferation of androgen dependent and independent prostate cancer cells. J Urol 166:1937–1942CrossRefPubMedGoogle Scholar
  38. Zavareh RB, Lau KS, Hurren R, Datti A, Ashline DJ, Gronda M, Cheung P, Simpson CD, Liu W, Wasylishen AR, Boutros PC, Shi H, Vengopal A, Jurisica I, Penn LZ, Reinhold VN, Ezzat S, Wrana J, Rose DR, Schachter H, Dennis JW, Schimmer AD (2008) Inhibition of the sodium/potassium ATPase impairs N-glycan expression and function. Cancer Res 68:6688–6697CrossRefGoogle Scholar
  39. Zhang L, Nakaya K, Yoshida T, Kuroiwa Y (1992) Induction by bufalin of differentiation of human leukemia cells HL60, U937, and ML1 toward macrophage/monocyte-like cells and its potent synergistic effect on the differentiation of human leukemia cells in combination with other inducers. Cancer Res 52:4634–4641PubMedGoogle Scholar
  40. Zhang H, Qian DZ, Tan YS, Lee KA, Gao P, Ren YR, Rey S, Hammers H, Chang D, Pili R, Dang CV, Liu JO, Semenza GL (2008) Digoxin and other cardiac glycosides inhibit HIF-1α synthesis and block tumor growth. Proc Nat Acad Sci 105:19579–19586CrossRefPubMedGoogle Scholar
  41. Zhao M, Bai L, Wang L, Toki A, Hasegawa T, Kikuchi M, Abe M, Jun-ichi S, Hasegawa R, Bai Y, Mitsui T, Ogura H, Kataoka T, Oka S, Tsushima H, Kiuchi M, Hirose K, Tomida A, Tsuruo T, Ando M (2007) Bioactive cardenolides from the stems and twigs of Nerium oleander. J Nat Prod 70:1098–1103CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Mohd Mutalip Siti-Syarifah
    • 1
    Email author
  • Yunos Nurhanan-Murni
    • 1
  1. 1.Natural Products DivisionForest Research Institute Malaysia (FRIM)KepongMalaysia

Personalised recommendations