Gastrointestinal Bezoar Stones: Current Knowledge and Future Perspective on the Potential of Plant-Derived Phytobezoar in Cancer Treatment

  • Peng Nian Yew
  • Bey Hing Goh
  • Yau Yan Lim
  • Wai Leng LeeEmail author


Bezoar stone formation is an infrequent event in the gastrointestinal (GI) system due to the chemical reaction between stomach bile and the high intake of nondigestible food materials. There are mainly four types of GI bezoars: trichobezoar, lactobezoar, pharmacobezoar, and phytobezoar, and formations of these bezoars in humans are physical disorders which require clinical treatments. Intriguingly, phytobezoars such as Calculus bovis obtained from ox/cattle have been used in China as medicine since 2000 years ago. Modern science found C. bovis possesses antioxidant and anti-inflammatory properties, and identification of its chemical constituent led to successful synthesis of the artificial medicinal bezoar. Phytobezoars, major type of GI bezoar, can also be found in animals besides ox/cattle, and these bezoars have been traditionally used to treat against poison, and more recently those obtained from porcupines are used by Asian Chinese to treat cancer. However, to date, medicinal values of porcupine bezoars lack scientific proof. Therefore, understanding on the factors that lead to bezoar formation in the GI tract, identification of their chemical composition, and elucidation of underlying physiological mechanism modulated by phytobezoars are important to provide guidance in their usage in treating various ailments including cancer. In this chapter, the development of different bezoar stones in the GI tract is summarized on the pharmacological action of phytobezoars C. bovis, and porcupine bezoar is presented on the medicinal values of these phytobezoars. Moreover, distinct composition and classification of plant materials found in the phytobezoars and their potential benefits in cancer treatment are also discussed.


Bezoars formation Porcupine bezoars Phytobezoars Anticarcinogenic Cancer 



We thank Soon Hing Cheong Ginseng Co for the generous financial support and the supply of porcupine dates. Financial support by Monash University Malaysia is also gratefully acknowledged.


  1. Afrin S, Giampieri F, Gasparrini M, Forbes-Hernandez TY, Varela-Lopez A, Quiles JL, Mezzetti B, Battino M (2016) Chemopreventive and therapeutic effects of edible berries: a focus on colon cancer prevention and treatment. Molecules 21:169. CrossRefPubMedGoogle Scholar
  2. Aune D, Chan DSM, Lau R, Vieira R, Greenwood DC, Kampman E, Norat T (2011) Dietary fibre, whole grains, and risk of colorectal cancer: systematic review and dose-response meta-analysis of prospective studies. BMJ 343:D6617. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bajorek S, Basaldua R, McGoogan K, Miller C, Sussman CB (2012) Neonatal gastric lactobezoar: management with N-acetylcysteine. Case Rep Pediat 2012:412412. CrossRefGoogle Scholar
  4. Barroso MDS (2013) Bezoar stones, magic, science and art. Geological Soc, London, Special Publ 375:11. CrossRefGoogle Scholar
  5. Booth BW, Inskeep BD, Shah H, Park JP, Hay EJ, Burg KJL (2013) Tannic acid preferentially targets estrogen receptor-positive breast cancer. Int J Breast Cancer 2013:369609. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Borschberg P (2006) The trade, forgery and medicinal use of porcupine bezoars in the early modern period (c.1500–1750). Revista Oriente 14:60–78Google Scholar
  7. Bouwer C, Stein DJ (1998) Trichobezoars in Trichotillomania: case report and literature overview. Psychosomat Med 60:658–660CrossRefGoogle Scholar
  8. Butler TM, Haines JRJ (1987) Gastric trichobezoar in a baboon. Lab Ani Sci 37:232–233Google Scholar
  9. Castro L, Berenguer A, Pilar C, Gonçalves R, Nunes JL (2014) Recurrent gastric lactobezoar in an infant. Oxford Med Case Rep 2014:80–82CrossRefGoogle Scholar
  10. Christopher JD (2013) Porcupine Stones. Pharma Hist 43:13–22Google Scholar
  11. Chung KT, Wong TY, Wei CI, Huang YW, Lin Y (1998) Tannins and human health: a review. Crit Rev Food Sci Nutr 38:421–464CrossRefPubMedGoogle Scholar
  12. Corzine M (2011) Radiology case study. Gastric lactobezoar. Neonatal Netw 30:183–187CrossRefGoogle Scholar
  13. de Toledo AP, Rodrigues FH, Rodrigues MR, Sato DT, Nonose R, Nascimento EF, Martinez CAR (2012) Diospyrobezoar as a cause of small bowel obstruction. Case Rep Gastroenterol 6:596–603CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dubose VTM, Southgate WM, Hill JG (2001) Lactobezoars: a patient series and literature review. Clin Pediat 40:603–606CrossRefPubMedGoogle Scholar
  15. Elzouki AY, Harfi HA, Nazer H, Stapleton FB, Oh W, Whitley RJ (2012) Textbook of clinical pediatrics. Springer, BerlinCrossRefGoogle Scholar
  16. Emerson AP (1987) Foods high in fiber and phytobezoar formation. J Am Diet Assoc 87:1675–1677PubMedGoogle Scholar
  17. Eng K, Kay M (2012) Gastrointestinal bezoars: history and current treatment paradigms. Gastroenterol Hepatol 8:776–778Google Scholar
  18. Ertugrul G, Coskun M, Sevinc M, Yelimlies B, Ertugrul F, Toydemir T (2012) A rare cause of gastrointestinal phytobezoars: Diospyros lotus. World J Emerg Surg 7:19CrossRefPubMedPubMedCentralGoogle Scholar
  19. Feng N, Shi F, Liu Y, Zhao J, Zhang Y (2015) Chinese herbal compound anti-tumour nanopreparation and use thereof (Patents No. EP2845599 A1)Google Scholar
  20. Fu WJ, Lei T, Yin Z, Pan JH, Chai YS, XY X, Yan YX, Wang ZH, Ke J, Wu G, RH X, Paranjpe M, Qu L, Nie H (2017) Anti-atherosclerosis and cardio-protective effects of the Angong Niuhuang pill on a high fat and vitamin D3 induced rodent model of atherosclerosis. J Ethnopharmacol 195:118–126CrossRefPubMedGoogle Scholar
  21. Gan VC (2014) Dengue: moving from current standard of care to state-of-the-art treatment. Curr Treat Options Infect Dis 6:208–226CrossRefPubMedPubMedCentralGoogle Scholar
  22. Georgopoulos S, Gerdes H (1995) Retention of nifedipine extended release tabs in a patient with a colonic stricture. Am J Gastroenterol 90:2224–2226PubMedGoogle Scholar
  23. Gillin AG, Phippard AF, Thompson JF, Harewood WJ, Waugh RC, Horvath JS (1990) Gastric haemorrhage and perforation caused by a trichobezoar in a baboon (Papio hamadryas). Lab Ani 24:180–182CrossRefGoogle Scholar
  24. Gorter RR, Kneepkens CMF, Mattens ECJL, Aronson DC, Heij HA (2010) Management of trichobezoar: case report and literature review. Pediat Surge Int 26:457–463CrossRefGoogle Scholar
  25. Gozalo AS, Montoya E, Nolan TE (1990) Trichobezoars in two saddleback tamarins (Saguinus fuscicollis). J Med Primatol 19:151–153PubMedGoogle Scholar
  26. Guo Y, Yan S, Xu L, Zhu G, Yu X, Tong X (2014) Use of Angong Niuhuang in treating central nervous system diseases and related research. Evidence-Based Compl Altern Med 2014:346918. CrossRefGoogle Scholar
  27. Heinz-Erian P, Klein-Franke A, Gassner I, Kropshofer G, Salvador C, Meister B, Müller T, Scholl-Buergi S (2010) Disintegration of large gastric lactobezoars by N-acetylcysteine. J Pediat Gastroenterol Nutr 50:108–110CrossRefGoogle Scholar
  28. Heinz-Erian P, Gassner I, Klein-Franke A, Jud V, Trawoeger R, Niederwanger C, Mueller T, Meister B, Scholl-Buergi S (2012) Gastric lactobezoar -a rare disorder. Orphanet J Rare Dis 7:3. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Henn P, Chen F (2015) Recurrent gastric trichobezoars – a case report and literature review. North. Am J Med Sci 8:191–195Google Scholar
  30. Hossenbocus A, Colin-Jones DG (1973) Trichobezoar, gastric polyposis, protein-losing gastroenteropathy and steatorrhoea. Gut 14:730–732CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hu H, Lee HJ, Jiang C, Zhang J, Wang L, Zhao Y, Xiang Q, Lee EO, Kim SH, Lu J (2008) Penta-1,2,3,4,6-O-galloyl-beta-D-glucose induces p53 and inhibits STAT3 in prostate cancer cells in vitro and suppresses prostate xenograft tumor growth in vivo. Mol Cancer Ther 7:2681–2691CrossRefPubMedGoogle Scholar
  32. Hu H, Zhou Y, Leng T, Liu A, Wang Y, You X, Chen J, Tang L, Chen W, Qiu P, Yin W, Huang Y, Zhang J, Wang L, Sang H, Yan G (2014) The major cholesterol metabolite cholestane-3β,5α,6β-triol functions as an endogenous neuroprotectant. J Neurosci 34:11426–11438CrossRefPubMedGoogle Scholar
  33. Hussain T, Tan B, Yin Y, Blachier F, Tossou MCB, Rahu N (2016) Oxidative stress and inflammation: what polyphenols can do for us. Oxidative Med Cell Longev 2016:7432797. CrossRefGoogle Scholar
  34. Jin R, Zhang B, Xue CM, Liu SM, Zhao Q, Li K (2011) Classification of 365 Chinese medicines in Shennong’s Materia medica classic based on a semi-supervised incremental clustering method. J Chin Integr Med 9:665–674CrossRefGoogle Scholar
  35. Kadian R, Rose J, Mann NS (1978) Gastric bezoars-spontaneous resolution. Am J Gastroenterol 70:79–82PubMedGoogle Scholar
  36. Karakurt S, Adali O (2016) Tannic acid inhibits proliferation, migration, invasion of prostate cancer and modulates drug metabolizing and antioxidant enzymes. Anti Cancer Agents Med Chem 16:781–789CrossRefGoogle Scholar
  37. Khattak S, Asghar K (2004) Trichobezoar. Gomal J Med Sci 2:25–26Google Scholar
  38. Kim ER, Chang DK (2014) Colorectal cancer in inflammatory bowel disease: the risk, pathogenesis, prevention and diagnosis. World J Gastroenterol 20:9872–9881CrossRefPubMedPubMedCentralGoogle Scholar
  39. Klair JS, Girotra M, Dranoff JA, Aduli F (2015) Protein shakes: an unusual cause of gastric phytobezoar. ACG Case Rep J 2:196–197CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kramer SJ, Pochapin MB (2012) Gastric phytobezoar dissolution with ingestion of diet coke and cellulase. Gastroenterol Hepatol 8:770–772Google Scholar
  41. Krausz MM, Moriel EZ, Ayalon A, Pode D, Durst AL (1986) Surgical aspects of gastrointestinal persimmon phytobezoar treatment. Am J Surg 152:526–530CrossRefPubMedGoogle Scholar
  42. Kumari N, Prentice H, JY W (2013) Taurine and its neuroprotective role. Adv Exp Med Biol 775:19–27CrossRefPubMedGoogle Scholar
  43. Kuo PT, Lin TP, Liu LC, Huang CH, Lin JK, Kao JY, Way TD (2009) Penta-O-galloyl-beta-D-glucose suppresses prostate cancer bone metastasis by transcriptionally repressing EGF-induced MMP-9 expression. J Agric Food Chem 57:3331–3339CrossRefPubMedGoogle Scholar
  44. Le Bourvellec C, Chormova D, Renard C (2015) Covalent interactions between dietary fiber and condensed tannins: fiber structure defines the binding. 17th Euro Food Chem 2015 Madrid, SpainGoogle Scholar
  45. Lee BJ, Park JJ, Chun HJ, Kim JH, Yeon JE, Jeen YT, Kim JS, Byun KS, Lee SW, Choi JH, Kim CD, Ryu HS, Bak YT (2009) How good is cola for dissolution of gastric phytobezoars. World J Gastroenterol 15:2265–2269CrossRefPubMedPubMedCentralGoogle Scholar
  46. Li GL (2002) 30 cases of infantile coma treated with Angong Niuhuang pill. Modern J Integr Trad Chin Western Med 20:3263Google Scholar
  47. Li P, Zhao L, Du Y, Feng Y, Li Y (2013) Hydrolysable tannins and related compound having cytotoxic activity of Geranium wilfordiimaxim. Adv J Food Sci Technol 5:255–257CrossRefGoogle Scholar
  48. Li X, Xu Y, Zhang C, Deng L, Chang M, Yu Z, Liu D (2015) Protective effect of Calculus bovis sativus on dextran sulphate Sodium-induced ulcerative colitis in mice. Evidence-Based Compl Altern Med 2015:469506. CrossRefGoogle Scholar
  49. Liu T, Liu YX, Sha DK (2011) Impacts of Angong Niuhuang wan on the expression of NF-κB and NO around hematoma in the rats with spontaneous hypertensive cerebral hemorrhage. World J Integr Tradit Western Med 6:19–21Google Scholar
  50. Liu D, Wu T, Zhang CL, YJ X, Chang MJ, Li XP, Cai HJ (2014) Beneficial effect of Calculus bovis sativus on 17α-ethynylestradiol-induced cholestasis in the rat. Life Sci 113:22–30CrossRefPubMedGoogle Scholar
  51. Malcom C (1998) Bezoar stones. The Navigator: Newsl Mel Fish Marit Herit Soc 13:1–2Google Scholar
  52. McKechnie JC (1972) Gastroscopic removal of a phytobezoar. Gastroenterology 62:1047–1051PubMedGoogle Scholar
  53. Mehta MH, Patel RV (1992) Intussusception and intestinal perforations caused by multiple trichobezoars. J Pediat Surg 27:1234–1235CrossRefPubMedGoogle Scholar
  54. Melone F, Saladino R, Lange H, Crestini C (2013) Tannin structural elucidation and quantitative 31P NMR analysis. 1. Model compounds. J Agric Food Chem 61:9307–9315CrossRefPubMedGoogle Scholar
  55. Miao JW, Liang SX, Wu Q, Liu J, Sun AS (2011) Toxicology evaluation of realgar-containing Niu-Huang-Jie-Du pian as compared to arsenicals in cell cultures and in mice. ISRN Toxicol 2011:250387. CrossRefPubMedPubMedCentralGoogle Scholar
  56. Miyamoto K, Kishi N, Koshiura R, Yoshida T, Hatano T, Okuda T (1987) Relationship between the structures and the antitumor activities of tannins. Chem Pharm Bull 35:814–822CrossRefPubMedGoogle Scholar
  57. Nijman V (2005) Decline of the endemic Hose’s langur Presbytis hosei in Kayan Mentarang National park, East Borneo. Oryx 39:1–4CrossRefGoogle Scholar
  58. Noferi M, Masson E, Merlin A, Pizzi A, Deglise X (1997) Antioxidant characteristics of hydrolysable and polyflavonoid tannins: an ESR kinetics study. J Appl Polym Sci 63:475–482CrossRefGoogle Scholar
  59. Nolan TE, Schaffer L, Conti PA (1988) A gastric trichobezoar in a chimpanzee. J Med Primatol 17:63–65PubMedGoogle Scholar
  60. Ogawa K, Kamimura K, Mizuno KI, Shinagawa Y, Kobayashi Y, Abe H, Watanabe Y, Takahashi S, Hayashi K, Yokoyama J, Takeuchi M, Kobayashi M, Yamagiwa S, Sato Y, Terai S (2016) The combination therapy of dissolution using carbonated liquid and endoscopic procedure for bezoars: Pragmatical and clinical review. Gastroenterol Res Pract 2016:7456242. CrossRefPubMedPubMedCentralGoogle Scholar
  61. Parkman HP, Urbain JL, Knight LC, Brown KL, Trate DM, Miller MA, Maurer AH, Fisher RS (1998) Effect of gastric acid suppressants on human gastric motility. Gut 42:243–250CrossRefPubMedPubMedCentralGoogle Scholar
  62. Phillips MR, Zaheer S, Drugas GT (1998) Gastric trichobezoar: case report and literature review. Mayo Clin Proc 73:653–656CrossRefPubMedGoogle Scholar
  63. Picard D, Shi XM, Lazdunski M (2016) Combination therapy for treatment of patients with neurological disorders and cerebral infarction (Patients No. US20090162459 A1)Google Scholar
  64. Qiu R, Wu XY (2003) Clinical observation of Angong Niuhuang pill for 30 cases of coma caused by acute cerebral infarction. Guang J Preve Med 9:132–133Google Scholar
  65. Raju CH, Bikshapathi T, Reddy AS, Reddy MK (2013) Biology of bezoars formation in goat. Veter Sci Res J 4:5–9Google Scholar
  66. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked. Free Rad Biol Med 49:1603–1616CrossRefPubMedGoogle Scholar
  67. Sah DE, Koo J, Price VH (2008) Trichotillomania. Dermatol Ther 21:13–21CrossRefPubMedGoogle Scholar
  68. Sanders MK (2004) Bezoars: from mystical charms to medical and nutritional management. Pract Gastroenterol 28:37–50Google Scholar
  69. Schlang HA (1970) Acetylcysteine in removal of bezoar. JAMA 214:1329–1329CrossRefPubMedGoogle Scholar
  70. Schreiner RL, Brady MS, Franken EA, Stevens DC, Lemons JA, Gresham EL (1979) Increased incidence of lactobezoars in low birth weight infants. Am J Dis Child 133:936–940CrossRefPubMedGoogle Scholar
  71. Shankar S, Lanza E (1991) Dietary fiber and cancer prevention. Hematol Oncol Clin North Am 5:25–41CrossRefPubMedGoogle Scholar
  72. Shepherd MF (1993) Bezoar formed by fragments of extended-release nifedipine tablets. Clin Pharm 12:849–852PubMedGoogle Scholar
  73. Silva F, Gonçalves C, Vasconcelos H, Cotrim I (2002) Endoscopic and enzymatic treatment of gastric bezoar with acetylcysteine. Endoscopy 34:845–845CrossRefPubMedGoogle Scholar
  74. Simpson SE (2011) Pharmacobezoars described and demystified. Clin Toxicol 49:72–89CrossRefGoogle Scholar
  75. Sippell WG, Kalb C, Fendel H (1977) Lactobezoar in an infant: an unusual cause of upper abdominal tumour persisting for several weeks. Eur J Pediatr 126:97–102CrossRefPubMedGoogle Scholar
  76. Sparks B, Kesavan A (2014) Treatment of a gastric lactobezoar with N-acetylcysteine. Case Rep Gastrointest Med 2014:254741. CrossRefPubMedPubMedCentralGoogle Scholar
  77. Stack PE, Thomas E (1995) Pharmacobezoar: an evolving new entity. Disgest Dis 13:356–364CrossRefGoogle Scholar
  78. Stack PE, Patel NR, Young MF, Ferslew KE, Thomas E (1994) Pharmacobezoars-the irony of the antidote: first case report of nifedipine XL bezoar. J Clin Gastroenterol 19:264–265CrossRefPubMedGoogle Scholar
  79. Stark MP (2003) Mounted bezoar stones, seychelles nuts, and rhinoceros horns: decorative objects as antidotes in early modern Europe. Stud Decorat Arts 11:69–94CrossRefGoogle Scholar
  80. Stephenson MC (2008) Bezoar stones in Peru. In: Selin H (ed) Encyclopaedia of the history of science, technology, and medicine in non-western cultures. Springer, DordrechtGoogle Scholar
  81. Tanimura S, Kadomoto R, Tanaka T, Zhang YJ, Kouno I, Kohno M (2005) Suppression of tumor cell invasiveness by hydrolyzable tannins (plant polyphenols) via the inhibition of matrix metalloproteinase-2/-9 activity. Biochem Biophys Res Commun 330:1306–1313CrossRefPubMedGoogle Scholar
  82. Tikoo K, Sane MS, Gupta C (2011) Tannic acid ameliorates doxorubicin-induced cardiotoxicity and potentiates its anti-cancer activity: potential role of tannins in cancer chemotherapy. Toxicol Appl Pharmacol 251:191–200CrossRefPubMedGoogle Scholar
  83. Towery HH, Chan RK (2004) Lactobezoar: a case report. Clin Pediat 43:577–578CrossRefPubMedGoogle Scholar
  84. Usmani SS, Levenrown J (1989) Lactobezoar in a full-term breast-fed infant. Am J Gastroenterol 84:647–649PubMedGoogle Scholar
  85. Wan TC, Chen CM, Lin LC (2013) Hepatoprotective effects of natural Calculus bovis against diethylnitrosamine induced hepatic injury in rats. J Pharmacogn Phytother 5:189–195Google Scholar
  86. Wang Q, Dong W (2013) The significance of detecting nitric oxide and tumor necrosis factor alpha in cerebrospinal fluid of viral encephalitis. Clin Med J China 10:906–909Google Scholar
  87. Wang GH, Lan R, Zhen XD, Zhang W, Xiang J, Cai DF (2014) An-Gong-Niu-Huang wan protects against cerebral ischemia induced apoptosis in rats: up-regulation of Bcl-2 and down-regulation of bax and caspase-3. J Ethnopharmacol 154:156–162CrossRefPubMedGoogle Scholar
  88. Wang Y, Jiang H, Huang H, Xie Y, Zhao Y, You X, Tang L, Wang Y, Yin W, Qiu P, Yan G, Hu H (2015) Determination of neuroprotective oxysterols in Calculus bovis, human gallstones, and traditional Chinese medicine preparations by liquid chromatography with mass spectrometry. J Sep Sci 38:796–803CrossRefPubMedGoogle Scholar
  89. Warner TF, Azen EA (1988) Tannins, salivary proline-rich proteins and oesophageal cancer. Med Hypothe 26:99–102CrossRefGoogle Scholar
  90. Winder M (1988) Medicine in China. A history of pharmaceutics. Med Hist 32:345–345CrossRefPubMedCentralGoogle Scholar
  91. Wong LP, Abubakar S (2013) Health beliefs and practices related to dengue fever: a focus group study. PLoS Neglec Trop Dis 7:e2310CrossRefGoogle Scholar
  92. Wright JV, Lenard L (2001) Why stomach acid is good for you: natural relief from heartburn, indigestion, reflux and GERD. Rowman and Littlefield Publishing Group, LanhamGoogle Scholar
  93. Wu YF, Luo C, Fan H (2012) Effects of Angong Niuhuang pills on plasma BNP and CRP and neurological functional defect in patients with acute cerebral infarction. Chinese J Modern Appl Pharma 29:547–550Google Scholar
  94. Wu T, Chang MJ, YJ X, Li XP, Du G, Liu D (2013) Protective effect of Calculus bovis sativus on intrahepatic cholestasis in rats induced by alpha-naphthyl isothiocyanate. Am J Chin Med 41:1393–1405CrossRefPubMedGoogle Scholar
  95. Wyllie R, Hyams JS, Kay M (2015) Pediatric gastrointestinal and liver disease, health sciences. Elsevier, PhiladelphiaGoogle Scholar
  96. Xiang D, Wu T, Feng CY, Li XP, Xu YJ, He WX, Lei K, Cai HJ, Zhang CL, Liu D (2017) Upregulation of PDZK1 by Calculus bovis sativus may play an important role in restoring biliary transport function in intrahepatic cholestasis. Evidence-Based Compl Altern Med 2017:1640187. CrossRefGoogle Scholar
  97. Xiao PG (2002) Modern Chinese Materia Medica. China Press, BeijingGoogle Scholar
  98. Yang M, Chi C, Chi P (1996) Development of 43 years (1949–1992) of studies on Calculus bovis in China. Chin J Ethnomed Ethnopharm 18:27–35Google Scholar
  99. Yang WQ, Ren YL, Guo K (2009) The effects of Angong Niuhuang pill for nitric oxide synthase and monoamine neurotransmitter in brain tissue of rats brain hemorrhage acute stage. J Emerg Tradit Chin Med 18:83–84Google Scholar
  100. Yao JM, Bai AL, Liu JM (2009) The effect of the treatment of Angong Niuhuang Pill and cerebrolysin on viral encephalitis. Chin J Misdiagn 9:4608–4609Google Scholar
  101. Ye ZG, Wang JH, Liang AH, Xue BY, Wang YS, Wang ZM, Wang L, Li CY, Zhang J, Huang N, Jin AY (2003) Comparative studies on pharmacological effects of angong niuhuang pill with its simplified prescription. China J Chin Materia Med 28:636–639Google Scholar
  102. Yew PN, Lee WL, Lim YY (2017) Antioxidant and intracellular ROS/RNS scavenging activities of three porcupine bezoars from Hystrix brachyura. Pharmacogn Res 9:366–371Google Scholar
  103. Yildirim I, Kutlu T (2015) Anticancer agents: Saponin and tannin. Int J Biol Chem 9:332–340CrossRefGoogle Scholar
  104. Yin NN (2011) Effect of Angong Niuhuang granula on the expression of TNF-α after intracerebral hemorrhage in rats. J Xian Univer 25:12–15Google Scholar
  105. Yu K, Ke MY, Li WH, Zhang SQ, Fang XC (2014) The impact of soluble dietary fibre on gastric emptying, postprandial blood glucose and insulin in patients with type 2 diabetes. Asia Pac J Clin Nutr 23:210–218PubMedGoogle Scholar
  106. Zhang DL, Wang XY (2001) Angong Niuhuang pill on 36 cases of centric fever after cerebral hemorrhage. Chin Tradit Patent Med 23:73–74Google Scholar
  107. Zhang RL, Yang ZL, Fan BG (2008) Huge gastric disopyrobezoar: a case report and review of literatures. World J Gastroenterol 14:152–154CrossRefPubMedPubMedCentralGoogle Scholar
  108. Zhang J, Li L, Kim SH, Hagerman AE, Lu J (2009) Anticancer, anti-diabetic and other pharmacologic and biological activities of penta-galloyl-glucose. Pharm Res 26:2066–2680CrossRefPubMedPubMedCentralGoogle Scholar
  109. Zhao Y, Cao CY, Wang XR (2002) Effect of angong niuhuang pill containing or not containing cinnaba and realgar on cerebral focal ischemia in rats. Chin J Integr Tradit Western Med 22:684–686Google Scholar
  110. Zhou S (2010) Medicinal simulation Calculus bovis and manufacturing method thereof (Patents No. CN101804195 A)Google Scholar
  111. Zhou DS, Li M, Hu H (2012) The expression of MMP-9 and cephaledema after cerebral infarction. Chin Arch Tradit Chin Med 30:2676–2678Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Peng Nian Yew
    • 1
  • Bey Hing Goh
    • 2
    • 3
  • Yau Yan Lim
    • 1
  • Wai Leng Lee
    • 1
    Email author
  1. 1.School of Science, Monash University MalaysiaSubang JayaMalaysia
  2. 2.Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaSubang JayaMalaysia
  3. 3.Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of PhayaoPhayaoThailand

Personalised recommendations