Advertisement

Plant-Derived Extracts and Compounds: An Alternative Therapy Against Breast Cancer

  • Ami Lokhandwala
  • Jagrati Jain
Chapter

Abstract

Breast cancer is among the second overall cause for death in women. In 2012, 1.7 million new cases of breast cancer have been reported worldwide. Emerging modern cancer therapy advocates the usage of alternative natural sources for cure and prevention of breast cancer. Plant sources are most widely used for naturally derived anticancer agents. Plant crude extracts, plant-derived compounds, and secondary metabolites have shown anticancer healing or protective property. Thus, the aim of this chapter is to summarize the various plant sources having the potential to be used as an anti-breast cancer agent.

Keywords

Alkaloids Anticancer agents Breast cancer Plant-derived compounds/extracts Secondary metabolites 

References

  1. ACS (2016) What is breast cancer. https://www.cancer.org/cancer/breast-cancer/about/what-is-breast-cancer.html. Accessed 20 Aug 2017
  2. Arpornsuwan T, Punjanon T (2006) Tumor cell selective antiproliferative effect of the extract from Morinda citrifolia fruits. Phytother Res 20:515–517CrossRefPubMedGoogle Scholar
  3. Baker VA, Hepburn PA, Kennedy SJ, Jones PA, Lea LJ, Sumpter JP, Ashby J (1999) Safety evaluation of phytosterol esters. Part 1. Assessment of oestrogenicity using a combination of in vivo and in vitro assays. Food Chem Toxicol 37:13–22CrossRefPubMedGoogle Scholar
  4. Begg L, Kuller LH, Gutai JP, Caggiula AG, Wolmark N, Watson CG (1987) Endogenous sex hormone levels and breast cancer risk. Genet Epidemiol 4:233–247CrossRefPubMedGoogle Scholar
  5. Boggs DA, Palmer JR, Stampfer MJ, Spiegelman D, Adams-Campbell LL, Rosenberg L (2010) Tea and coffee intake in relation to risk of breast cancer in the Black Women’s Health Study. Cancer Causes Control 21:1941–1948CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bora M, Lokhandwala A (2016) Mycorrhizal association: a safeguard for plant pathogen. In: Hakeem KR, Akhtar MS (eds) Plant, soil and microbes: volume 2: mechanisms and molecular interactions. Springer International Publishing, Cham, pp 253–275Google Scholar
  7. Brandi G, Schiavano GF, Zaffaroni N, De Marco C, Paiardini M, Cervasi B, Magnani M (2005) Mechanisms of action and antiproliferative properties of Brassica oleracea juice in human breast cancer cell lines. J Nutr 135:1503–1509CrossRefPubMedGoogle Scholar
  8. Brusselbach S, Nettelbeck DM, Sedlacek HH, Muller R (1998) Cell cycle independent induction of apoptosis by the anti-tumor drug Flavopiridol in endothelial cells. Int J Cancer 77:146–152CrossRefPubMedGoogle Scholar
  9. Carlson BA, Dubay MM, Sausville EA, Brizuela L, Worland PJ (1996) Flavopiridol induces G1 arrest with inhibition of cyclin-dependent kinase CDK2 and CDK4 in human breast carcinoma cells. Cancer Res 56:2973–2978PubMedGoogle Scholar
  10. Chang X, Firestone GL, Bjeldanes LF (2006) Inhibition of growth factor-induced Ras signaling in vascular endothelial cells and angiogenesis by 3,3′-diindolylmethane. Carcinogenesis 27:541–550CrossRefPubMedGoogle Scholar
  11. Choi JA, Kim JY, Lee JY, Kang CM, Kwon HJ, Yoo YD, Kim TW, Lee YS, Lee SJ (2001) Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin. Int J Oncol 19:837–844PubMedGoogle Scholar
  12. Correia JJ, Lobert S (2001) Physiochemical aspects of tubulin-interacting antimitotic drugs. Curr Pharm Des 7:1213–1228CrossRefPubMedGoogle Scholar
  13. Cover CM, Hsieh SJ, Tran SH, Hallden G, Kim GS, Bjeldanes LF, Firestone GL (1998) Indole-3-carbinol inhibits the expression of cyclin-dependent kinase-6 and induces a G1 cell cycle arrest of human breast cancer cells independent of estrogen receptor signaling. J Biol Chem 273:3838–3847CrossRefPubMedGoogle Scholar
  14. Cover CM, Hsieh SJ, Cram EJ, Hong C, Riby JE, Bjeldanes LF, Firestone GL (1999) Indole-3-carbinol and tamoxifen cooperate to arrest the cell cycle of MCF-7 human breast cancer cells. Cancer Res 59:1244–1251PubMedGoogle Scholar
  15. Cragg GM, Newman DJ (2005) Plants as a source of anti-cancer agents. J Ethnopharmacol 100:72–79CrossRefPubMedGoogle Scholar
  16. Das DK (1994) Naturally occurring flavonoids: structure, chemistry, and high-performance liquid chromatography methods for separation and characterization. Methods Enzymol 234:410–420CrossRefPubMedGoogle Scholar
  17. Diaby V, Tawk R, Sanogo V, Xiao H, Montero AJ (2015) A review of systematic reviews of the cost-effectiveness of hormone therapy, chemotherapy, and targeted therapy for breast cancer. Breast Cancer Res Treat 151:27–40CrossRefPubMedPubMedCentralGoogle Scholar
  18. Disis ML, Park KH (2009) Immunomodulation of breast cancer via tumor antigen specific Th1. Cancer Res Treat 41:117–121CrossRefPubMedPubMedCentralGoogle Scholar
  19. El-Sayed A, Cordell GA (1981) Catharanthus alkaloids. XXXIV. Catharanthamine, a new antitumor bisindole alkaloid from Catharanthus roseus. J Nat Prod 44:289–293CrossRefPubMedGoogle Scholar
  20. El-Sayed A, Handy GA, Cordell GA (1983) Catharanthus alkaloids, XXXVIII. Confirming structural evidence and antineoplastic activity of the bisindole alkaloids leurosine-N′b-oxide (pleurosine), roseadine and vindolicine from Catharanthus roseus. J Nat Prod 46:517–527CrossRefPubMedGoogle Scholar
  21. Fagherazzi G, Touillaud MS, Boutron-Ruault MC, Clavel-Chapelon F, Romieu I (2011) No association between coffee, tea or caffeine consumption and breast cancer risk in a prospective cohort study. Public Health Nutr 14:1315–1320CrossRefPubMedGoogle Scholar
  22. Ferlini C, Ojima I, Distefano M, Gallo D, Riva A, Morazzoni P, Bombardelli E, Mancuso S, Scambia G (2003) Second generation taxanes: from the natural framework to the challenge of drug resistance. Curr Med Chem Anticancer Agents 3:133–138CrossRefPubMedGoogle Scholar
  23. Finlay-Schultz J, Sartorius CA (2015) Steroid hormones, steroid receptors, and breast cancer stem cells. J Mammary Gland Biol Neoplasia 20:39–50CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fouche GEK, Kolesnikova N, Maharaj VJ, Nthambeleni R, van der Merwe M (2006) Investigation of South African plants for anticancer properties. Pharmacol Online 3:494–500Google Scholar
  25. Fouche G, Cragg GM, Pillay P, Kolesnikova N, Maharaj VJ, Senabe J (2008) In vitro anticancer screening of South African plants. J Ethnopharmacol 119:455–461CrossRefPubMedGoogle Scholar
  26. Fuchs DA, Johnson RK (1978) Cytologic evidence that taxol, an antineoplastic agent from Taxus brevifolia, acts as a mitotic spindle poison. Cancer Treat Rep 62:1219–1222PubMedGoogle Scholar
  27. Gallus S, Talamini R, Giacosa A, Montella M, Ramazzotti V, Franceschi S, Negri E, La Vecchia C (2005) Does an apple a day keep the oncologist away. Ann Oncol 16:1841–1844CrossRefPubMedGoogle Scholar
  28. Ganmaa D, Willett WC, Li TY, Feskanich D, van Dam RM, Lopez-Garcia E, Hunter DJ, Holmes MD (2008) Coffee, tea, caffeine and risk of breast cancer: a 22-year follow-up. Int J Cancer 122:2071–2076CrossRefPubMedPubMedCentralGoogle Scholar
  29. Gibellini L, Pinti M, Nasi M, Montagna JP, De Biasi S, Roat E, Bertoncelli L, Cooper EL, Cossarizza A (2011) Quercetin and cancer chemoprevention. Evid Based Complement Alternat Med 2011:591356.  https://doi.org/10.1093/ecam/neq053 CrossRefGoogle Scholar
  30. Grattan BJ Jr (2013) Plant sterols as anticancer nutrients: evidence for their role in breast cancer. Nutrients 5:359–387CrossRefPubMedPubMedCentralGoogle Scholar
  31. Grover S, Gudi S, Gandhi AK, Puri PM, Olson AC, Rodin D, Balogun O, Dhillon PK, Sharma DN, Rath GK, Shrivastava SK, Viswanathan AN, Mahantshetty U (2017) Radiation oncology in India: challenges and opportunities. Semin Radiat Oncol 27:158–163CrossRefPubMedGoogle Scholar
  32. Guo Q, Cheng L, Liu Z (2010) Study on influence of arbuscular mycorrhizal fungi Pinellia ternata yield and chemical composition. Zhongguo Zhong Yao Za Zhi 35:333–338PubMedGoogle Scholar
  33. Gutendorf B, Westendorf J (2001) Comparison of an array of in vitro assays for the assessment of the estrogenic potential of natural and synthetic estrogens, phytoestrogens and xenoestrogens. Toxicology 166:79–89CrossRefPubMedGoogle Scholar
  34. Guthrie N, Carroll KK (1998) Inhibition of mammary cancer by citrus flavonoids. Adv Exp Med Biol 439:227–236CrossRefPubMedGoogle Scholar
  35. Hakimuddin F, Paliyath G, Meckling K (2004) Selective cytotoxicity of a red grape wine flavonoid fraction against MCF-7 cells. Breast Cancer Res Treat 85:65–79CrossRefPubMedGoogle Scholar
  36. Hakimuddin F, Paliyath G, Meckling K (2006) Treatment of mcf-7 breast cancer cells with a red grape wine polyphenol fraction results in disruption of calcium homeostasis and cell cycle arrest causing selective cytotoxicity. J Agric Food Chem 54:7912–7923CrossRefPubMedGoogle Scholar
  37. Hankinson SE, Colditz GA, Willett WC (2004) Towards an integrated model for breast cancer etiology: the lifelong interplay of genes, lifestyle, and hormones. Breast Cancer Res 6:213–218CrossRefPubMedPubMedCentralGoogle Scholar
  38. He X, Liu RH (2008) Phytochemicals of apple peels: isolation, structure elucidation, and their antiproliferative and antioxidant activities. J Agric Food Chem 56:9905–9910CrossRefPubMedGoogle Scholar
  39. Heller W, Forkman G (1995) The flavonoids: advances in research since 1986. J Chem Educ 72:A73.  https://doi.org/10.1021/ed072pA73.11 CrossRefGoogle Scholar
  40. Himes RH (1991) Interactions of the Catharanthus (Vinca) alkaloids with tubulin and microtubules. Pharmacol Ther 51:257–267CrossRefPubMedGoogle Scholar
  41. Hollman PC, van Trijp JM, Buysman MN, van der Gaag MS, Mengelers MJ, de Vries JH, Katan MB (1997) Relative bioavailability of the antioxidant flavonoid quercetin from various foods in man. FEBS Lett 418:152–156CrossRefPubMedGoogle Scholar
  42. Hong C, Firestone GL, Bjeldanes LF (2002a) Bcl-2 family-mediated apoptotic effects of 3,3′-diindolylmethane (DIM) in human breast cancer cells. Biochem Pharmacol 63:1085–1097CrossRefPubMedGoogle Scholar
  43. Hong C, Kim HA, Firestone GL, Bjeldanes LF (2002b) 3,3′-Diindolylmethane (DIM) induces a G(1) cell cycle arrest in human breast cancer cells that is accompanied by Sp1-mediated activation of p21(WAF1/CIP1) expression. Carcinogenesis 23:1297–1305CrossRefPubMedGoogle Scholar
  44. Ismail IS, Nagakura Y, Hirasawa Y, Hosoya T, Lazim MI, Lajis NH, Shiro M, Morita H (2009) Chrotacumines A-D, chromone alkaloids from Dysoxylum acutangulum. J Nat Prod 72:1879–1883CrossRefPubMedGoogle Scholar
  45. Jeong JH, An JY, Kwon YT, Rhee JG, Lee YJ (2009) Effects of low dose quercetin: cancer cell-specific inhibition of cell cycle progression. J Cell Biochem 106:73–82CrossRefPubMedPubMedCentralGoogle Scholar
  46. Jordan VC (2000) Progress in the prevention of breast cancer: concept to reality. J Steroid Biochem Mol Biol 74:269–277CrossRefPubMedGoogle Scholar
  47. Jordan MA, Thrower D, Wilson L (1992) Effects of vinblastine, podophyllotoxin and nocodazole on mitotic spindles. Implications for the role of microtubule dynamics in mitosis. J Cell Sci 102:401–416PubMedGoogle Scholar
  48. Ju YH, Carlson KE, Sun J, Pathak D, Katzenellenbogen BS, Katzenellenbogen JA, Helferich WG (2000) Estrogenic effects of extracts from cabbage, fermented cabbage, and acidified brussels sprouts on growth and gene expression of estrogen-dependent human breast cancer (MCF-7) cells. J Agric Food Chem 48:4628–4634CrossRefPubMedGoogle Scholar
  49. Kaileh M, Vanden Berghe W, Boone E, Essawi T, Haegeman G (2007) Screening of indigenous Palestinian medicinal plants for potential anti-inflammatory and cytotoxic activity. J Ethnopharmacol 113:510–516CrossRefPubMedGoogle Scholar
  50. Kaur G, Stetler-Stevenson M, Sebers S, Worland P, Sedlacek H, Myers C, Czech J, Naik R, Sausville E (1992) Growth inhibition with reversible cell cycle arrest of carcinoma cells by flavone L86-8275. J Natl Cancer Inst 84:1736–1740CrossRefPubMedGoogle Scholar
  51. Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J 2013:162750.  https://doi.org/10.1155/2013/162750 CrossRefGoogle Scholar
  52. Kuzumaki T, Kobayashi T, Ishikawa K (1998) Genistein induces p21(Cip1/WAF1) expression and blocks the G1 to S phase transition in mouse fibroblast and melanoma cells. Biochem Biophys Res Commun 251:291–295CrossRefPubMedGoogle Scholar
  53. Larsson SC, Bergkvist L, Wolk A (2009) Coffee and black tea consumption and risk of breast cancer by estrogen and progesterone receptor status in a Swedish cohort. Cancer Causes Control 20:2039–2044CrossRefPubMedGoogle Scholar
  54. Leveque D, Jehl F (1996) Clinical pharmacokinetics of vinorelbine. Clin Pharmacokinet 31:184–197CrossRefPubMedGoogle Scholar
  55. Levitsky DO, Dembitsky VM (2014) Anti-breast cancer agents derived from plants. Nat Prod Bioprospect 5:1–16CrossRefPubMedCentralGoogle Scholar
  56. Li J, Seibold P, Chang-Claude J, Flesch-Janys D, Liu J, Czene K, Humphreys K, Hall P (2011) Coffee consumption modifies risk of estrogen-receptor negative breast cancer. Breast Cancer Res 13:R49.  https://doi.org/10.1186/bcr2879 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Li XJ, Ren ZJ, Qin JW, Zhao JH, Tang JH, Ji MH, JZ W (2013) Coffee consumption and risk of breast cancer: an up-to-date meta-analysis. PLoS One 8:e52681.  https://doi.org/10.1371/journal.pone.0052681 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Lingua G, Bona E, Manassero P, Marsano F, Todeschini V, Cantamessa S, Copetta A, D’Agostino G, Gamalero E, Berta G (2013) Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads increases anthocyanin concentration in strawberry fruits (Fragaria × ananassa var. Selva) in conditions of reduced fertilization. Int J Mol Sci 14:16207–16225CrossRefPubMedPubMedCentralGoogle Scholar
  59. Liu RH, Liu J, Chen B (2005) Apples prevent mammary tumors in rats. J Agric Food Chem 53:2341–2343CrossRefPubMedGoogle Scholar
  60. Lv X, Zhao S, Ning Z, Zeng H, Shu Y, Tao O, Xiao C, Lu C, Liu Y (2015) Citrus fruits as a treasure trove of active natural metabolites that potentially provide benefits for human health. Chem Cent J 9:68.  https://doi.org/10.1186/s13065-015-0145-9 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Miliauskas G, Venskutonis PR, van Beek TA (2004) Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem 85:231–237CrossRefGoogle Scholar
  62. Nakachi K, Suemasu K, Suga K, Takeo T, Imai K, Higashi Y (1998) Influence of drinking green tea on breast cancer malignancy among Japanese patients. Jpn J Cancer Res 89:254–261CrossRefPubMedPubMedCentralGoogle Scholar
  63. Nakagawa H, Kiyozuka Y, Uemura Y, Senzaki H, Shikata N, Hioki K, Tsubura A (2001) Resveratrol inhibits human breast cancer cell growth and may mitigate the effect of linoleic acid, a potent breast cancer cell stimulator. J Cancer Res Clin Oncol 127:258–264CrossRefPubMedGoogle Scholar
  64. Nifli AP, Kampa M, Alexaki VI, Notas G, Castanas E (2005) Polyphenol interaction with the T47D human breast cancer cell line. J Dairy Res 72:44–50CrossRefPubMedGoogle Scholar
  65. Ogunleye AA, Xue F, Michels KB (2010) Green tea consumption and breast cancer risk or recurrence: a meta-analysis. Breast Cancer Res Treat 119:477–484CrossRefPubMedGoogle Scholar
  66. Oh JK, Sandin S, Strom P, Lof M, Adami HO, Weiderpass E (2015) Prospective study of breast cancer in relation to coffee, tea and caffeine in Sweden. Int J Cancer 137:1979–1989CrossRefPubMedGoogle Scholar
  67. Orhan H, Marol S, Hepsen IF, Sahin G (1999) Effects of some probable antioxidants on selenite-induced cataract formation and oxidative stress-related parameters in rats. Toxicology 139:219–232CrossRefPubMedGoogle Scholar
  68. Osborne C, Wilson P, Tripathy D (2004) Oncogenes and tumor suppressor genes in breast cancer: potential diagnostic and therapeutic applications. Oncologist 9:361–377CrossRefPubMedGoogle Scholar
  69. Oskoueian E, Abdullah N, Ahmad S, Saad WZ, Omar AR, Ho YW (2011) Bioactive compounds and biological activities of Jatropha curcas L. kernel meal extract. Int J Mol Sci 12:5955–5970CrossRefPubMedPubMedCentralGoogle Scholar
  70. Otaegui-Arrazola A, Menendez-Carreno M, Ansorena D, Astiasaran I (2010) Oxysterols: a world to explore. Food Chem Toxicol 48:3289–3303CrossRefPubMedGoogle Scholar
  71. Parker BW, Kaur G, Nieves-Neira W, Taimi M, Kohlhagen G, Shimizu T, Losiewicz MD, Pommier Y, Sausville EA, Senderowicz AM (1998) Early induction of apoptosis in hematopoietic cell lines after exposure to flavopiridol. Blood 91:458–465PubMedGoogle Scholar
  72. Pezzuto JM (2008) Grapes and human health: a perspective. J Agric Food Chem 56:6777–6784CrossRefPubMedGoogle Scholar
  73. Prasad DMR, Izam A, Khan MM (2012) Jatropha curcas: plant of medical benefits. J Med Plant Res 6:2691–2699Google Scholar
  74. Rice S, Whitehead SA (2006) Phytoestrogens and breast cancer-promoters or protectors. Endocr Relat Cancer 13:995–1015CrossRefPubMedGoogle Scholar
  75. Roche Y, Gerbeau-Pissot P, Buhot B, Thomas D, Bonneau L, Gresti J, Mongrand S, Perrier-Cornet JM, Simon-Plas F (2008) Depletion of phytosterols from the plant plasma membrane provides evidence for disruption of lipid rafts. FASEB J 22:3980–3991CrossRefPubMedGoogle Scholar
  76. Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, Jackson RD, Beresford SA, Howard BV, Johnson KC, Kotchen JM, Ockene J (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the women’s health initiative randomized controlled trial. JAMA 288:321–333CrossRefPubMedPubMedCentralGoogle Scholar
  77. Russo M, Russo GL, Daglia M, Kasi PD, Ravi S, Nabavi SF, Nabavi SM (2016) Understanding genistein in cancer: the good and the bad effects: a review. Food Chem 196:589–600CrossRefPubMedGoogle Scholar
  78. Safia KM, Jadiya P, Sheikh S, Haque E, Nazir A, Lakshmi V, Mir SS (2015) The chromone alkaloid, rohitukine, affords anticancer activity via modulating apoptosis pathways in A549 cell line and yeast mitogen activated protein kinase (MAPK) pathway. PLoS One 10:e0137991.  https://doi.org/10.1371/journal.pone.0137991 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Sartippour MR, Pietras R, Marquez-Garban DC, Chen HW, Heber D, Henning SM, Sartippour G, Zhang L, Lu M, Weinberg O, Rao JY, Brooks MN (2006) The combination of green tea and tamoxifen is effective against breast cancer. Carcinogenesis 27:2424–2433CrossRefPubMedGoogle Scholar
  80. Schrump DS, Matthews W, Chen GA, Mixon A, Altorki NK (1998) Flavopiridol mediates cell cycle arrest and apoptosis in esophageal cancer cells. Clin Cancer Res 4:2885–2890PubMedGoogle Scholar
  81. Sharma GN, Dave R, Sanadya J, Sharma P, Sharma KK (2010) Various types and management of breast cancer: an overview. J Adv Pharm Technol Res 1:109–126PubMedPubMedCentralGoogle Scholar
  82. Sharma S, Dhamija HK, Parashar B (2012) Jatropha curcas: a review. Asian J Res Pharm Sci 2:107–111Google Scholar
  83. Shrubsole MJ, Lu W, Chen Z, Shu XO, Zheng Y, Dai Q, Cai Q, Gu K, Ruan ZX, Gao YT, Zheng W (2009) Drinking green tea modestly reduces breast cancer risk. J Nutr 139:310–316CrossRefPubMedPubMedCentralGoogle Scholar
  84. So FV, Guthrie N, Chambers AF, Moussa M, Carroll KK (1996) Inhibition of human breast cancer cell proliferation and delay of mammary tumorigenesis by flavonoids and citrus juices. Nutr Cancer 26:167–181CrossRefPubMedGoogle Scholar
  85. Soares ACF, Martins MA, Mathias L, Freitas MSM (2005) Arbuscular mycorrhizal fungi and the occurrence of flavonoids in roots of passion fruit seedlings. Sci Agric 62:331–336CrossRefGoogle Scholar
  86. Srivastava S, Somasagara RR, Hegde M, Nishana M, Tadi SK, Srivastava M, Choudhary B, Raghavan SC (2016) Quercetin, a natural flavonoid interacts with DNA, arrests cell cycle and causes tumor regression by activating mitochondrial pathway of apoptosis. Sci Rep 6:24049.  https://doi.org/10.1038/srep24049 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Sun CL, Yuan JM, Koh WP, Yu MC (2006) Green tea, black tea and breast cancer risk: a meta-analysis of epidemiological studies. Carcinogenesis 27:1310–1315CrossRefPubMedGoogle Scholar
  88. Takada Y, Aggarwal BB (2004) Flavopiridol inhibits NF-kappaB activation induced by various carcinogens and inflammatory agents through inhibition of IkappaBalpha kinase and p65 phosphorylation: abrogation of cyclin D1, cyclooxygenase-2, and matrix metalloprotease-9. J Biol Chem 279:4750–4759CrossRefPubMedGoogle Scholar
  89. Tan AR, Swain SM (2002) Review of flavopiridol, a cyclin-dependent kinase inhibitor, as breast cancer therapy. Semin Oncol 29:77–85CrossRefPubMedGoogle Scholar
  90. Tanaka T, Decuzzi P, Cristofanilli M, Sakamoto JH, Tasciotti E, Robertson FM, Ferrari M (2009) Nanotechnology for breast cancer therapy. Biomed Microdevices 11:49–63CrossRefPubMedGoogle Scholar
  91. Touillaud MS, Pillow PC, Jakovljevic J, Bondy ML, Singletary SE, Li D, Chang S (2005) Effect of dietary intake of phytoestrogens on estrogen receptor status in premenopausal women with breast cancer. Nutr Cancer 51:162–169CrossRefPubMedGoogle Scholar
  92. Treml J, Šmejkal K (2016) Flavonoids as potent scavengers of hydroxyl radicals. Comp Rev Food Sci Food Saf 15:720–738CrossRefGoogle Scholar
  93. Uche FI, Aprioku JS (2008) The Phytochemical constituents, analgesic and anti-inflammatory effects of methanol extract of Jatropha curcas leaves in mice and wister albino rats. J Appl Sci Environ Manag 12:22–102Google Scholar
  94. Vacca A, Iurlaro M, Ribatti D, Minischetti M, Nico B, Ria R, Pellegrino A, Dammacco F (1999) Antiangiogenesis is produced by nontoxic doses of vinblastine. Blood 94:4143–4155PubMedGoogle Scholar
  95. Wall ME, Wani MC (1995) Camptothecin and taxol: discovery to clinic. Cancer Res 55:753–760PubMedGoogle Scholar
  96. Wang JH, Liu XY (2003) Targeting strategies in cancer gene therapy. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao 35:311–316PubMedGoogle Scholar
  97. Wang MY, Jensen C, Su C (2005) Preventative effects of Morinda citrifolia on mammary breast cancer. Patents No. US20050037101 A1Google Scholar
  98. Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT (1971) Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93:2325–2327Google Scholar
  99. Weaver BA (2014) How Taxol/paclitaxel kills cancer cells. Mol Biol Cell 25:2677–2681CrossRefPubMedPubMedCentralGoogle Scholar
  100. Yang J, Liu RH (2009) Synergistic effect of apple extracts and quercetin 3-beta-d-glucoside combination on antiproliferative activity in MCF-7 human breast cancer cells in vitro. J Agric Food Chem 57:8581–8586CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of BiologyUniversity of MississippiOxfordUSA
  2. 2.National Center for Natural Products Research and Department of BioMolecular SciencesUniversity of MississippiOxfordUSA
  3. 3.School of PharmacyUniversity of MississippiOxfordUSA

Personalised recommendations