Advertisement

Bone Char As a Novel Phosphorus Fertilizer

  • Peter Leinweber
  • Philipp Hagemann
  • Lutz Kebelmann
  • Katharina Kebelmann
  • Mohsen Morshedizad
Chapter

Abstract

Bone char is the product of a thermochemical conversion of defatted bones. This chapter summarizes the state of the art in the technical pyrolysis process, resulting physicochemical properties and other characteristics of bone chars and possible applications. Special emphasis is put on the solubility of P compounds, which in general characterize bone chars as potentially slow-release P fertilizers. The P release into soil can be improved by an “internal activation” through adsorption of reduced S compounds. Other agronomically relevant properties originate from the porosity that promotes water retention and the habitat function for soil microorganisms. Bone char effects on crop yields are summarized, giving the impression that field crops with long vegetation period and intensive rooting systems benefit most from this material. In conclusion, the carbonization by pyrolysis and formulation of bone char-based products is a reasonable approach in the recycling of P-rich bones from slaughterhouses. However, longer-term agronomic trials are required to fully evaluate the fertilizer potential of bone chars.

Keywords

Biochar Crop yield Fertilization Plant nutrition Soil 

Notes

Acknowledgements

Parts of this work have been performed within the InnoSoilPhos project (http://www.innosoilphos.de/default.aspx), funded by the German Federal Ministry of Education and Research (BMBF) in the frame of the BonaRes-program (No. 031A558). Mohsen Morshedizad acknowledges a PhD grant from the state of Mecklenburg-Western Pomerania, Germany. This research was conducted within the scope of the Leibniz ScienceCampus Phosphorus Research Rostock.

References

  1. Acksel A, Kappenberg A, Kühn P, Leinweber P (2017) Human activity formed deep, dark topsoils around the Baltic Sea. Geoderma Reg 10:93–101CrossRefGoogle Scholar
  2. Aue WP, Roufosse AH, Glimcher MJ, Griffin RG (1984) Solid-state phosphorus-31 nuclear magnetic resonance studies of synthetic solid phases of calcium phosphate: potential models of bone mineral. Biochemistry 23:6110–6114CrossRefGoogle Scholar
  3. Babu BV (2008) Biomass pyrolysis: a state-of-the-art review. Biofuels Bioprod Biorefin 2(5):393–414CrossRefGoogle Scholar
  4. Chen SB, Zhu YG, Ma YB, McKay G (2006) Effect of bone char application on Pb bioavailability in a Pb-contaminated soil. Environ Pollut 139(3):433–439CrossRefGoogle Scholar
  5. Cheung CW, Chan CK, Porter JF, McKay G (2001) Combined diffusion model for the sorption of cadmium, copper, and zinc ions onto bone char. Environ Sci Technol 35(7):1511–1522CrossRefGoogle Scholar
  6. Cheung CW, Porter JF, McKay G (2002) Removal of Cu(II) and Zn(II) ions by sorption onto bone char using batch agitation. Langmuir 18(3):650–656CrossRefGoogle Scholar
  7. van Dijk KC, Lesschen JP, Oenema O (2016) Phosphorus flows and balances of the European Union Member States. Sci Total Environ 542:1078–1093CrossRefGoogle Scholar
  8. Etok SE, Valsami-Jones E, Wess TJ, Hiller JC, Maxwell CA, Rogers KD, Manning DAC, White ML, Lopez-Capel E, Collins MJ, Buckley M, Penkman KEH, Woodgate SL (2007) Structural and chemical changes of thermally treated bone apatite. J Mater Sci 42:9807–9816CrossRefGoogle Scholar
  9. Figueiredo M, Fernando A, Martins G, Freitas J, Judas F, Figueiredo H (2010) Effect of the calcination temperature on the composition and microstructure of hydroxyapatite derived from human and animal bone. Ceram Int 36(8):2383–2393CrossRefGoogle Scholar
  10. Flores-Cano JV, Leyva-Ramos R, Carrasco-Marin F, Aragón-Piña A, Salazar-Rabago JJ, Leyva-Ramos S (2016) Adsorption mechanism of Chromium (III) from water solution on bone char: effect of operating conditions. Adsorption 22(3):297–308CrossRefGoogle Scholar
  11. Fuller CC, Bargar JR, Davis JA (2003) Molecular-scale characterization of uranium sorption by bone apatite materials for a permeable reactive barrier demonstration. Environ Sci Technol 37(20):4642–4649CrossRefGoogle Scholar
  12. Glaser B, Haumaier L, Guggenberger G, Zech W (2001) The ‘Terra Preta’ phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften 88:37–41CrossRefGoogle Scholar
  13. Hagemann P, Kebelmann L (2017) Klärschlammpyrolyse mit dem EREKA Bio-Reaktor. In: Sauermann U, Klätte M (Eds) Thermopolyphos Steinbeis Edition Stuttgart, p 49–57Google Scholar
  14. Hornung A, Apfelbacher A, Sagi S (2011) Intermediate pyrolysis: a sustainable biomass-to-energy concept – biothermal valorisation of biomass (BtVB) process. J Sci Ind Res 70:664–667Google Scholar
  15. Iriarte-Velasco U, Sierra I, Zudaire L, Ayastuy JL (2016) Preparation of a porous biochar from the acid activation of pork bones. Food Bioprod Process 98:341–353CrossRefGoogle Scholar
  16. Larsen MJ, Pearce EIF, Ravnholt G (1994) The effectiveness of bone char in the defluoridation of water in relation to its crystallinity, carbon content and dissolution pattern. Archs Oral Bid 39(9):807–816CrossRefGoogle Scholar
  17. Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota – a review. Soil Biol Biochem 3(9):1812–1836CrossRefGoogle Scholar
  18. Leinweber P (2017) Pyrolyse von Schlachtknochen – ein attraktiver Ansatz im Phosphorrecycling. In: U. Sauermann, M. Klätte (Eds) Thermopolyphos Steinbeis Edition Stuttgart, p 59–65Google Scholar
  19. Leinweber P, Jandl G, Eckhardt K-U, Schlichting A, Hofmann D, Schulten H-R (2009) Analytical pyrolysis and soft-ionization mass spectrometry. In: Senesi N, Xing B, Huang PM (eds) Biophysico-chemical processes involving natural nonliving organic matter in environmental systems. Wiley, New York, pp 539–588CrossRefGoogle Scholar
  20. Little NG, Mohler CL, Ketterings QM, DiTommaso A (2015) Effects of organic nutrient amendments on weed and crop growth. Weed Sci 63(3):710–722CrossRefGoogle Scholar
  21. Medellín-Castillo NA, Leyva-Ramos R, Ocampo-Pérez R, García de la Cruz RF, Aragón-Piña A, Martínez-Rosales JM, Guerrero-Coronado RM, Fuentes-Rubio L (2007) Adsorption of fluoride from water solution on bone char. Ind Eng Chem Res 46:9205–9212CrossRefGoogle Scholar
  22. Medellin-Castillo NA, Leyva-Ramos R, Padilla-Ortega E, Perez RO, Flores-Cano JV, Berber-Mendoza MS (2014) Adsorption capacity of bone char for removing fluoride from water solution. Role of hydroxyapatite content, adsorption mechanism and competing anions. J Ind Eng Chem 20(6):4014–4021CrossRefGoogle Scholar
  23. Mkukuma LD, Skakle JMS, Gibson IR, Imrie CT, Aspden RM, Hukins DWL (2004) Effect of the proportion of organic material in bone on thermal decomposition of bone mineral: an investigation of a variety of bones from different species using thermogravimetric analysis coupled to mass spectrometry, high-temperature X-ray diffraction, and fourier transform infrared spectroscopy. Calcif Tissue Int 75(4):321–328CrossRefGoogle Scholar
  24. Morshedizad M, Leinweber P (2017) Mobilization and leaching of phosphorus and cadmium in soils amended with different bone chars. Clean – Soil Air Water 45:1600635.  https://doi.org/10.1002/clen.201600635 CrossRefGoogle Scholar
  25. Morshedizad M, Zimmer D, Leinweber P (2016) Effect of bone chars on phosphorus-cadmium-interactions evaluated by three extraction procedures. J Plant Nutr Soil Sci 179:388–398CrossRefGoogle Scholar
  26. Morshedizad M, Klysubun W, Panten K, Leinweber P (2018) Alteration of bone chars and amended soils as revealed by sequential fractionation and XANES spectroscopy. SOIL 4:23–35.  https://doi.org/10.5194/soil-4-23-2018 CrossRefGoogle Scholar
  27. Novotny EH, Auccaise R, Velloso MHR, Corrêa JC, Higarashi MM, Abreu VMN, Rocha JD, Kwapinski W (2012) Characterization of phosphate structures in biochar from swine bones. Pesq Agropec Bras 47:672–676CrossRefGoogle Scholar
  28. Ooi CY, Hamdi M, Ramesh S (2007) Properties of hydroxyapatite produced by annealing of bovine bone. Ceram Int 33:1171–1177CrossRefGoogle Scholar
  29. Pan H, Darvell BW (2010) Effect of carbonate on hydroxyapatite solubility. Cryst Growth Des 10:845–850CrossRefGoogle Scholar
  30. Panwar NL, Kothari R, Tyagi VV (2012) Thermo chemical conversion of biomass – eco friendly energy routes. Renew Sust Energ Rev 16(4):1801–1816CrossRefGoogle Scholar
  31. Patel S, Han J, Qiu W, Gao W (2015) Synthesis and characterisation of mesoporous bone char obtained by pyrolysis of animal bones, for environmental application. J Environ Chem Eng 3(4):2368–2377CrossRefGoogle Scholar
  32. Postma J, Clematis F, Nijhuis EH, Someus E (2013) Efficacy of four phosphate-mobilizing bacteria applied with an animal bone charcoal formulation in controlling Pythium aphanidermatum and Fusariumoxysporum f. sp. radicis lycopersici in tomato. Biol Control 67(2):284–291CrossRefGoogle Scholar
  33. Qian K, Kumar A, Zhang H, Bellmer D, Huhnke R (2015) Recent advances in utilization of biochar. Renew Sust Energ Rev 42:1055–1064CrossRefGoogle Scholar
  34. Rajendran J, Gialanella S, Aswath PB (2013) XANES analysis of dried and calcined bones. Mater Sci Eng C 33(7):3968–3979CrossRefGoogle Scholar
  35. Reidsma FH, van Hoesel A, van Os BJH, Megens L, Braadbaart F (2016) Charred bone: physical and chemical changes during laboratory simulated heating under reducing conditions and its relevance for the study of fire use in archaeology. J Archaeol Sci Rep 10:282–292Google Scholar
  36. Robinson S, Baumann K, Kebelmann L, Hagemann P, Hu Y, Leinweber P (2018) Phosphorus transformations in plant- and bio-waste feedstocks induced by pyrolysis: implications for fertilizer replacement potential. Ambio 47(Suppl. 1):73–82.  https://doi.org/10.1007/s13280-017-0990-y CrossRefGoogle Scholar
  37. Rogers KD, Daniels P (2002) An X-ray diffraction study of the effects of heat treatment on bone mineral microstructure. Biomaterials 23(12):2577–2585CrossRefGoogle Scholar
  38. Rojas-Mayorga CK, Silvestre-Albero J, Aguayo-Villarreal IA, Mendoza-Castillo DI, Bonilla-Petriciolet A (2015) A new synthesis route for bone chars using CO2 atmosphereand their application as fluoride adsorbents. Micropor Mesopor Mater 209:38–44CrossRefGoogle Scholar
  39. Rothwell WPJ, Waugh S, Yesinowski JP (1980) High-resolution variable-temperature phosphorus-31 NMR of solid calcium phosphates. J Am Chem Soc 102(8):2637–2643CrossRefGoogle Scholar
  40. Schmidt MWI, Skjemstad JO, Gehrt E, Kögel-Knabner I (1999) Charred organic carbon in German chernozemic soils. Eur J Soil Sci 50:351–365CrossRefGoogle Scholar
  41. Siebers N, Leinweber P (2013) Bone char – a clean and renewable fertilizer with cadmium immobilizing capacity. J Environ Qual 42:405–411CrossRefGoogle Scholar
  42. Siebers N, Godlinski F, Leinweber P (2012) Utilization of bone char phosphorus for potato, wheat, and onion production. Landbauforschung – vTI Agric Forest Res 62:59–64Google Scholar
  43. Siebers N, Godlinski F, Leinweber P (2014) Bone char as phosphorus fertilizer involved in Cd immobilization in lettuce, wheat, and potato cropping. J Plant Nutr Soil Sci 177:75–83CrossRefGoogle Scholar
  44. Vassilev N, Martos E, Mendes G, Martos V, Vassileva M (2013) Biochar of animal origin: a sustainable solution to the global problem of high-grade rock phosphate scarcity? J Sci Food Agric 93:1799–1804CrossRefGoogle Scholar
  45. Warchol G, Kebelmann L (2012) Screw and method for producing same. Patent WO 2012/126574Google Scholar
  46. Warren GP, Robinson JS, Someus E (2009) Dissolution of phosphorus from animal bone char in 12 soils. Nutr Cycl Agroecosyst 84:167–178CrossRefGoogle Scholar
  47. Wilson JA, Pulford ID, Thomas S (2003) Sorption of Cu and Zn by bone charcoal. Environ Geochem Health 25:51–56CrossRefGoogle Scholar
  48. Wopenka B, Pasteris JD (2005) A mineralogical perspective on the apatite in bone. Mater Sci Eng C 25:131–143CrossRefGoogle Scholar
  49. Wu Y, Ackerman JL, Strawich ES, Rey C, Kim H-M, Glimcher MJ (2003) Phosphate ions in bone: identification of a calcium–organic phosphate complex by 31P solid-state NMR spectroscopy at early stages of mineralization. Calcif Tissue Int 72(5):610–626CrossRefGoogle Scholar
  50. Zwetsloot MJ, Lehmann J, Solomon D (2015) Recycling slaughterhouse waste into fertilizer: how do pyrolysis temperature and biomass additions affect phosphorus availability and chemistry? J Sci Food Agric 95:281–288CrossRefGoogle Scholar
  51. Zwetsloot MJ, Lehmann J, Bauerle T, Vanek S, Hestrin R, Nigussie A (2016) Phosphorus availability from bone char in a P-fixing soil influenced by root-mycorrhizae-biochar interactions. Plant Soil 408(1):95–105CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Peter Leinweber
    • 1
  • Philipp Hagemann
    • 2
  • Lutz Kebelmann
    • 3
  • Katharina Kebelmann
    • 4
  • Mohsen Morshedizad
    • 1
  1. 1.Soil ScienceUniversity of RostockRostockGermany
  2. 2.SchwerinGermany
  3. 3.BerlinGermany
  4. 4.HamburgGermany

Personalised recommendations