TDZ in Cereal Gametic Embryogenesis

  • Patricio Esteves
  • François J. Belzile


Gametic embryogenesis is defined as the process that allows immature pollen grains – microspores – to parthenogenetically become embryos. The process can successfully be induced at a high frequency under in vitro culture conditions in a wide number of crop species. Microspores are haploid cells carrying half the somatic number of chromosomes, but if either spontaneously or artificially their chromosomal complement is doubled during the embryogenic pathway, the resulting embryos will become diploid and perfectly homozygous. The products of gametic embryogenesis are therefore called doubled-haploid plants, which are coveted materials for research and for plant breeding. Yet, to be efficiently used in a plant breeding program, doubled haploids need to be produced at a high frequency and in a reproducible manner. The efficiency and reproducibility of DH production are tied to the control of key factors intervening in the process. As is the case in many in vitro procedures, growth regulators play an important role in stimulating and guiding the process of orderly cell divisions leading to the regeneration of a complete plant from a single immature microspore. In this chapter, we review some of the key factors in this process with emphasis placed on the important role played by growth regulators, among which thidiazuron (TDZ). To illustrate the utility of TDZ in cereal gametic embryogenesis, we describe a highly efficient protocol for producing doubled haploids (either via anther culture or isolated microspore culture) that relies on an innovative combination of growth regulators: thidiazuron and dicamba. In our hands, this protocol proved successful for producing high numbers of barley, wheat, and rice doubled haploids.


Gametic embryogenesis Cereals In vitro culture Doubled haploids Thidiazuron Dicamba 


  1. Ahzria D, Bhalla PL (2000) Plant regeneration from mature embryo derived callus of Australian rice (Oryza sativa L.) varieties. Aust J Agri Res 51:305–312CrossRefGoogle Scholar
  2. Atanassov A, Zagorska N, Boyadjiev P et al (1995) In vitro production of haploid plants. World J Microbiol Biotechnol Vol 11:400–408CrossRefGoogle Scholar
  3. Bedinger PA, Edgerton MD (1991) Developmental staging of maize microspores reveals a transition in developing microspore proteins. Plant Physiol 92:474–479. CrossRefGoogle Scholar
  4. Begheyn RF, Vangsgaard K, Roulund N et al (2016) Efficient doubled haploid production in perennial ryegrass (Lolium perenne L). In: Roldán-Ruiz I, Baert J, Reheul D (eds) Breeding in a world of scarcity. Springer, ChamGoogle Scholar
  5. Bossoutrot D, Hosemans D (1985) Gynogenesis in Beta vulgaris: from in vitro culture of unpollinated ovules to the production of doubled haploid plants in soil. Plant Cell Rep 4:300–303CrossRefPubMedGoogle Scholar
  6. Cai DT, Zhou C (1984) In vitro production of haploid embryoids and plantlets from unpollinated young florets and ovules of Helianthus annuus L. Kexue Tongbao 29:680–682Google Scholar
  7. Cai Q, Szarejko I, Polok K et al (1992) The effect of sugars and growth regulators on embryoid formation and plant regeneration from barley anther culture. Plant Breed 109:218–226. CrossRefGoogle Scholar
  8. Campion B, Alloni C (1990) Induction of haploid plants in onion (Allium cepa L.) by in vitro culture of unpollinated ovules. Plant Cell Tiss Organ Cult 20:1–6CrossRefGoogle Scholar
  9. Castillo AM, Cistué L (1993) Production of gynogenic haploids of Hordeum vulgare L. Plant Cell Rep Jan 12(3):139–143. Google Scholar
  10. Chu CC, Wang CC, Sun CS et al (1975) Establishment of an efficient medium for anther culture of rice through comparative experiment on the nitrogen sources. Sci Sn 18:659–668Google Scholar
  11. Cistué L, Kasha KJ (2005) Gametic embryogenesis in Triticum: a study of some critical factors in haploid (microspore) embryogenesis. In: Mujib A, Samaj J (eds) Somatic embryogenesis. Springer, Berlin, pp 321–342Google Scholar
  12. Cistué L, Ramos A, Castillo AM (1999) Influence of anther pretreatment and culture medium composition on the production of barley doubled haploids from model and low responding cultivars. Plant Cell Tissue Organ Cult 55:159–166CrossRefGoogle Scholar
  13. Cistué L, Vallés MP, Echávarri B et al (2003) Barley anther culture. In: Maluszynski M, Kasha K, Foster B (eds) Doubled haploid production in crop plants, a manual. FAO/IAEA Division, Kluwer, Dordrecht, pp 29–35CrossRefGoogle Scholar
  14. Clapham D (1973) Haploid Hordeum plants from anther in vitro. Z Pflanzenzucht 69:142–155Google Scholar
  15. Datta SK (2005) Androgenic haploids: factors controlling development and its application in crop improvement. Curr Sci 89(11):1870–1878Google Scholar
  16. Davies PA (2003) Barley isolated microspore culture (IMC) protocol. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Springer, Dordrecht, pp 49–52CrossRefGoogle Scholar
  17. Davies PA, Morton S (1998) A comparison of barley isolated microspore and anther culture and the influence of cell culture density. Plant Cell Rep 17:206–210CrossRefGoogle Scholar
  18. De Jong AJ, Schmidt EDL, De Vries SC (1993) Early events in higher-plant embryogenesis. Plant Mol Biol 22:367–377CrossRefPubMedGoogle Scholar
  19. Devaux P (2003) The Hordeum bulbosum (L.) method. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Springer, Dordrecht, pp 15–19CrossRefGoogle Scholar
  20. Devaux P, Kasha KJ (2009) Overview of Barley doubled haploid production. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants. Springer Science + Business Media BV, DordrechtGoogle Scholar
  21. Devaux P, Pickering R (2005) Haploids in the improvement of Poaceae. In: Palmer CE, Keller WA, Kasha KJ (eds) Haploids in crop improvement II. Springer, BerlinGoogle Scholar
  22. Dodeman VL, Ducreux G, Kreis M (1997) Zygotic embryogenesis versus somatic embryogenesis. J Exp Bot 48(313):1493–1509CrossRefGoogle Scholar
  23. Dunwell JM (2010) Haploids in flowering plants: origins and exploitation. Plant Biotechnol J 8(4):377–424Google Scholar
  24. Esteves P, Clermont I, Marchand S et al (2014) Improving the efficiency of isolated microspore culture in six-row spring barley: II-exploring novel growth regulators to maximize embryogenesis and reduce albinism. Plant Cell Rep 33(6):871–879CrossRefPubMedGoogle Scholar
  25. Foroughi-Wehr B, Mix G, Gaul H, Wilson HM (1976) Plant production from cultured anthers of Hordeum vulgare L. Z Pflanzenzucht 77:198–204Google Scholar
  26. Foroughi-Wehr B, Friedt W, Wenzel G (1982) On the genetic improvement of androgenetic haploid formation in Hordeum vulgare L. Theor Appl Genet 62:246–248Google Scholar
  27. Foroughi-Wehr B, Friedt W, Wenzel G (1984) On the genetic improvement of androgenetic haploid formation in Hordeum vulgare L. Theor Appl Genet 62:233–239Google Scholar
  28. Forster BP, Heberle-Bors E, Kasha KJ et al (2007) The resurgence of haploids in higher plants. Trends Plant Sci 12:368–375. CrossRefPubMedGoogle Scholar
  29. Germanà MA (2011) Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Rep 30:839–857CrossRefPubMedGoogle Scholar
  30. Guha S, Maheshwari SC (1964) In vitro production of embryos from anthers of Datura. Nature 204:497CrossRefGoogle Scholar
  31. Guha S, Maheshwari SC (1966) Cell division and differentiation of embryos in the pollen grains of Datura in vitro. Nature (London) 212:97CrossRefGoogle Scholar
  32. Guha-Mukherjee S (1973) Genotypic differences in the in vitro formation of Embryoids from Rice pollen. J Exp Bot 24(78):139–144CrossRefGoogle Scholar
  33. Haberlandt G (1902) Culturversuche mit isolierten Pflanzenzellen. Sitz-Ber Mat Nat Kl Kais Akad Wiss Wien 111:69–92Google Scholar
  34. Henry Y, Vain P, De Buyser J (1994) Genetic analysis of in vitro plant tissue culture responses and regeneration capacities. Euphytica 79:45–58CrossRefGoogle Scholar
  35. Hoekstra S, van Zijderveld MH, Louwerse JD et al (1992) Anther and microspore culture of Hordeum vulgare L. cv. Igri. Plant Sci 86:89–96CrossRefGoogle Scholar
  36. Hoekstra S, van Bergen S, van Brouwershaven IR et al (1997) Androgenesis in Hordeum vulgare L.: effects of mannitol, calcium and abscisic acid on anther pretreatment. Plant Sci 126:211–218CrossRefGoogle Scholar
  37. Huang B (1984) The effects of several factors in callus induction in barley anther culture. Acta Phys Sin 10:403–405Google Scholar
  38. Hunter CP (1988) Plant regeneration from microspores of barley, Hordeum vulgare L. Ph D thesis. Wye College, University London, LondonGoogle Scholar
  39. Jacquard C, Wojnarowiez G, Clement C (2003) Another culture in barley. In: Maluszynski M, Kasha K, Foster B, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Springer, Dordrecht, pp 21–27CrossRefGoogle Scholar
  40. Jähne A, Lörz H (1995) Cereal microspore culture. Plant Sci 109:1–12CrossRefGoogle Scholar
  41. Jimenez VM (2005) Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul 47:91–110CrossRefGoogle Scholar
  42. Kasha K (1989) Production of haploids in cereals. In: Maluszynski M (ed) Current options for cereal improvement: double haploids, mutants and Heterosis. Kluwer, Dordrecht, pp 71–80CrossRefGoogle Scholar
  43. Kasha KJ, Kao KN (1970) High frequency haploid production in barley (Hordeum vulgare L.) Nature 225:874–876CrossRefPubMedGoogle Scholar
  44. Kasha KJ, Simion E, Oro R et al (2001) An improved in vitro technique for isolated microspore culture of barley. Euphytica 120:379–385CrossRefGoogle Scholar
  45. Kihara M, Fukuda K, Funatsuki H et al (1994) Plant regeneration through anther culture of three wild species of Hordeum (H. murinum, H. marinum and H. bulbosum). Plant Breed 112:244–247CrossRefGoogle Scholar
  46. Kiviharju E, Moisander S, Laurila J (2005) Improved green plant regeneration rates from oat anther culture and the agronomic performance of some HD lines. PCTOC Plant Cell Tiss Org Cult 81:1–9. CrossRefGoogle Scholar
  47. Knudsen S, Dui IK, Andersen SB (1989) Components of response in barley anther culture. Plant Breed 103:241–246CrossRefGoogle Scholar
  48. Kohli A, Sreenivasulu N, Lakshmanan P et al (2013) The phytohormone crosstalk paradigm takes center stage in understanding how plants respond to abiotic stresses. Plant Cell Rep 32:945–957. CrossRefPubMedGoogle Scholar
  49. Lentini Z, Reyes P, Martinez CP, Roca WM (1995) Androgenesis of highly recalcitrant rice genotypes with maltose and silver nitrate. Plant Sci 110:127–138CrossRefGoogle Scholar
  50. Li H, Devaux P (2001) Enhancement of microspore culture efficiency of recalcitrant barley genotypes. Plant Cell Rep 20:475–481CrossRefGoogle Scholar
  51. Li H, Devaux P (2005) Isolated microspore culture over performs anther culture for green plant regeneration in barley (Hordeum vulgare L.) Acta Physiol Plant 27:611–619CrossRefGoogle Scholar
  52. Liu W, Zheng MY, Polle EA, Konzak CF (2002) Highly efficient doubled-haploid production in wheat (Triticum aestivum L.) via induced microspore embryogenesis. Crop Sci 42:686–692CrossRefGoogle Scholar
  53. Lu R, Chen Z, Gao R et al (2016) Genotypes-independent optimization of nitrogen supply for isolated microspore cultures in barley. Bio Med Res Intl 2016:1801646. Google Scholar
  54. Makowska K, Oleszczuk S, Zimny A et al (2015) Androgenic capability among genotypes of winter and spring barley. Plant Breed 134:668–674CrossRefGoogle Scholar
  55. Maluszynski M, Kasha KJ, Szarejko I (2003) Published doubled haploid protocols in plant species. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Kluwer Academic Publishers, Dordrecht, pp 309–335CrossRefGoogle Scholar
  56. Mandal N, Gupta S (1995) Effect of genotype and culture medium on androgenic callus formation and green plant regeneration in indica rice. Indian J Exp Biol 33:761–765Google Scholar
  57. Maraschin SF, de Priester W, Spaink HP et al (2005) Androgenic switch: an example of plant embryogenesis from the male gametophyte perspective. J Exp Bot 56:1711–1726CrossRefPubMedGoogle Scholar
  58. Marchand S, Fonquerne G, Clermont I et al (2008) Androgenic response of barley accessions and F1s with fusarium head blight resistance. Plant Cell Rep 27:443–451CrossRefPubMedGoogle Scholar
  59. Mishra R, Rao NGJ (2016) In-vitro androgenesis in rice: advantages, constraints and future prospects. Rice Sci 23(2):57–68.
  60. Murashige T (1979) Principles of rapid propagation. In: Proceedings of symposium on propagation of higher plants through tissue culture. A Bridge between Research and Application Feb 1979. University of Tenn Knoxville TNGoogle Scholar
  61. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  62. Navarro-Alvarez W, Baezinger PS, Eskridge KM et al (1994) Effect of sugars in wheat anther culture media. Plant Breed 112:53–62CrossRefGoogle Scholar
  63. Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87. CrossRefPubMedGoogle Scholar
  64. Olmedilla A (2010) Microspore embryogenesis. In: Pua E-C, Davey MR (eds) Plant developmental biology – biotechnological perspectives vol 2. Springer, BerlinGoogle Scholar
  65. Ouédraogo JT, St-Pierre C-A, Collin J, Rioux S et al (1998) Effect of amino acids, growth regulators and genotype on androgenesis in barley. Plant Cell Tissue Organ Cult 53:59–66CrossRefGoogle Scholar
  66. Ouyang J, Jia S, Zhang C et al (1989) A new synthetic medium (W14) for wheat anther culture. In: Ann Rep Inst Genet, Academia Sinica, Beijing, p 91–92Google Scholar
  67. Parmar SS, Sainger M, Chaudhary D et al (2012) Plant regeneration from mature embryo of commercial Indian bread wheat (Triticum aestivum L.) cultivars. Physiol Mol Biol Plants 18(2):177–183. CrossRefPubMedPubMedCentralGoogle Scholar
  68. Powell W (1990) Environmental and genetic aspects of pollen embryogenesis. Bajaj YPS Biotechnology in agriculture and forestry part I. Haploids in crop improvement vol 12 Springer Berlin 44–65Google Scholar
  69. Prigge V, Melchinger AE (2012) Production of haploids and doubled haploids in maize. Methods Mol Biol 877:161–172CrossRefPubMedGoogle Scholar
  70. Raina SK, Zapata FJ (1997) Enhanced anther culture efficiency of indica rice (Oryza sativa L.) through modification of the culture media. Plant Breed 116(4):305–315CrossRefGoogle Scholar
  71. Reynolds TL (1997) Pollen embryogenesis. Plant Mol Biol 33:1–10CrossRefPubMedGoogle Scholar
  72. Ricci A, Carra A, Torelli A et al (2001) Cytokinin-like activity of N′-substituted N-phenylureas. Plant Growth Regul 34:167–172. CrossRefGoogle Scholar
  73. Rybczynski JJ, Simonson RL, Baenziger PS (1991) Evidence for microspore embryogenesis in wheat anther culture. In Vitro Cell Dev Biol Plant 27:168–174CrossRefGoogle Scholar
  74. Santra M, Ankrah N, Santra DK et al (2012) An improved wheat microspore culture technique for the production of doubled haploid plants. Crop Sci 52:2314–2320. CrossRefGoogle Scholar
  75. Sari N, Abak K (1994) Induction of parthenogenetic haploid embryos after pollination by irradiated pollen in watermelon. Hortic Sci 29(10):1189–1190Google Scholar
  76. Schulze J (2007) Improvements in cereal tissue culture by Thidiazuron: a review. In: Fruit, vegetable and cereal science and biotechnology 1(2):64–79 Global Science BookGoogle Scholar
  77. Shariatpanahi ME, Bal U, Heberle-Bors E et al (2006) Stresses applied for the re-programming of plant microspores towards in vitro embryogenesis. Physiol Plant 127:519–534CrossRefGoogle Scholar
  78. Simmonds J (1989) Improved androgenesis of winter cultivars of Triticum aestivum L. in response to low temperature treatment of donor plants. Plant Sci 65:225–231CrossRefGoogle Scholar
  79. Soriano M, Li H, Boutilier K (2013) Microspore embryogenesis: establishment of embryo identity and pattern in culture. Plant Reprod 26:181–196CrossRefPubMedPubMedCentralGoogle Scholar
  80. Szakacs E, Kovacs G, Pauk J et al (1988) Substitution analysis of callus induction and plant regeneration from anther culture in wheat (Triticum aestivum L.) Plant Cell Rep 7:127–129CrossRefPubMedGoogle Scholar
  81. Szarejko I (2003) Anther culture for doubled haploid production in barley (Hordeum vulgare L.) In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants – a manual. Kluwer Academic Publishers, Dordrecht, pp 35–42CrossRefGoogle Scholar
  82. Toonen MAJ, Hendriks T, Schmidt EDL et al (1994) Description of somatic embryo-forming single cells in carrot suspension cultures employing video cell tracking. Planta 194:565–572CrossRefGoogle Scholar
  83. Torp AM, Andersen SB (2009) Albinism in microspore culture. In: Touraev A, Forster BP, Shri Mohan J (eds) Advances in haploid production in higher plants. Springer Science + Business Media BV, Dordrecht, pp 155–160CrossRefGoogle Scholar
  84. Touraev A, Pfosser M, Heberle-Bors E (2001) The microspore: a haploid multipurpose cell. Adv Bot Res 35:53–109CrossRefGoogle Scholar
  85. Trejo-Tapia G, Amaya UM, Morales GS et al (2002) The effects of cold-pretreatment, auxins and carbon source on anther culture of rice. Plant Cell Tissue Organ Cult 71:41–46CrossRefGoogle Scholar
  86. Tyankova ND, Zagorska NA (2008) Genetic control of in vitro response in wheat (Triticum aestivum L.) In Vitro Cell Dev Biol Plant 37:524–530. CrossRefGoogle Scholar
  87. Wenzel G, Hoffmann F, Potrykus I et al (1975) The separation of viable rye microspores from mixed populations and their development in culture. Mol Gen Genet 138:293–297CrossRefGoogle Scholar
  88. Wenzhong T, Rance I, Sivamani E et al (1994) Improvement of Plant Regeneration Frequency in vitro in Indica Rice. Chin J Genet 21(3):1–7Google Scholar
  89. Weyen J (2009) Barley and wheat doubled haploids in breeding. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants. Springer Science+ Business Media BV, Dordrecht, pp 179–187CrossRefGoogle Scholar
  90. Zheng MY, Liu W, Weng Y et al (2001) Culture of freshly isolated wheat (Triticum aestivum L.) microspores treated with inducer chemicals. Plant Cell Rep 20:685–690CrossRefGoogle Scholar
  91. Zhou H, Zheng Y, Konzak CE (1991) Osmotic potential of media affecting green plant percentage in wheat anther culture. Plant Cell Rep 10:63–66CrossRefPubMedGoogle Scholar
  92. Ziauddin A, Marsolais A, Simion E et al (1992) Improved plant regeneration from wheat anther and barley microspore culture using phenylacetic acid (PAA). Plant Cell Rep 11:489–498CrossRefPubMedGoogle Scholar
  93. Zubo YO, Yamburenko MV, Selivankina SY et al (2008) Cytokinin stimulates chloroplast transcription in detached barley leaves. Plant Physiol 148(2):1082–1093. CrossRefPubMedPubMedCentralGoogle Scholar
  94. Żur I, Dubas E, Krzewska M et al (2015) Current insights into hormonal regulation of microspore embryogenesis. Front Plant Sci 6:424. PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Patricio Esteves
    • 1
  • François J. Belzile
    • 2
  1. 1.Département de phytologiePavillon Paul-Comtois, Université LavalQuébecCanada
  2. 2.Département de phytologie ène Marchand, Université LavalQuébecCanada

Personalised recommendations