Advertisement

Distributed Transmission-Distribution Coordinated Optimal Power Flow

  • Zhengshuo LiEmail author
Chapter
  • 304 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

An OPF tool targets at optimizing a real-time operation state of a power system, and AC power flow equations are typically involved there to handle voltage constraints. Thus, the OPF tool can be used to solve a DPS-side over-voltage issue that has become a binding constraint for DG integration.

References

  1. 1.
    Sun DI, Ashley B, Brewer B et al (1984) Optimal power flow by Newton approach. IEEE Trans Power App Syst PAS-103(10):2864–2880Google Scholar
  2. 2.
    Capitanescu F, Glavic M, Ernst D et al (2007) Interior-point based algorithms for the solution of optimal power flow problems. Electr Power Syst Res 77(5–6):508–517CrossRefGoogle Scholar
  3. 3.
    Liu WH, Papalexopoulos AD, Tinney WF (1992) Discrete shunt controls in a newton optimal power flow. IEEE Trans Power Syst 7(4):1509–1518CrossRefGoogle Scholar
  4. 4.
    Lin SY, Ho YC, Lin CH (2004) An ordinal optimization theory-based algorithm for solving the optimal power flow problem with discrete control variables. IEEE Trans Power Syst 19(1):276–286CrossRefGoogle Scholar
  5. 5.
    Capitanescu F, Wehenkel L (2010) Sensitivity-based approaches for handling discrete variables in optimal power flow computations. IEEE Trans Power Syst 25(4):1780–1789CrossRefGoogle Scholar
  6. 6.
    Yang T, Sun HB, Bose A (2011) Transition to a two-level linear state estimator-part I: architecture. IEEE Trans Power Syst 26(1):46–53CrossRefGoogle Scholar
  7. 7.
    Civanlar S, Grainger JJ, Yin H et al (1988) Distribution feeder reconfiguration for loss reduction. IEEE Trans Power Del 3(3):1217–1223CrossRefGoogle Scholar
  8. 8.
    Low SH (2014) Convex relaxation of optimal power flow—part I: formulations and equivalence. IEEE Trans Control Netw Syst 1(1):15–27MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Low SH (2014) Convex relaxation of optimal power flow—part II: exactness. IEEE Trans on Control Netw Syst 1(2):177–189MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Zimmerman RD, Murillo-Sánchez CE, Thomas RJ (2011) MATPOWER: steady-state operations, planning and analysis tools for power systems research and education. IEEE Trans Power Syst 26(1):12–19CrossRefGoogle Scholar
  11. 11.
    Kim BH, Baldick R (1997) Coarse-grained distributed optimal power flow. IEEE Trans Power Syst 12(2):932–939CrossRefGoogle Scholar
  12. 12.
    Hur D, Park JK, Kim BH (2002) Evaluation of convergence rate in the auxiliary problem principle for distributed optimal power flow. Proc Inst Elect Eng Gen Transm Distrib 149(5):525–532Google Scholar
  13. 13.
    Biskas PN, Bakirtzis AG (2006) Decentralised OPF of large multiarea power systems. Proc Inst Elect Eng Gen Transm Distrib 153(1):99–105Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Tsinghua-Berkeley Shenzhen InstituteTsinghua UniversityShenzhenChina

Personalised recommendations